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Abstract. A most crucial problem in knowledge representation is the revision of
knowledge when new, possibly contradictory, information is obtained (belief
revision). In this report, we address this problem when the knowledge base is a set of
expressions in propositional logic. We introduce a new representation of propositional
expressions using 2-dimensional matrices and provide the theoretical underpinnings
of this representation. We prove several propositions regarding matrices and their
similarity with classical logic and show why this representation is more expressive
than classical propositional logic. We exploit this increased expressiveness to devise a
solution to the problem of belief revision in propositional knowledge bases and
describe a simple method to perform revisions and contractions under this new notion.
Finally, we compare our method with proposed algorithms from the literature.

1. Introduction

The problem of revising beliefs is the problem of adapting a given piece of
knowledge to accommodate a new piece of information regarding the world being
modeled. It is a most crucial problem in knowledge bases (KB), as we generally have
to deal with dynamic worlds, where changes are quite frequent. Moreover, we must
base our knowledge on information that could be incomplete, or even faulty.
Therefore, new updates could contradict the given knowledge, and we should be able
to track and remove the contradictions created by each update.

The updating methods of knowledge are by no means obvious, even when we
are concerned with the intuitive processes only. Let us consider the simple example of
knowing a fact A, as well as the proposition A—B. One obvious implication of the
above is the fact B (by modus ponens), which could be inserted into our KB as a new
fact. Let us now consider the negation of B (—B) entering into the base as a new piece
of knowledge (ie an update). This contradicts our assumption that B is true, so we will
have to give up some (or all) of our previous beliefs or we would result in an
inconsistent KB. Alternatively, we could reject the update as non-valid. Even in this
trivial example, it is not clear which approach should be taken. Extra-logical factors
should be taken into account, like the source and reliability of each piece of
information or some kind of bias towards or against updates.

This and similar problems have been addressed by several scientists, including
philosophers, computer scientists, logicians and others, in an effort to provide us with
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an intuitively correct method of belief updating. An excellent introductory survey of
such efforts by Girdenfors may be found in [8]. This report concentrates on the
description of a new method of representing propositional expressions and the effects
of this representation on the problem of belief revision. For a short, but partial
description of our technique, see [7].

2. Previous Work

One of the first attempts to solve the belief revision problem is due to Fagin,
Ullman and Vardi [6]. However, as proven in the same paper, their method forces us
to completely abandon the old knowledge whenever we update the base with an
inconsistent piece of information. This may be unacceptable in most applications.

Dalal in [2, 3] proposed another, more promising method of revising beliefs.
He provided a specific algorithm for updating propositional databases which was
based on four basic principles, namely:

1) Irrelevance of Syntax: Logically equivalent databases (and updates), should give
logically equivalent update results.

2) Primacy of New Information: New knowledge is always assumed more reliable
than old knowledge.

3) Persistence of Prior Knowledge: As much as possible of the old data should be
retained in the database; we should only retract the minimum knowledge needed to
keep the database consistent.

4) Fairness: All things being equal, when we have more than one choice for the
result of the update, none of the choices should be arbitrarily chosen, in order to
preserve determinism.

Dalal also formalized the notion of minimal change (third principle) and
proved ([3]) that his method generally retained more knowledge in cases of
inconsistent updates than any of the up-to-then proposed algorithms.

An alternative approach was presented by Alchourron, Girdenfors and
Makinson in a series of papers ([1, 8, 14]). Their idea was to recede from the search of
any specific algorithm and attempt to formalize the notion of update. As a result, a set
of widely accepted properties of any belief revision algorithm was introduced, in the
form of postulates which were in fact a set of logical propositions (named AGM
postulates after the initials of the authors). By specifying those postulates, a series of
important theoretical results could be proved.

The AGM postulates inspired a series of other works, like [11] by Katsuno and
Mendelzon who proposed a different theoretical foundation of update functions by
reformulating the AGM postulates in terms of formulas. They also provided an
elegant representation based on orderings of belief sets. Other works investigated
generalizations of the postulates into the knowledge level ([15]), and there were a
number of alternative propositions ([5, 10]). Most of the above works are concerned
with the theoretical foundation of the belief revision problem, so they are mostly of
theoretical interest. Williams in [16, 17] followed a more practical approach by
providing implementations of algorithms based on the AGM paradigm.

3. Properties of Belief Revision

In order to address the problem of belief revision we must first examine some
of its properties. One primary consideration is the concurrence of the results with
human intuition. This consideration is formally expressed by the principles of Dalal



and the AGM postulates. However, it is not absolutely clear how humans revise their
beliefs, despite the efforts by psychologists in the area.

One example of disagreement is the representation of knowledge in the human
brain. There are two general types of theories concerning this representation:
foundation and coherence theories ([9]). Foundational theorists argue that knowledge
should consist of a set of reasons. According to this theory, knowledge has the form of
a pyramid, where only some beliefs (called foundational, or reasons) can stand by
themselves; the rest being derived by the most basic (foundational) beliefs. On the
other hand, coherence theorists believe that each piece of knowledge has an
independent standing and needs no justification, as long as it does not contradict with
other beliefs. Surprisingly, experiments have shown that the human brain actually
uses the coherence paradigm ([9]). However, there has been considerable debate on
the explanation of the experiments’ results. The experiments showed that people tend
to ignore causality relationships once a belief has been accepted as a fact, even if this
belief has been accepted solely by deduction from other beliefs. The followers of the
coherence approach argue that what actually happens is that humans do not actually
ignore the causality relationships, but forget them. The subject will be very willing to
reject any beliefs whose logical support no longer exists, but only if he is reminded of
this fact.

The approach (foundational or coherence) chosen greatly influences the
algorithms considered. Foundational KBs need to store the reasons for beliefs, along
with the beliefs themselves. KBs based on the coherence paradigm need to store the
set of beliefs only. Reasons should be taken into account when revising a KB only if
the foundational approach is selected. The coherence paradigm practically considers
all beliefs equal and ignores any causality relationships.

The set of beliefs of any KB includes the derived beliefs. It is generally the
case that the derived beliefs are too many, or even infinitely many. This is a serious
drawback, so it has been proposed that instead of the whole set of beliefs (belief set), a
small number of propositions could be stored (belief base), enough to reproduce the
whole set via deduction. Belief sets are useful theoretic constructions, but cannot be
directly used in implementations, due to their size. Belief bases are more useful when
it comes to applications. The use of belief bases does not necessarily force us to use
the foundational paradigm; the causality relationships possibly implied by the use of
the theorem prover that performs the deduction could or could not be used, depending
on the approach.

The use of belief bases gives rise to another problem which is the selection of
the belief base. In general, a given belief set can be derived from several bases.
Different selections of bases may give different reasons (deductions) and this
difference is crucial under the foundational approach, but irrelevant under the
coherence approach.

Another important consideration is the problem of iterated revisions. All the
algorithms described so far are concerned with just one update. There are cases when
this is not entirely correct. It can be shown that there are sequences of revisions which
give counter-intuitive results if we process each one individually. A solution to this
problem is to process the sequence of revisions as a whole ([4, 13]). The main
problem regarding the one-update algorithms is the fact that the belief base is not
properly selected after each update, because the algorithms are only concerned with
the result of the update and not with how this result occurred. This can cause the loss
of valuable information. The proposed solution is based on the principle that two KBs
should be considered equivalent if, in addition to the logical equivalence of the bases



themselves, they will give equivalent results to all possible updates as well. This is the
basic principle governing the algorithms of iterated belief revision ([13]). It is also
pointed out in [4], where the difference between belief sets (knowledge only) and
epistemic states (knowledge including information on how to revise it) is discussed.

An additional difficulty of the problem of belief revision is the fact that the
result of an update may also depend on the source of the data. Let us suppose that
there are two lamps, A and B, in a room and we know that exactly one of them is on.
Our knowledge can be represented by the proposition: (AA—=B)v(—AAB). If we make
the observation that lamp A is on, the update could be described by the proposition A
and the intuitively correct result for the update is the proposition AA—B, as we know
now that B is off.

On the other hand, if a robot is sent into the room in order to turn lamp A on,
then we would again have the update A. The proper intuitive result of the update is the
proposition A in this case, as we know nothing about the state of lamp B; it could
have been on or off before sending the robot in the room (and stayed so). This
example shows that even identical (not just equivalent) databases can give different
intuitively correct results with identical updates!

In order to overcome the problem, two different types of updates have been
defined in [12], namely revision and update. Revision is used when new information
about a static world is obtained. This is the first case of our example where the
observation did not change the state of A and B. The AGM postulates and the
algorithms presented deal with revisions. A revision is performed when the source of
the data is an observation regarding the world. Update is used when the world
dynamically changes and we have to record that change. In the second case of our
example, the robot changed the state of lamp A, and consequently the state of the
world being modeled. Therefore, the result of the update must be different. An update
is performed when the reason of change is an action, instead of an observation. An
excellent study on the problem may be found in [12], where a new set of postulates,
adequate for update, is presented. As we will see, our approach will deal with both
kinds of updates interchangeably, so throughout this report we will use both terms to
refer to both kinds of updates.

4. Driving Considerations

Before describing how our approach deals with the above problems, we will
make a short description of the logical framework used. We will restrict ourselves in
KBs whose knowledge can be expressed using a finite number of propositional
expressions. The underlying propositional language will contain the usual operators
(—.A,v,—,<>), parentheses, the logical constants (T,F) and a finite number of atoms
(0u1,02,...,00). The language will be denoted by L and the set of all propositions
resulting from the language L will be denoted by L".

Interpretations will be viewed as an assignment of logical values (T,F) to the
atoms of the language. In most cases, it will be more convenient to use the constant 0
instead of F and the constant 1 instead of T. Under this notion, an interpretation is an
ordered finite sequence of size n (equal to the number of atoms in the propositional
language), consisting of elements from the set {0,1}.

Regarding the representation of the base, we will adopt Nebel’s proposition
([15]). Nebel proposes the use of a belief base consisting of propositional sentences
representing specific observations, experiments, rules etc, out of which our knowledge
is derived. In effect, under this notion, the belief base consists of the individual



updates. This approach follows the foundational paradigm, as the propositions in the
KB are the foundational beliefs and the rest are implied directly or indirectly by them.

We believe that the foundational approach is more compatible with common
sense, and that, in principle, knowledge is actually derived from the observations we
make about the world. Therefore, the storage of the observations themselves is the
best way to describe our knowledge ([15]). The derived facts may be used for faster
deduction and query answering, but they are of no value as far as the actual
knowledge is concerned. This deals with the problem of iterated revisions as well,
because each observation is actually one revision and is explicitly stored, allowing us
to process the whole sequence of revisions, if this proves necessary.

At any given point in time, the real world can be represented by a unique
assignment of truth-values to the atoms describing it. In other words, the real world is
uniquely identified by one interpretation, which may change through time. Our goal is
to find this interpretation. Usually, an observation will only give partial knowledge
regarding the world, by specifying the truth-values of some, but not all, atoms in the
real world. Of course, the update (observation) may contain disjunctions, which
means that each disjunction describes a different possible world. Moreover, we cannot
be sure in advance that the update is correct. We may only assume its correctness and
if our assumption is wrong, this may lead us away from the real world.

The above remark leads us to another consideration, regarding the approval or
rejection of each new update. Whenever a contradictory update is performed, the
contradiction may be resolved in two ways; either we consider the update correct and
try to change the KB to accommodate the update, or we consider the KB correct and
reject or try to change the update in order to be accommodated in the KB.

Under most updating schemes, updates are considered more reliable than the
old data. This is generally a good practice, as updates are usually regarded as the latest
information about the world and can be assumed correct. However, this may not be
true in several cases, as the new data may come from a noisy or otherwise unreliable
source. In order to overcome the problem, we will assign a non-negative real number
to each belief, which will represent its reliability. We will call this number the
Reliability Factor of the belief and we will use the abbreviation RF. When a piece of
contradictory information is used to revise our knowledge, at least some of the
existing data (or the update itself) must be rejected. The use of the RF implies that the
piece(s) of data to be rejected should be the one(s) with the lowest RF. Notice
however that there are cases where small changes in existing pieces of data (or the
update) are enough to accommodate the update without introducing any
inconsistencies. No data rejection is necessary in this case. The selection of the data to
reject or change is not an easy one, because there may be several ways to
accommodate an update. Finding all possible ways to do so requires evaluating all
possible subsets of our belief base and comparing all the ways of removal of the
inconsistency in terms of RF cost. This is a computationally expensive operation.

5. Table Transformation

Considerations such as the above, led us to the search of an algorithm that
would give us the contradictions, the possible ways of removal and the cost of
removal per case at the same time. This can be done by the application of the table
transformation, which transforms an expression of any finite propositional language
into a 2-dimensional matrix of complex numbers.

The transformation can be applied to any proposition; however, for technical
reasons it is better to use the proposition’s disjunctive normal form (DNF). Any well-
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formed formula in propositional logic has an equivalent DNF expression, so this is not
a restriction. The transformation returns a 2-dimensional matrix of complex numbers.
In [7] we used ordered pairs of non-negative numbers instead of complex numbers,
but the idea is pretty much the same, as ordered pairs can be assigned to complex
numbers and vice-versa.

In short, each atom of the language is assigned to one column of the matrix,
and there are as many lines in the matrix as the number of disjuncts in the DNF of the
propositional expression. In the figure below, we show the transformation of the
expression P=(aAbAa—c)v(arn—bad)v(cae) into its respective matrix. We suppose that
the language consists of 5 atoms, namely a, b, ¢, d and e, so the matrix has 5 columns.
The expression is already in DNF and it has 3 disjuncts, so the number of lines in the
matrix is 3. As far as the contents of the matrix are concerned (called elements
hereof), the procedure is the following: an element has the value of 1 if and only if the
respective atom in the respective disjunct appears as a positive atom; if negative the
value is i; if the atom does not appear at all, then the value of the element is 0. The
application of these rules on the expression P results in the matrix below:

a bc d e

1 1 i 00

| » 1 i 01 0
(arbAa—=c)v(arn-bard)v(chne)y —» |0 0 1 0 1

Example of a table transformation

Each element in the matrix represents the type of membership of one atom in
one disjunct of the proposition. This membership may be positive (1), negative (i) or
zero (0), depending on how the atom appears in the respective disjunct. Additionally,
we could assign weights (representing RF) to atoms. Moreover, elements of the form
x+yi where both x and y are positive, are allowed and are called contradictory. A line
that contains at least one contradictory element is a contradiction. Matrix A below has
weights for each element and it has only one non-contradictory line, the second one.

1+5 02+i 5
A=| 2i 0 1 (example of a weighted matrix with contradictions)
i 3i 1+i

Note that a contradictory element indicates the existence of both an atom and its
negation in a conjunction, which is a contradiction in propositional logic. Finally, we
allow elements with negative real and/or imaginary part, representing our “stiffness”
in the acceptance of an atom and/or its negation.

Let us suppose that our knowledge is represented by Matrix A above. Matrix
A has 3 lines, each one representing a disjunction. This indicates that the world being
modeled by A has 3 possible states, under our current knowledge. In reality, the world
has only one state, as mentioned before, but our knowledge is incomplete, so we don’t
know which is the correct state yet. Therefore, each line in a matrix represents one
possible world. Moreover, each element of the matrix shows our confidence in each
atom (or its negation), per possible world. This will prove very important later on, as
new updates may cast doubts on some of our beliefs and we should know which one
is more reliable.

As we will see in the following sections, the above way of defining the table
transformation is not the only possible way to do so. In fact, the use of the above
definition presents serious problems when complex numbers with a negative real or
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imaginary part are used in the matrices and when applied to propositions not in DNF.
However, it’s one of the simplest ways to do so if we restrict ourselves to matrices
with elements with non-negative real and imaginary parts and expressions in DNF.

6. Formal Definitions
In order to define the above transformation more formally, we will first
introduce some notations. As usual, we denote by C the set of complex numbers, by i
the imaginary unit (i = J-1 ), by R the set of real numbers and by R™ the set of non-
negative real numbers. Analogously, we denote by C™ the set:

CH={x+yieClx,yeR™}, ie the complex numbers whose real and imaginary part are
both non-negative.

For matrices, we define C™" to be the set of matrices with m lines and n
columns whose elements are complex numbers, and C™ the set:
C™"={AeC™" for some me N}, ie the union of C™" for all meN". In other words,
C™™ is the set of matrices with n columns, whose elements are complex numbers.

Analogously, we define the sets C™" and C™", as well as the sets R™", R™,

RO™M and RO™M for matrices of real numbers.

We will use the usual notation for addition and multiplication of matrices, as
well as for the multiplication of a number with a matrix. Moreover, we define the
operation of juxtaposition as follows:

Definition 6.1

Let A.BeC™. The Jjuxtaposition of A and B, denoted by A[B, is the matrix that
results by placing the lines of A followed by the lines of B, ie:

A
AlB=|-——|.
B

We will also define a partitioning on C:
Definition 6.2

Let zeC and x=Re(z), y=Im(z) its real and imaginary part, respectively. Then we
define:

o If x>0, y<0, then z is called positive.

o Ifx<0, y>0, then z is called negative.

e Ifx-y>0, then z is called contradictory (when x>0 and y>0 or x<0 and y<0).

e If zis both positive and negative, then z is called zero (when x=y=0).

We will denote by € the set of zero complex numbers, C, the set of positive complex

numbers, C_ the set of negative complex numbers and C+ the set of contradictory
complex numbers.

It is obvious that C;={0}, C.nC =Cy, C:nC+=F, C "C+=, C uC,uC=C.
Notice that this partitioning has very much to do with the informal definition of the
transformation as defined above, as positive literals are assigned to positive complex
numbers and negative literals are assigned to negative complex numbers. Moreover,
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zero complex numbers indicate no literal and contradictory complex numbers indicate
both a literal and its negation, ie a contradiction. Furthermore, the real part of a
number represents the RF for the positive literal, whereas the imaginary part

represents the RF for the negative literal. For example, the number —1+ie C_ indicates
belief in the negation of the atom with a reliability of 1 and disbelief in the atom itself
by reliability of 1; this implies belief in the atom’s negation. The above remarks are
illustrated in the figure below:

vt

=l

Co={0}

< | 1=

The following matrices will be useful at later stages:

Definition 6.3

e Let AeC" be a matrix of the form [0 ... 0 1 0 ... 0], where the element 1 is in
the k-th column. Matrix A will be called a k-atom or a positive k-atom and we will
use the notation Ay.

o Let A=Z~Ake(Clxn, for some ze C. Matrix A will be called a generalized k-atom,
and we will use the notation Ag(z). In the special case where z=i, matrix A will be
called an inverse k-atom or a negative k-atom and we will use the notation A’y or
Ax(i).

e The matrix A=[0 0 ... 0]eC"™ is called the n-true matrix and we will use the
notation T,,.

e The matrix A=[1+i 1+i ... 1+i]e C"" is called the n-false matrix and we will use
the notation F,,.

The informal analysis made in the previous section shows that our goal is to
assign the k-atoms to the atoms of our propositional language. T, will be assigned to
the constant T and F,, will be assigned to the constant F. Moreover, notice that the

matrices Ty, F, and Ai(z), for ze C™ also belong to set C™",

The following two propositions are immediate:
Proposition 6.1

For any matrix AeCP™  there exist unique zjeC, j=1.2,...,n, such that:
A=XAG).

J=1
Proof

Immediate by selecting z; to be the elements of the matrix A.
Uniqueness is derived from the definition of the generalized atoms.



Proposition 6.2

For any me N and any matrix AeC™", there exist unique z;eC, k=1,2,...,m,
7=1.2,...n, such that: A=Az, VIO A @) 1OQ,A(z,))-

J=1 J=1 J=l
Proof

Immediate by selecting zy to be the elements of the matrix A.
Uniqueness is derived from the definition of the generalized atoms.

The above form (proposition 6.2) of a matrix A will be called the extended
normal form of A, and denoted by ENF(A).

Definition 6.4
We define the truth constants F=0e C and T=1eC.
Any ordered n-sized sequence of numbers in the set {0,1}={F,T} is called an

interpretation of space C™". The set of all interpretations of space C " will be
denoted by I(n).

Notice that matrix interpretations can be directly assigned to logical
interpretations and vice-versa, as they both are ordered finite sequences consisting of
elements from the set {0,1}.

Definition 6.5

Let I=(01,00....,0n)€I(n) an interpretation and Ae C™ a matrix such that:

A= Z A (a, +(1—a ) 7). The matrix A is called an interpretation matrix of space

J=1

(C*Xn

Notice that there is a direct 1-1 and onto relationship between interpretations
and interpretation matrices. We will use the term interpretation for the interpretation
matrices whenever there is no risk of confusion. Moreover, the number z=o;+(1-0;)-1
can be either z=1 (for o;=1) or z=1 (for a;=0). Therefore, an interpretation matrix is a

matrix of the set C"", whose elements are from the set {1,i}.

Definition 6.6

Let I=(a1,0z,...,0n)€](n) an interpretation and Ae C'"™. We say that A is satisfied by I
iff the following condition holds:

32,2000z, €CT 1 A= Z[Aj ((2-a, —1)~z__].)], where Z is the conjugate complex
Jj=1

of e C.

In general, if AeC™" such that A=AV|A?|...|A™, AVeC™™, j=1.2,....m, then we

say that A is satisfied by I iff there exists je{1,2,...,m} such that AY is satisfied by L.

The set of interpretations that satisfies A will be denoted by mod(A) and called the set
of models of A.



Notice that the quantity (2-a;—1) can only take the values +1. Therefore, the
quantity x;=(2-a;~1)-z, has the property that either Re(x;)>0 and Im(xj)<0 (for o;=1)

or Re(xj)<0 and Im(x;)=0 (for o;=0). This supports our previous definition on positive
and negative complex numbers.

Definition 6.7

Let AeC™".

If mod(A)=I(n) then A is called a tautology.
If mod(A)=< then A is called an antinomy.

Definition 6.8
Let A,.BeC™™". We will call the two matrices equivalent iff mod(A)=mod(B). We will
denote this fact by the symbol =, ie A=B<>mod(A)=mod(B).

It can be proven that:
Proposition 6.3
The relation = is an equivalence relation.
Proof
It is easily verified that VA,B,CeC™™
mod(A)=mod(A)=A=A,
A=B=>mod(A)=mod(B)=mod(B)=mod(A)=B=A,
(A=B)A(B=C)=(mod(A)=mod(B))A(mod(B)=mod(C))=mod(A)=mod(C)=A=C.

Proposition 6.4

Let A=[w; W5 ... Wy]eC"™". Then mod(A)=I;xI,x...xI,, where for any je{1,2,...,n}
[ic{0,1} and:

o OcljiffwjeC.

o leljiffwieC,

Proof

We define S=I;xIrx...xI,, where [; as above, j=1.2,....n.
We will prove that S=mod(A).
For any je {1,2,...,n}, it follows that:

[;={0} iff w;e C\C. (negative, but not positive)

[={1} ift w;e C,\C_ (positive, but not negative)

[;={0,1} iff wije Cy (both positive and negative, ie zero)

o =0 iff wje C\(C,uC)=C+ (neither positive nor negative, ie contradictory)
Let I=(ay,02,...,04)€I(n) be an interpretation.
If [emod(A), then, by definition 6.6:

32,2502, €CY A= D [A((2:2,-1)-2,)].
j=1

By definition 6.3, for any je {1,2,...,n} we have that:
w,=0+..+0+(2-a,-1)-z,+0+..+0.

Thus: w, =(2-a, —1)~z_j, for any je{1,2,....n} (1).
At first, let us suppose that:
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S=B<=3je{l.2,...n}: [Fd<3 je{1,2,...,n}: wie Cs (2).

Then, if Iemod(A), by (1) together with the fact that z;e C and:

0;j€{0,1}=2-0-1)e{1,-1},

it follows that either:

*  Re(wj)<0, Im(wj)=0=Re(w;)-Im(w;)<0, or:

*  Re(w))=20, Im(wj)<0=Re(w;)-Im(w;)<0.

So, in any case: Re(w;)-Im(w;)<0, which is a contradiction because w; is contradictory

by assumption, ie Re(w;)-Im(w;)>0.

This means that if S=C, then there is no Iel(n) such that Iemod(A), so

mod(A)=J=S.

Let us now suppose that S#J, and [€S.

Then o;€l; for all je {1,2,....n} (3).

If for any je {1.2,...,n} wje Cs, then by (2) we have that S=&, contradiction.

Therefore, for all je {1,2,....n}, w;e C,UC_ (either positive or negative, or both).

Now, for any je {1,2,...,n}, we do the following:

o If wjeC,\C_ (positive but not negative), then Re(wj)=0, Im(w;)<0 and w;=z0. We
set z, =w,, so we have that Re(z)>0, Im(z)=0, ie zieC™. In that case, by
definition of the I;, we have that [;={1} and a;el;={1} by (3), so ¢;=1.

e Similarly, if wje C\C, (negative but not positive), then Re(w;)<0, Im(w;)=0 and
wiz0. We set z, =-w,, so we have that Re(z)>0, Im(z)>0, ie zjeC™. In that
case, by definition of the I, we have that I={0} and a;e[;={0} by (3), so &;=0.

e Finally, if wje Cy (both positive and negative, ie zero), then it follows that w;=0. In

that case, we set z=0eC""). Moreover, we have that [={0,1} and a;eI={0,1}. So
we have either 0;=0 or o;=1.

In any of the above three cases, for the zje(C“) and o;€{0,1} as defined above, it can

be easily verified that for any je {1,2,....n} we have w, =(2-a, -1)-z, .

Thus, for the interpretation I and the z; above, we have that the condition of the

definition of satisfiability, rephrased in (1), holds, therefore [e mod(A)=>Scmod(A).

Conversely, if mod(A)=J, then by the above result, we have that:

Scmod(A)=0=S=J=mod(A). So the equation S=mod(A) holds.

If mod(A)=J, then we assume that the interpretation Iemod(A). Let us suppose that

I¢S. Then for some je {1,2,....,n} we have that a;¢];. For that j we have:

e If wje( then by definition I;={0,1}. Because of the fact that a;€{0,1} it follows
that o;€l;, contradiction.

e If wjeC+ then by definition [=&, so S=J. We have proven that if S=& then
mod(A)=<, which is a contradiction by our assumption that mod(A)=J.

o If wjeC,\C_ then by definition [;={1}, so together with the fact that o;€{0,1} and
o;¢1; it follows that 0;=0. By substituting o;=0 in (1), it follows that w, = -z, . But

zje C"=Re(z))>0 and Im(z)>0=>Re(w;)<0 and Im(w;)>0=>w;e C_, contradiction.

e Similarly, if wjeC\C,, then by definition I;={0}, so together with the fact that
a;e{0,1} and a;¢l; it follows that a;=1. By substituting ;=1 in (1), it follows that
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w, = Z But zie(C(+):Re(z_i)20 and Im(z))>0=Re(w;)>0 and Im(w))<0=w;eC,,

contradiction.
Thus, we have reached a contradiction in all the cases. This means that
IeS=mod(A)cS.
This fact together with Scmod(A) gives that S=mod(A), and the proof is complete.

The above proposition has some important consequences, whose proofs are
immediate:

Corollary 6.1
Let A=[w; W, ... wa]eC"™. Then A is an antinomy iff 3je{1.,2.....n} such that

wie Cx.

The following proposition may be more useful from time to time:
Corollary 6.2
Let A=[w; w; ... Wy eC"™ Then mod(A)=I;xIrx...xI,, where for any je{1,2,...,n}:
o I={0} iff wjeC\C,
o [={1}iff wjeC,\\C_
o [={0,1} iff wje Cy
o =0 iff wjeCx

Corollary 6.3

Let A=[w; W2 ... wo]eCP™ If A is not an antinomy, then |m0d(A)|=2k where k is the
number of zero elements in the matrix.

Corollary 6.4
The following equations hold:

e For any ke{l.2,...n}, mod(A)=Iixhx...xI,, where [={0,1}, for
je{1,2,...n}\{k} and I[,={1}.

e For any ke{l,2,..n}, zeC, mod(Ak(z))=lixIx...xI,, where I1={0,1}, for
je{1,2,...n}\{k} and:

o L={0}iffze C\C,
o L={1}iffzeCA\C_
O Ik:{o,l}iffZE(C()

O Ik:® iff ze (C*
e mod(F,)=Y
e  mod(Ty)=I(n)

Corollary 6.5
Let A=[w; w3 ... wy]e CP™. A is a tautology iff all wie (.

The above corollary actually says that the only tautology in C"" is the matrix
T,eCH
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Corollary 6.6
Let AeC™" such that:

Wll le Wln
A _ W21 W22 vee W2n
wml wm 2 oo Wmn

Then mod(A) =Y (I,, xI,, x...x1,), where for any je {1.2,....m}, ke {1.2,...,n}:

7=
o OeI_,-k iffVijG (C,
L 1 Eljk iff Wik€ (C+
The above corollary gives us an immediate, constructive method to calculate

mod(A) for any matrix A. The proposition below provides another useful method:
Proposition 6.5

LetmeN" and Ae C™",

Moreover, let: A= (i A(z,))] (i A(z, ))].] (i A (z,)), beits ENF.

m n

Then: mod(A) = Y] mod(A,(z,)).

k=1 j=1
Proof
Initially, let us suppose that m=1eN". Then: A= Z A(z,).

It holds that for any je{1,2,...,n}, ;e C, mod(Aj(zyj))=1;jxLyjx...x1yj, where I;={0,1},
forke{1,2,....n}\{j} and:

o I;={0} iff z;;e C\C,
o [i={1}iff z;;e C\C_
o [;={0,1} iff ;€ C,
o =0 iff 7;;eCs

We have that:

YT mod(a, (z,) =T mod(A (2, )= (1, <1, x..x 1,) =

k=1 j=1

1 n n n n
= Y] mod(A (z,) = 1,)xd L,)x..x 1,) (D).
k=1 j=1 J=1 J=1 J=1

However, for all k,je{1,2,...,n}, it holds that I,;={0,1} whenever k#j and I;c{0,1}
whenever k=j, therefore:

(l)z?f mod(A,(z,)) =1, x I, x..x I, (2).

k=1 j=1
Furthermore, mod(A)=I""xI®x...xI", where for any je {1,2,....n} I¥<{0.1} and:
o 19={0}iffz;eC\C,
o 19=({1})iffz,;eC\C.
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o 19=(0,1} iff ;€ Cy

o 1"=giff 7)€ Cs |
It follows that for any je {1,2....,n} we have Ijj:IU), therefore:
IDXIPx . xIW=T; xIpox. .. x[y=>

1 n

mod(A) = Y] mod(A(z,)), and the proof is complete for m=1.

k=1 j=I

In the general case, where me N, we have by definition 6.6:

mod(A) = mod((Y" A, (2, )| (X, A, (2:,) || (XA, (2, ) =

= mod(A) = ﬁm{mod(i Az,) ).

k=1

But, for any ke {1,2,...,m}, Z A (z) e C"", therefore:

J=1

mod(z A (z,)) = I mod(A, (z,,)), thus, combining with (3):

J=1 J=1

mod(A) = Y] mod(A,(z,,)), and the proof is complete.

k=1 j=1

Now that we are able to calculate the models of any matrix, it may be useful to

define the quotient space of C™™ with respect to the equivalence relation =:
Definition 6.9

We define the space C™*=C""/=, the quotient space of matrices with respect to the

relation =. Similarly, we define C*"=, C"""= and C"*"= for any keN".

All the above spaces are finite, of size 2", and they are all isomorphic to each
other, because they are all isomorphic with the space P({0,1}")=P(I(n)), ie the power
set of interpretations of n atoms.

Our next step will be to define operations on matrices that will emulate the
usual operations of disjunction, conjunction and negation in classical propositional
logic:

Definition 6.10

We define three classes of functions in C™", denoted by &F.,, &F, and F_, called the
class of disjunction functions, the class of conjunction functions and the class of
negation functions respectively.

e A function f:C™"xC""—>C™" is said to belong in the class F, iff for any
A,BeC™™ mod(f,(A,B))=mod(A)umod(B).
We will also use the notation AvB for the result of f,(A,B).

e A function f,:C""xC""—>C™" is said to belong in the class F, iff for any
A,BeC™™, mod(f,(A,B))=mod(A)~mod(B).
We will also use the notation AAB for the result of f,(A,B).

e A function f_:C™"—C"™" is said to belong in the class &F_ iff for any AeC ™",
mod(f_(A))=I(n)\mod(A).
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We will also use the notation —A for the result of £ (A).

Definition 6.11
The space C™", equipped with three functions denoted by v, A, — belonging to the

classes &, F,. and F_ respectively (veF.,, rneF,., —eF_), is called a logically
complete matrix space of dimension n. We will denote such spaces with the

quadruple: (C™"v,A,—).

Notice that we do not set any restrictions on the selection of the three
operations, as long as they satisfy the conditions of the definition of the three classes
of functions. Obviously, there is more than one possible selection for these operators.
Different selections for the operators v, A, — result in different logically complete
spaces. However, the selection is irrelevant when it comes to quotient spaces.
Moreover, in this work, we assume that the definition of additional operators is not
needed. Therefore, operators such as the implication (—), will not be defined between
matrices.

The above definitions and propositions are enough to support the definition of
the table transformation function:

Definition 6.12

Let ((C*Xn,v,/\,—') be a logically complete matrix space of dimension n and
L={T.F.(,),V,A,—,01,00,...,0,} a finite propositional language. As usual, we denote by

a; the atoms of the propositional language and by A; the atoms of c.

We define the table transformation function, TT:L'»C™™, recursively as follows:
TT(T)=T,

TT(F)=F,

For any je {1,2,....n}: TT(0;)=A;

TT(pvq)=TT(p)vTT(q), for any p,qeL*

TT(pAq)=TT(p)ATT(q), for any p,qeL*

TT(—p)=—TT(p), for any peL’

Similarly, we define the inverse table transformation function, TTEC™ "L,
recursively, as follows:

e Foranyje{l,2,....n}, zeC, we define:
o TTI(A{(z))=v,, iff ze C\C_
o TTI(Aj(z))=—w, iff ze C\C,
o TTI(A{(z)=T, iff ze Cy
o TTI(Aj(z))=F, iff ze C+

e In general, for any meN" and any matrix AeC™", whose ENF is

A=CAG)I(CAG )]l A ). we define:
TTI(A) = v (A TTI(A (z,))

The transformations above have a very important property:
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Proposition 6.6

Let ((C*Xn,v,/\,—') be a logically complete matrix space of dimension n and
L={T.F,(,),V,A,—,01,00,...,0n} a finite propositional language. Then:
e For any proposition peL* we have: mod(p)=mod(TT(p)).

e For any matrix Pe C™" we have: mod(P)=mod(TTI(P)).

Proof

Let peL*.

o If p=T then mod(p)=I(n) and mod(TT(p))=mod(T,)=I(n)=mod(p).

e If p=F then mod(p)=Y and mod(TT(p))=mod(F,)=F=mod(p).

e If p=a; for some je{1.,2,...,n}, then mod(p)={1=(ir.12,...,1n)€l(n): 1ke{0,1} for
ke{l,2,....n}\{j} and i=1}=IixIrx...xI,, where I}={0,1} for ke{l.2,....n}\{j}
and [;={1}. By corollary 6.4, mod(TT(p))=mod(Aj)=JixJ»x...xJn, where J}={0,1}
ke{1.2,...n}\{j}, J={1}. Thus, I;=];, for all je {1,2,....n}=mod(p)=mod(TT(p)).

e In general, if peL*, then it is known that p is expressed as a finite sequence of
atoms and constants, separated by operators (Vv,A,—).

For any qrel’, we have that mod(qvr)=mod(q)umod(r) and
mod(TT(qvr))=mod(TT(q)vTT(r))=mod(TT(q))wmod(TT(r)).

Similarly, for any q.re L', we have that mod(gar)=mod(q)~mod(r) and
mod(TT(qAr))=mod(TT(q)ATT(r))=mod(TT(q))"mod(TT(r)).

Moreover, for any qelL’, we have that mod(—q)=I(n)\mod(q) and
mod(TT(—q))=mod(—=TT(q))=I(n)\mod(TT(q)).

The initial proposition p can be broken down into simpler propositions within a
finite number of steps, and mod(p) can be expressed using mod(a;), je {1.2,...,n},
I(n), @ and the operations of union (V), join (") and subtraction (\). Moreover,
we already prove that mod(gj))=mod(TT(e;)) for any je{l.,2,...n},
mod(T)=mod(TT(T)) and mod(F)=mod(TT(F)). This recursively proves that
mod(p)=mod(TT(p)).

Now, let PeC™"and let P=(>_ A (z;, )| Q. Az D|..|O_A(z,,)). be its ENF.
J=1 J=1 J=1
Then, by definition:
mod(TTI(P)) = mod(/;z;l(j;l\l TTI(A, (z, ) = YT mod(TTI(A,(z,)) (1).
k=1 j=1

Letje{1.,2,...,n}, ze C. Then:

o If zeC\C, TTI(Aj(z))=0j=mod(TTI(Ai(z)))=mod(a;)={I=(i1,iz,....in)€l(n):
we{0,1}, ke{l.2,...n}/{j} and y=1}=LixIhx...xl,, where L={0,1}, for
ke{l,2,...n}\{j} and [={1}. By corollary 6.4, we have that
mod(Aj(z))=J1xJox...xJ,, where Ji={0,1}, for ke {1,2,....n}\{j} and J={1}, since
ze C\C_. Thus Ij=]; for all je {1.2,....n} =mod(TTI(Aj(z)))=mod(A(z)).

o If zeC\Cy, TTI(A{(z))=—0;=mod(TTI(Ai(z)))=mod(—0;)={I=(i1,iz,...,In) €I(n):
ike{0,1}, ke{l,2,...n}/{j} and i=0}=IixIx...xI,, where I:={0,1}, for
ke{l,2,...n}\{j} and [={0}. By corollary 6.4, we have that
mod(A;(z))=J1xJax...xJ,, where J,={0,1}, for ke {1,2,...,n}\{j} and J;={0}, since
ze C\C,. Thus Ij=J; for all je {1.2,....n} =mod(TTI(Aj(z)))=mod(A(z)).

o If zeC,, TTI(Aj(z))=T=mod(TTI(Aj(z)))=mod(T)=I(n). Moreover,
Ai(2)=A;i(0)=T4, so mod(Aj(z))=mod(T,)=I(n)=mod(TTI(A;(2))).
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e Finally, if zeCs, TTI(A{(z))=F=mod(TTI(Ai(z)))=mod(F)=J. Moreover, Ai(z)
will have at least one element which is contradictory, the one in the j-th column,

whose value is ze Cs. Thus mod(A;(z))=Z=mod(TTI(Aj(2))).
Thus, for all zeC and all je {1,2,...,n} we have that mod(TTI(Aj(z)))=mod(A(z)).

Thus: (1) = mod(TTI(P)) = ?In mod(A (z,)).

k=1 j=1
Combining the above formula with proposition 6.5 we get:

mod(TTI(P)) = Y] mod(A,(z,))=mod(P), and the proof is complete.

k=1 j=1

The above proposition shows that the transformation of a matrix to a logical
expression and vice-versa, does not cause any loss of information. This is true because
any interpretation that satisfies a given matrix satisfies its respective logical
expression (via the TTI function) and any interpretation that satisfies a given logical
expression satisfies its respective matrix (via the TT function).

Moreover, notice that the above proposition holds regardless of the selection

of the operations v, A, —. Similar results, applied to matrices of the space C™™" can

be found in [7] and a more formal foundation of the properties of the space C™" can
be found in section 12 (“Positive and Negative Knowledge™) of this report.

7. Belief Revision

Our initial goal on defining the table transformation was to use this
transformation in belief revision. In order to solve this problem, we will assume that
both the knowledge and the update are represented by matrices. This way we skip for
the moment the need for using the TT function, which depends on the definition of the
operators A, v, . Moreover, the use of matrices gives us flexibility on the RF of each
atom. By using the TT function, we are obliged to use fixed RFs for all atoms, which
is a serious constraint.

For the moment, we will additionally assume that both the base K and the
update M have only one line, so they both represent only one possible world. In this
special case, the update will be defined as the addition of the two matrices, because
the inclusion of the update M in our knowledge increases our trust in all the
information that M carries, effectively increasing our reliance in each atom and/or its
negation. This adjustment may or may not be enough to force us to change our beliefs.
Let us see one example:

K=[i 3 0lmM=[3 2 1]

Using the TTI function we can easily verify that the matrices represent the
expressions K=—AABAT=z—AAB (base) and M=AABAC (update). The matrices
additionally show the reliability per atom in each proposition. In this case, the
negation of atom A (—A) is believed with an RF of 1 in K, but M should force us to
abandon this belief as atom A is believed with an RF of 3 in M. In atom B, there is no
contradiction between K and M; however this revision should increase our confidence
in the truth of B. Finally, in atom C, we know now that C is true, with a reliance of 1;
we had no knowledge regarding C before. The resulting matrix is K’ below where the
symbol “e” stands for the operation of update:

K'=KeM=[i 3 0]+[3 2 1]=[3+i 5 1]
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The proposition related (via the TTI function) to the resulting matrix is:
FABAC=F. Note that the resulting matrix K’ is a contradictory matrix (and the related
proposition is a contradiction too). This is not generally acceptable, as a contradictory
KB actually contains no information. The result should have been AABAC, as showed
by the previous analysis. We will deal with this problem later (which is in fact not a
problem at all!).

In the general case where one (or both) of the matrices contain more than one
line, each line represents one possible world. In order to be sure that the correct world
will be represented by a line in the resulting matrix, we must add each line of matrix
K with each line of matrix M, creating one line per pair in the resulting matrix K'.

Formally, we define the operation of revision as follows:

Definition 7.1
Let ABeC™", where A=A"|A?)|...|A®, B=BYB?|...B™, for some kmeN",

AVeC™ jef1.2....k} and BYeC"™, je{1,2,....m}. We define the operation of

revision, denoted by e, between those two matrices as follows:
h=k,j=m )
AeB= | (A" +BY).

h=1,j=1

It is easy to verify that this definition concurs with the above informal description of
the revision operator.

8. Queries and Contradictory Lines

In general, the resulting matrix of a revision may contain contradictory lines,
like in the previous example. One may argue that contradictory lines represent
contradictory possible worlds, so they contain false information and they could as
well be deleted. However, this is not entirely true. A single faulty revision may create
a contradiction in an otherwise correct possible world (line), so we must be careful
before discarding a contradictory line as non-true. On the other hand, even if a line
(possible world) contains no contradictions at all, this is by no means a guarantee that
it is entirely true. It could be too far from the real world; we just don’t know it yet.
Therefore, our policy is to keep the matrix as-is, even if some (or all) lines are
contradictory.

In order to execute queries upon the KB we must transform the matrix
representing the knowledge into a logical expression. We cannot use the TTI function
directly, as this could in some cases result to an unsatisfiable proposition, like in the
example above, where the matrix consists of contradictory lines. In fact, the TTI
function ignores the contradictory lines (they are equivalent to the constant F), which
is wrong according to the above discussion. The solution to the problem of
contradictory lines is to transform (some of) them to non-contradictory ones before
applying the TTI function. Whenever a query is executed on the KB, our answer must
be based on the “most correct™ lines, ignoring the rest. The criterion for correctness of
a line is a quantity named Line Reliability (RL). We also define the FElement
Reliability (RE). The reliability of an element should depend only on the element
itself and the reliability of a line should depend on the reliability of its elements.

The number of lines to be selected as most correct for the query should be a
user-defined parameter depending on the application. For example, we could take the
k most reliable ones; or all lines with reliability more than a given number; or use any
other method that the user may find suitable. The function that selects some (or all) of
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the lines of a matrix will be denoted by LS and the term Line Selection Function will
be used. The result is a submatrix of the original KB.

Subsequently, we define the Normalized Matrix of a given matrix A. Each
element x+yi of the matrix A is changed into the element x—y. Under this
transformation, when x<y the result will be a negative real number, ie a complex

number belonging to the set C_; when x>y the result will be a positive real number, ie
a complex number belonging to the set C,; if x=y the result will be number 0, ic a

number belonging to the set Cy. The function that performs this operation on the
matrix will be called Matrix Normalization Function and denoted by MN. In fact, MN
is applied only on the part of the matrix that was selected by the LS function.
Following that, the inverse of the table transformation (TTI) is used to
transform the normalized matrix that resulted from the above function into a logical
expression. The result is the related logical expression of the matrix and represents the
base upon which the query is executed. The whole process (function) of transforming
a matrix to a proposition for the needs of queries will be denoted by QT (Query
Transformation). It is clear by the above analysis that QT is in fact a composite
function. Notice that the above operation does not actually change the matrix; it
temporarily transforms it to a logical expression for the needs of queries. The next
update will be executed upon the original matrix and the whole process of query
transformation should be repeated after the update to calculate the new proposition.

9. Formalizing the Query Transformation

In the previous section, we described the informal process that is followed in
order to extract the information contained in the matrix representing the KB. In this
section, we will attempt to formalize the query transformation. It is clear that the
process of extracting a proposition from a matrix is composed of several steps. Some
of them are based on known and clearly defined transformations (like the TTI
function), whereas others are not clearly set (RE, RL, LS functions). This is done on
purpose, in order to allow the parameterization of the process of query answering.
However, these parameters should not be set in an arbitrary sense; instead, they must
satisfy some rationality constraints. This is done for the same reason that we defined
desired properties regarding the logical operators A, v, —. Such functions can be
freely defined, but they are subject to specific constraints in order to be rational.

In order to formalize the notion of element and line reliability we define some
new classes of functions:

Definition 9.1

A function RE;:C—R" is said to belong in the class Freo of Primitive Element
Reliability Functions iff RE, has the following properties:

e RE((x+yi)=RE(y+xi) for all x,yeR (reliability is symmetric with respect to the
first diagonal axis)

o RE((2)=REy(-z) for all ze C (reliability is symmetric with respect to 0)
A function RE:C™"—>R™™" is said to belong in the class Frg of Element Reliability

Functions iff for any Ae o A=[ajj], there exists a function REgeFrgy such that
RE(A)=[REq(a;)].

A function RLy:ROP"5R™ is said to belong in the class Fryy of Primitive Line
Reliability Functions iff RL has the following properties:
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e For any j.ke{1,2,....n}, j<k and x;,x5,....Xp€ R, the following equation holds:
RLo(X1.X2,- ... Xjs - - Xk - - - Xn) "RLo(X1,X2, . . . . Xks- - . Xjs- . ..Xn)  (SWapping of  the
variables’ indexes does not change the result of the function)

e For any xy.Xs....xneR™, such that y>x, it holds that
RLy(y.X2,....Xn)2RLo(X,X2,...,Xp) (RLg is monotonically increasing with respect to
the first of its variables)

A function RL:R™"5R™M™! s said to belong in the class R, of Line Reliability
Functions iff for any keN and AeR™"", such that A=A"|AY].. |AY, ADe RO,
je{l1,2,....k}, there exists a function RLye Fry such that:

RL,(A")

)
RL(A) = RL,(AT) |

RL,(AD)

Notice that the functions belonging to Fry o are also monotonically increasing
with respect to each one of their variables, because of the first property of such
functions.

Some comments regarding the notion behind the definition of these properties

for the classes Frg and Fry are in order. First, it is clear that an element’s reliability
should depend solely on the element itself and not on other elements of the matrix,
even if they are in the same line or column. This is the reason for the definition of the

separate class of Frgo functions. The same thoughts led us to the definition of the

Frio class of functions, as a line’s reliability depends only on the reliabilities of the
elements of the line itself.

Regarding the properties of the class Frgo, the first property indicates the fact
that we should have no bias towards positive or negative atoms. In other words, for a
complex number x+yi, which can be equivalently expressed as a pair (x.y), the fact
that x refers to the RF of the positive atom and y refers to the RF of the negative atom,
should be irrelevant as far as the element’s reliability is concerned. Therefore, x+yi
should have the same reliability as y+xi.

Moreover, the semantics of the RF indicate that our willingness to believe or
disbelieve an atom (or its negation) depends on the absolute value of its RF (|RF)).
The sign of the RF indicates whether it refers to believing or disbelieving. Therefore,
the only effect that the RF’s sign should have on the element’s reliability has to do
with whether the atom’s RF (real part of the complex number) and the RF of the
atom’s negation (imaginary part of the complex number) have the same sign or not. If
the signs are the same, then it is irrelevant whether they refer to believing or
disbelieving; it is a contradiction anyway. Thus, by changing the sign of both the real
and the imaginary part, a contradiction remains a contradiction and its intensity
remains the same, as the absolute values of the RFs do not change. Similarly, if the
RF signs are not the same, then we believe in either an atom or its negation; by
changing both signs we simply switch between believing the atom and believing the
atom’s negation. In any case, given that there should be no bias on whether we believe
the atom or its negation, the element’s reliability is unaffected by this switching, as
the absolute values of RFs do not change. Summarizing, the simultaneous switching
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of the signs of the real and imaginary part of a complex number should not affect this
number’s reliability. This is the fact expressed by the second property attached to the

Freo class of functions.

The properties of the Frro class of functions are more easily justified. The
first property refers to the obvious fact that a line’s reliability should be unaffected by
the order with which the atoms appear in the matrix. The second property expresses
the requirement that the increase of an element’s reliability could not possibly cause
the decrease of the overall reliability of the line it belongs to.

Regarding the LS function, we have the following two definitions:

Definition 9.2

A function LS:[R“)M—)P(N*) is said to belong in the class &5 of Line Selection

Functions iff for any ke N" and any Ae RO® the following condition holds:

DcLS(A)c{1,2,....k} (we must select at least one index, in the range 1...k).

The only property of the Fs class is included in order for the indices returned
by the LS function to have “legitimate™ values, ie to describe at least one line of the
matrix and to be within the acceptable range.

Definition 9.3
We define the submatrix selection function MS:C "xP(N")—»>C™". For any keN",

AeC" ScN’, such that A=AV|AP)|. |A®, AVeC™™, je(1.2,....k}, we define:
MS(A,S)=A, iff S=I or there exists meS such that m>k,
MS(AS)= | AY, otherwise.

Jjes

The LS and MS functions are used to select a submatrix of the original matrix
for the query. The selected submatrix is normalized using the following function:

Definition 9.4

We define the matrix normalization function MN:C™"—»C™". For any keN’,
AeC" such that A=[a;], ie {1,2.....k}, je {1.2,....n}, we define:

MN(A)=BeC*", where B=[b;] and for all ie {1,2.....k}, je{1.2,....n}:
bjj=Re(aj)—Im(a;))

In effect, an element reliability function assigns to each element of the matrix
its reliability; a line reliability function assigns to each line of the matrix its reliability;
whereas a line selection function selects a non-empty subset of the lines of the matrix.
The MS function is well defined, and returns a submatrix of A which consists of some
of the lines of A, those whose indexes belong to the set S. In the abnormal cases
where S=J or S contains faulty indexes (out of range), the function returns the matrix
A. Such cases will not appear in this application, but are included for completeness.
Finally, the MN function is used to normalize the result, and the normalized matrix is
transformed to a logical proposition using the TTI function.

The informal analysis made in the previous section, can be more formally set
forth using the formalization presented above. More specifically, the correct way to

transform a matrix AeC*" (for some keN") into a propositional expression for the
needs of queries (QT function) is composed of the following steps:
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1) Apply the user-defined REedgg function on the matrix A to get
B=RE(A)e RM*™.

2) Apply the user-defined RLe&yg,. function on the matrix B to get
C=RL(B)e R,

3) Apply the wuser-defined LSedF s function on the matrix C to get
S=LS(C)c{1,2,....k}, S¥O.

4) Select the submatrix: D=MS(C,S)=MS(C,LS(C))eC™", for some meN", m<k.

5) Apply the MN function on the matrix D to get ESMN(D)e C™".
6) Apply the TTI function on the result to get p=TTI(E)eL".

With the formalization of the query answering process at hand, we have now
completed the description of our method. Some properties of the method and its
relation with the considerations described in section 4 (“Driving Considerations™) can
be immediately deducted. Our algorithm keeps one matrix for the base, and not each
individual update, but the retention of contradictory lines implies that the individual
updates are kept in an encoded fashion. Moreover, iterated revisions are supported, as
we keep track of all the previous updates and RFs. Finally, the rejection of the old
data when answering queries is made according to the RF and the functions RE and
RL, and is minimal with respect to these quantities (where the notion of minimality
depends on the definition of the LS function).

The algorithm of revision is clearly defined; however, the flexibility in the
definition of the query transformation process allows us to relate the same matrix with
several different propositions, depending on the selection of some parameters. This
means that we have in fact defined a whole class of algorithms. The optimum
algorithm of this class can only be determined after several tests and it may be
application-dependent. However, we have reduced the problem of finding the
optimum belief revision algorithm of this class in the problem of specifying the
following parameters of the above algorithm:

1) The RFs of the atoms of the KB and update(s). This may be done in a fixed
manner (for example setting all atoms of the update and/or KB to an RF of 1) or in
a free manner (letting the user freely specify the RF of the updates, depending on
his confidence on each atom, disjunction or proposition).

2) The RL and RE functions. These functions, along with parameter 3 below, play a
very important role in the selection of the lines to be used in the queries. There are
in general two types of such functions: those that depend only on the existence of
a contradiction and those that depend on the “intensity” of each contradiction. The
“intensity” of a contradiction may be defined in different ways and the best way
can only be determined by running several tests of updates on the KB and taking
into account the specific application that we are interested in.

3) The lines to be selected for the query (function LS). This may be a fixed number
of lines, or a function of the number of updates, the number of lines of the matrix
or some other parameter. Once again, the best criterion is application-dependent,
and can only be determined after extensive tests.

All these parameters are subject to the rationality constraints mentioned above.
An additional parameter may be the selection of the logical operators A, v, —;
however, we consider this of lesser importance, as these operators may not be
necessary in general for the definition of the revision algorithm (if the DNF of
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propositions is used). Finally, a fifth parameter, also of lesser importance, will be
introduced in section 11 (“Complexity Issues™), referring to the procedure of
abruption that we will define.

10. Other Operations

The operation of contraction is dual to revision, and it has been argued ([8, 11,
14]) that it is intuitively simpler to deal with contraction instead of revision. For a
certain class of update schemes, namely those that satisfy the AGM postulates, it has
been proven that revision and contraction can be defined in terms of each other.
Similarly, update is an important operation, whose dual is erasure ([12]).

As already mentioned above, our algorithm deals with all the above operations
interchangeably, despite their different nature. More specifically, contraction is the
process of removing, instead of adding, knowledge from a KB. This naturally implies
that contraction of a matrix K with a matrix M, could simply be the revision of matrix
K with matrix —M. Naturally, we could apply the minus sign to all the elements of M,
thus eliminating the need for a specific contraction operator.

Normally, knowledge is expressed using elements from the set C™. Elements
with negative real or imaginary parts actually imply the loss of confidence in a certain
proposition, which is the notion behind contraction. It follows that in the same update
matrix M, we could do both revision and contraction, by simply setting some of the
elements to have negative real or imaginary parts and some of the elements to have
positive real and imaginary parts. This is an option not available in other update
schemes.

The integration of the update operator into our update scheme is somewhat
more complex. Updating with a proposition p, actually means that the world has
changed in such a way that p is now true. All previous knowledge is irrelevant,
because it refers to a previous state, contrary to revision where previous knowledge is
important, because it refers to the same state of the world. These thoughts indirectly
imply that the matrix P that represents proposition p should be “enhanced” in such a
way as to remove the previous knowledge as well as to add the current one.

We will see how this is possible with an example. We will use the TT function
as was informally defined in section 5 (“Table Transformation™), and apply the
method to the example we used in section 3 (“Properties of Belief Revision™) in order
to outline the difference between revision and update. In that example, we had the
proposition: (AA—B)v(—AAB) for our base and the proposition A for the
update/revision. Remember that the proper intuitive result was AA—B for the revision
and A for the update. Turning into matrices we have the following matrix for the KB:

K =
i1
Regarding the update, one may notice that both matrices M; and M, below:
M, =l 0lM,=[1-i 0]
refer to the proposition A, ie TTI(M;)=TTI(M;)=A. However, M; contains the

information that A is true, whereas M, additionally informs the base that —A is no
longer true. Moreover, the update of K with M; gives a different result than the update

of K with M>:
1 i 2 i
K,=KeM, =| '[1 0]: .
i1 1+i 1
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The actual proposition that will be used in queries obviously depends on the selection
of the RE, RL and LS functions. Notice however, that K; contains only one non-
contradictory line, the first one, while both lines of K, are non-contradictory. So, most
(but not all) of the rational selections of the parameters RE, RL and LS will give the
proposition AA—B for K; (first line only) and the proposition (AA—B)v(AAB)=A for
K5 (both lines selected). Therefore, we have performed a revision by using M; and an
update by using M,; both using the same algorithm!

Having defined the update operator, we can now define the operation of
erasure, which is dual to update. We can do so in a manner similar to the extension of
revision for the integration of contraction. Specifically, erasure with matrix M is
equivalent to update with matrix —M.

11. Complexity Issues

The computational complexity of our update algorithm depends on the number
of elements per matrix. For a knowledge base with ny lines and m columns and an
update of n; lines and m columns, the resulting matrix will have ny-n; lines and m
columns. To calculate each element of the resulting matrix, we must perform 2
primitive additions, so the worst-case operations (additions) required are:
[(ng-n;)-m]-2; that implies a complexity of O(ng-n;-m).

Continuing the above example, for a knowledge base with ny lines and m
columns and after k consecutive updates, with ny,n,,...,ng lines respectively and m
columns per update, the resulting matrix will have », - n, -...-n, lines and m columns.

This implies that the number of lines in the matrix representing the knowledge base
increases exponentially with the number of updates, and so does the cost for each new
update as well as the memory space required to store the base.

This may be unacceptable in most cases, so one could decide to reject some of
the lines of the matrix by a procedure based on line reliability, which is called
abruption. The number of lines to be removed should be an application-dependent,
user-defined parameter, representing a trade-off between knowledge integrity and
processing speed.

Finally, the complexity of the query transformation procedure on any matrix
depends on the size of the matrix, and is analogous to the number of elements of the
matrix. The exact complexity cannot be computed unless the functions RE, RL and
LS are known, but it is clear that the technique of abruption will speed up things,
regardless of the above selection.

12. Positive and Negative Knowledge

We have already stressed the fact that matrices’ elements can have negative
real or imaginary parts. Such numbers indicate lack of confidence to a given literal
and/or its negation. This means that they do not give direct information on the truth or
falsity of a literal; instead, they indirectly imply its truth or falsity by specifying
distrust in its falsity or truth respectively. Such kind of knowledge will be denoted by
the term negative knowledge contrary to elements with non-negative parts (real and
imaginary), which will be referred to as positive knowledge.

The analysis made in section 10 (“Other Operations™) has pointed out the
necessity of negative knowledge. However, if we restrict ourselves to revisions, it is
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enough to deal with positive knowledge only. This restriction simplifies things a lot,
as many more interesting results can be proven in space C™ " which may not be true

in the general case ((C*Xn). The updating schemes proposed in the literature do not
refer to negative knowledge, as there is no way to express such knowledge in
propositional logic. Therefore, this restriction (and its consequences) may prove
helpful in our attempt to compare our work with existing revision schemes.

First of all, it is obvious that all the results referring to C™™, can be
successfully applied to C™ . as C=C. Moreover, all definitions can be rephrased
to refer to C"™". Additionally, in €™, there is a very simple way to define the

operations A, v, —, which does not work in C™". The properties of C”™" are based
on the following simple, but important remarks:

o CYNCi={xtyieC: y=0, x>0}

CONC_={x+yieC: x=0, y>0}

CHONCo={x+yieC: x>0, y>0}

CHYNC=Co={0}

It is trivial to verify that the above equations hold, by the application of the definitions

of the above sets. Using these relations, we can prove three important propositions:
Proposition 12.1

Let A,BeC™™". We define the operation v as: AvB=A|B. Then, the operator v belongs

to the class of disjunction functions &.,.

Proof
From the definition of satisfiability, it is obvious that mod(A|B)=mod(A)umod(B) for

any ABeC™, so the operator Vv as defined above belongs to the class of disjunction

functions ...

Notice that this proposition holds in €™, and not only in C™". However, the

proposition below does not hold in c
Proposition 12.2

Let A, BeC™™ We define the operation A as: AAB=AeB. Then, the operator A

belongs to the class of conjunction functions & .

Proof
We must prove that mod(AeB)=mod(A)~mod(B).

First of all, let us suppose that A,.Be C™ ™ In this case, AeB=A+B.

Let us suppose that A=[w; w; ... Wy, B=[z 7, ... 7], wi,zie(C(+), forall je{1,2,...,n}.
Thus:
C=AeB=[w;*+z; Wat7; ... WytZ,].

Obviously, wi+ze C™, for all je {1,2.....n}.
By proposition 6.4, we have that:
mod(A)=IA1 XIA2X e XIAn (1)
mod(B)ZIleIBzx cee XIBn (2)
mod(C)=I¢xIcox...xIcy (3)

where, as usual, for any je {1,2,...,n}:
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0ely; iff wie C AC™

11, iff wie C.:nC™

Oelp; iff e C.ACY

1l iff e C.AC™

Oe ch iff witze (C_m(C(+)

1 el iff witzje C;AC

It follows that 0 € Icjwitzie C NC e Re(witz)=0 and Im(wi+z)>0<
<Re(wj)+Re(z))=0 and Im(w;)+Im(z;)=0 (4).

Given that wi,z_ie(C(+), we have, by definition, that: Re(w;)>0, Im(w;)>0, Re(zj)>0 and
Im(z;)=0.

Combining (4) with the above relations we have that:

Re(w;)=Re(z))=0 and Im(w;)=0, Im(z;)=0, so: Wj,zje(C_m(C(+), which implies that 0€l,;
and 0 EIB_]'.

Thus, Oe Iq:}O € IAj and Oe IBj.

Similarly, if 0, and O€lg;, then wj,zje C NC™ so:
Re(w;)=0, Re(z;)=0, Im(w;)>0 and Im(z;)>0, which means that:

Re(wj+z))=0 and Im(w;+z))>0=>w+z;e C NnCP=0e Ig.

Summarizing we have that: Oelcj<>0€l,j and O€lg;.

Using the same technique, it can be proven that: 1 elpje1€l,; and 1€lg;.

The above two equivalences, along with the fact that I,jc{0,1}, Igjc{0,1} and
Ijc{0,1}, imply that I¢j=IsjnIg;, and this holds for all je {1,2,...,n}. Moreover:
mod(A)mmod(B)Z(IAl XIA2>< . XIAn)ﬁ(Igl Xlgzx e XIBn):

:(IAI ﬁIBl)X(IAzf\Igz)X . X(IAnﬁIBn):IC] chzX eee ><Ianmod(C)Zmod(AOB)Zmod(A/\B),

(H)1xn

and the proof is complete for A,BeC
In the general case, where A,Be(C(+)*X", let us suppose that:
A=AYAY)...|AY and B=B"B@|...B™, for some kmeN", where AVeC™"",
je{1,2,...k} and BYeCHO" je{1,2,....m}.
Then: , , -
mod(A)nmod(B)=mod(AV|A®).. |A®)~mod(BVB?)|... B™)=
=[mod(A")Umod(A®)u...umod(A™)]N[mod(B")umod(B@)uU...umod(B™)]=

h=k,j=m
= Y (mod(A”)mod(B")).

h=1, =1
Because of the fact that A™BYeCH™ for all he{1.2....k}, je{l1.2,....m}, it
follows that: ‘ ‘ )
mod(A"™)~mod(B")=mod(A" ABY)=mod(A®™+B?).
Thus:

h=k,j=m h=k,j

mod(A) N mod(B) = Y mod(A” + BY)=mod( | (A® +BY))=mod(Ae B),

h=1, j=1 h=1,j=1
by definition 7.1, and the proof is complete.

Proposition 12.3

Let Ae C™"™™ We define the operation — recursively as follows:
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o If A=A((z) for some je{1.2.....n}, ze CO(C,\C ), then —A=A(z-)

o If A=A{(z) for some je{1.2.....n}, ze CON(C\C,), then —A=A;(—z)

o If A=A(z) for some je{1,2,...,n}, ze CCo, then ~A=F,

o If A=A(z) for some je{l,2,...,n}, ze CACs, then —-A=Aj(Re(z)1)VAj(Im(z))

e Inthe general case, let Ae C"™" for some meN" and:

A= (Zn: A(z,)] (Zn: A (z,)] ] (Zn: A/(z,,)) be its ENF. Then:

m n

—A= h/:\l ]\il(_lA] (th )) .

Under this definition, the operator — belongs to the class of negation functions &_.
Proof

If A=Aj(z), for some je{1,2,...,n}, ze C(C\C), then:

mod(A)=I;xIx...xI,, where ={0,1}, ke {1,2,....n}\{j} and I;={1}.

On the other hand, z-ie CV(C\Cy), therefore:
m)od(—|A)=mod(Aj(z~i))=I(l)xl(z)x. X1 where 1®={0,1}, ke{l1.2,....n}\{j} and
19={0}.

Thus: mod(—A)=I(n)\mod(A) in this case.

Similarly, if A=Aj(z), for some je{1.2,...,n}, ze CHA(C\C,), then:
mod(A)=I;xIx...xI,, where ,={0,1}, ke {1,2,....n}\{j} and I;={0}.

On the other hand, —z-ie C""(C,\C)), therefore:

m)od(—|A)=mod(Aj(—z~i))=I(l)xl(z)x. xI™ where 1%={0,1}, ke{1,2,....n0\{j} and
19=(11.

Thus: mod(—A)=I(n)\mod(A) in this case.

If ze CYNC,, then Aj(z)=Ty=mod(A)=mod(T,)=I(n). On the other hand:
mod(—A)=mod(F,)=d=mod(—A)=I(n)\mod(A).

Finally, if ze C*C-, then mod(A)=mod(Aj(z))=J. On the other hand:

Re(z2)-ie CV\(C\C,) and Im(z) e CP~(C,\C)). Thus: |
mod(A;j(Re(z)-1))=lixIrx...xI, and mod(Aj(Im(Z)))ZI(l)xl(z)x. .xI™, where:

o I;=I"={0,1} for he {1.2,....n0\{j}

o [={0}
o 19={1}
Therefore:

mod(—A)=mod(Aj(Re(z)-1)vA;(Im(z)))=mod(A;(Re(z)-1))umod(Ai(Im(z)))=I(n)=
=mod(—A)=I(n)\mod(A).
In the general case, we have:

m n m n

mod(—A) = mod(A Vv (=A (z,,))) = N Umod(—A (z,)) =
h=1 j=1 S h=1 j=1 S

m n m n

=N _ul(](n) \mod(A, (z,,)))=1(n)\ un mod(A, (z,,))=1(n)\mod(A), and the
h=1 j= : i =1j= : i
proof is complete.
With these three operations at hand, we have defined a logically complete

matrix space of dimension n. We also have the operation of revision, as well as the
obvious result that all the above operations (disjunction, conjunction, negation,

-7 -



revision) give results in C™™" when applied to matrices in C™™". Therefore, our
framework is complete. Let us now see how we can apply this framework to emulate
Dalal’s algorithm using the table transformation.

13. Comparison with Dalal’s Algorithm

In this section, we will try to find the required parameters for the emulation of
Dalal’s algorithm. For a detailed description of this algorithm, see [2, 3]. In short, for
a KB K and an update U, the updated base KeU has as its models the interpretation(s)
of mod(U) which are closest to the interpretations of mod(K). Closeness between two
interpretations is defined in terms of the number of atoms in which the values of these
two interpretations differ.

In all of the following, we will assume that the underlying propositional
language is L={a;,00,...,00,A,v,—,T,F,(,)} and that the operations of disjunction,
conjunction and negation upon matrices are as defined in the previous section. The
underlying matrix space is C™*". A min-term in propositional logic is a proposition
in DNF, which is a conjunction of atoms or their negation. So, if peL* and it is a min-
term, then there exist b;, j=1.2,....m such that: p=bjAbsA...Abn, and for all
je{l.2,....m}, b~=a or b=—a for some atom oel’. Moreover, for all j.ke{1,2,....m},
j#k bj#b and bj#—by, ie there is no pair of b;s that refer to the same atom. When
referring to a min-term, we will implicitly assume that it is a satisfiable proposition
(not equivalent to the constant F).

Lemma 13.1

We define the function RE¢:C—R", such that for any ze C, with x=Re(z), y=Im(z),
we have:

RE(2)=REo(xtyi)=1-min{L,[x].[y[}.

Moreover, we define the function RE:C~"—»R™™" such that for any matrix A=[z;]:
RE(A)=[REq(zj)].

Then: REge Frpo and REe Frg.

Proof

Let ze C, such that Re(z)=x, Im(z)=y.

It is obvious that for all ze C, 0<min{1,x|,]y|}<1=

=0<1-min{1,[x],]y|} <I=RE(2)=0=RE(z)e R" for all zeC.
Furthermore:
RE(x+y1)=1-min{L,[x].[y|}=1-min{L.[y[,]x[}=REq(y+xi) and
REy(x+yi)=1-min{1,|x|,|y|}=1-min{1,]—x|,|~y|}=RE¢(—x—yi).

This means that REge Frgo. By this fact, and the definition of RE, it follows that
RE e &g, and the proof is complete.

Lemma 13.2

For all ze C™”, Re(z)=x, Im(z)=y, such that x<1 or y<l1, it holds that:
REy(z)=1-min{x,y}, where RE, the function of the above lemma.

Proof
It is obvious that [x|=x, |y|=y and min{l,[x|,|y|}=min{1,x,y}=min{x,y}. Thus, the
lemma holds.
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Lemma 13.3

We define the function RLy:R™ ™ R", such that for any x;,Xs....,x,e R™:
RLo(x1,X2,....Xp)=X X0 F. .. Xy,

Moreover, we define the function RL:R™™"»>R™™! such that for any keN" and
AeRWF™ with A=AVIAD) AN, ARV je(1.2,.. k)

RL,(A")
RL,(A®
RL(A) = o(A7) .
RL,(A™)
Then: RLye Frro and RLe Fr;.
Proof

For any j.ke{1,2,....n}, j<k and x;.X,,....x,€ R™ it holds trivially that:

RL()(X] 5X2se e oo Xjse o 00Xk - .,Xn):RL()(Xl,Xz,. FRYO. (TP (A .,Xn).

Moreover, it is obvious that for any Xx.y,Xs,...,X,€ [R“), such that y>x, it holds that
RLo(y,X2,...,Xn)2RLo(X.X2,...,Xp).

Therefore RLyeFryo. By this fact, and the definition of RL, it follows that RLe &g,
and the proof is complete.

Lemma 3.4
Let LS:R“™ 5P(N") be the function such that for any ke N*, Ae R™*! such that:

we have that:

LS(A)={me{1,2,...k}:Vje{1.2,... .k} xm>X;}. Then LSeFs.
Proof

Obvious by the definition of Fg.

Lemma 13.5
Let G be the transformation defined in Dalal’s papers ([2, 3]). Then for all

propositions p,qeL” and all keN" the following equation holds:
G (pva)=G (PIVG(@)-

Proof

For k=0, G’(p)=p for all peL’, so the equation trivially holds.

For k=1, by the definition of G in [2], we have that:
mod(G' (pv))=mod(G(pvq))=g(mod(pvq))=g(mod(p)umod(q))=
= Ye)=( Yeg)u( YegW)) = gmod(p)) v g(mod(q)) =

ITemod( p)umod(q) Temod( p) Iemod(q)
=m0d(G(p))umod(G(q))=m0d(G(p)vG(q))=m0d(G](p)vG](q)), which means that

G'(pvq)=G'(p)VG'(q)-
Let us suppose that the equation holds for all k=0,1,2,...,m. All we have to do is prove
it for k=m+1.
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Indeed:
G"™ (pv)=G"(G(pv)=G"(G(p)vG(Q)=G"(G(P)VG"(G(1)=G™" (p)VG™(q), and
the proof is complete.

Lemma ]3.6
Let peL*, such that p is a min-term. Then, there exist unique PO,P+,P*g{1,2,...,n},
such that P"nP =@, P' nP'=&, P-~P’=&, P°UPTUP={1,2.....n} and:

TT(p)= 3 A + 2 A ).
Proof | |

Given that p is a min-term, there exists a set Sc{1,2,...,n} such that:
p=A b, , where b=a; or bj=—q; for all j€S.
jes -

We select:

P'={jeS:b=0;}, P ={jeS:b=—q;}, P’={1.2....n}\(P"UP).

It follows that:

P P" P c{1.2,...n}, P"nP =0, P"nP'=3, P P’=, PPUP"UP={12,....n}.
Moreover, P'UP =S.

Finally, by the definition of TT and the operator A, if follows that:

TT(p)=TT(Ab,) = ATT(b,)= > TT(b)) = Y TT(a,)+ Y. TT(=a,) =

+

jes Jje je =
=D A+ A =D A+ AN
jer* jeP~ jer* jepP~
Now, let us suppose that there is a different triple of sets Q*,Q~,Q° with the above
properties. Then we have that:
TT(p)= Y A+ L AD= YA+ YA,
JjeP” JepP~ JjeQ" JeQ”
By the definition of the A;j(z), we have that for any je {1,2.....,n}, the above equation
will give:
e jeP'=jeQ’ and
e jeP<jeQ
which actually means that P'=Q" and P"=Q . Given the properties of the sets, we have
that P’=Q" as well, so the above sets are unique.

The above lemma actually says that there is a direct correspondence between a

min-term peL’, a matrix Pe CV"" and three sets P*,P",P’ with the above properties.
This means that all three of the above structures can be defined in terms of each other.
We will heavily use this property in the following lemmas.

Lemma 13.7

Let p,qeL*, be two min-terms and PO,P+,P7,QO,Q+,Q*, sets of integers such that:

P’ P" P c{1.2....n}, P'nP =3, P'nP’=3, P ~P’=1, P°UPTUP ={1,2,....n},
Q%.Q".Q<{1.2....n}, Q'NQ =T, Q'NQ*=, O Q’=w, Q"UQ LQ={12.....n}
and P=Y A+ > AM=TT(p), 0=D A+ > AH)=TT(qg).

jert o jer jeor  jeo
Moreover, we define the set of atoms: S={o;[je(P"NQ)U(P " NQ")}.

Then the least keN for which mod(G*(p)Aq)=& is k=[S|.
Moreover, mod(ress(p)Aq)=< and S is the only set of size k with this property.
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Finally, mod(Gk(p)/\q)ZK]szx. ..xKy, where for all je{1,2,...,n}:

o Kq={1},iffjeQU(Q’P")

o K={0},iff jeQuUQ'nP)

o K={0.1},iffjeQ’~P°

Proof

Let us suppose that there is k<|S|<n such that mod(G"(p)rq)= .

By the definition of sets P",P~ (lemma 13.6), and by Dalal’s Theorem 5.6 ([3]) it
follows that for this k:

G*(p) = v res, (p) = G (p)Ag = v (res, (p) A q) =

Uciay.a,,....a,} U=k Uciay,ay,....a,},JU|=k

= Y mod(res, (p)Aq) #D .

Uciay.ay,....a,}, U=k
So, there is at least one set U, with |U|<|S|, such that mod(resy(p)Aq)=D.
However, for any such set, there exists an atom o;€S such that o;¢ U.
At first, let us suppose that jeP'nQ". Then, the atom «; appears as a positive atom in
p and as a negative atom in q (lemma 13.6). Moreover, by theorem 5.4 ([3]), it follows
that the models of resy(p) differ from the models of p in the truth-values of the atoms
in U, at most. Therefore, for all interpretations I=(b;,by,...,by)emod(resy(p)), it must
hold that b;=1, because «; appears as a positive atom in p (a;eP") and ojgU. On the
other hand, for all interpretations I'=(ci,c»,...,cn) emod(q), it must hold that ¢;=0, as o
appears as a negative atom in q (a;€Q ). So, there is no interpretation Iemod(resy(p))
such that Iemod(q), thus mod(resy(p)Aq)=L, contradiction. Therefore, for all
jeP"mQ” we must have o;eU.
In a similar fashion, we can prove that for all jeP"nQ" we must have a;eU.
Combining the above, we have that o;eS=a;eU, so for any U such that
mod(resy(p)Aq)=d it must hold that USS and, consequently, |U[>|S|. This means that

for all ke N for which mod(Gk(p)Aq);t@ it holds that k>|S|.
We will now prove that mod(ress(p)Aq)=D.
It is known that mod(p)=I;xLrx...xI,, where for all je {1,2,...,n}:
e [;={0} iff a; appears as a negative atom in p, ie iff je P~
e [={1} iff a; appears as a positive atom in p, ie iff jeP"
e [={0,1} iff a; does not appear in p, ie iff’j ep’
Moreover, mod(ress(p)) contains all the interpretations of mod(p) plus all the
interpretations of I(n) which differ from some interpretation of mod(p) in the truth-
value(s) of one or more atom(s) from S.
Therefore mod(ress(p))=JixJ>x...xJ,, where for all je {1,2,...,n}:
e J={0,1} iffje (P'nQ)U(P Q" )=u;eS
o J=Liff je(PTNQIUP NQ )¢S
Similarly, mod(q)=L;xLyx...xL,, where:
e L;={0} iff a; appears as a negative atom in q, ie iff je Q™
e L;={1} iff a; appears as a positive atom in q, ie iff jeQ"
e L={0,1} iff a; does not appear in q, ie iff | eQ’
It follows that: mod(ress(p)Aq)=mod(ress(p))mod(q)=
=(JxJox... xJp)N(LixLox...xLy)=(J1nL1)x(JoNLy)x. .. x(JpNLy).
We set Ki=JinL;, for all je {1,2,...,n}. Then, for all je {1,2,...,n} we have:
e ifjeQ’, then L;={1} and:
o ifjeP’, then J={1}=K=J,nLi={1}.
o ifjeP, then J_]:{O,l }:}Ki:JjﬂLj:{ 1}.
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o ifjeP’, then J={0,1}=>K=J,nL={1}.
e ifjeQ, then L;={0} and:

o ifjeP’, then Ji={0,1}=K;=J,nL;={0}.

o 1ifjeP, then J={0}=K=J;nL;={0}.

o ifjeP’, then J={0,1}=>K=J,nL={0}.
o ifjeQ’, then L;={0,1} and:

o ifjeP’, then J={1}=K=JinLi={1}.

o 1ifjeP, then J={0}=K=J;nL;={0}.

o ifjeP’, then Ji={0,1}=K=J,nL;={0,1}.
By summarizing the above 9 cases, and for all je {1,2,...,n}, we have that:
o Ki={1},iffjeQ U(Q’nP")
o K={0},iffjeQ UQ’~P)
o K={0.1},iffjeQ’~P°
Thus: mod(ress(p)Aq)=KxKyox...xKy#.
In conjunction with the fact that the least ke N for which mod(Gk(p)/\q)i@ has the
property k>|S|, the above equation gives that for this k it holds that: k=|S|. Moreover,
since for any set U of atoms such that mod(resy(p)Aq)=< it must hold that U>S, and
given that mod(ress(p)Aq)=d, we have as a consequence that the only set U of atoms
of size k=[S| with the property that mod(resy(p)Aq)=D is S.
Finally, by the above results and the equation:

G*(p)ng = Y mod(res,, (p) A q), it follows that:

Uc{ay,ay,....a,} U=k
mod(Gk(p)/\q)=m0d(ress(p)/\q)ZKI><K2><...xKn, where K; as above, and this
completes the proof.

Lemma 13.8
Let PO,P+,P_,QO,Q+,Q_, sets of integers such that:
P’ P' P c{1.2....n}, P'nP =&, P'"P’=3, P ~P’=, P°UP"UP ={12,....n} and:
Q%0Q0%.0Q0 <{1.2....n}, Q' nQ =3, Q' NQ*=, Q NQ" =, Q"UQ UQ ={1.2.....n}.
Let P,Qe C™M™ such that:
P= ZA] + ZA_].(Z') and:

jeP* jeP”

0=2-(D A + > A()) and R=PeQeC""",
je * je =

Moreover, let the RE and RL functions be as defined above.

Then RL(RE(R))=[k] where k=n—|(P"nQ )u(P nQ")|.

Proof

It is obvious from the definition of P+,P7,P0 and P that the elements of P are from the
set: {0,1,1} and that the element of the j-th column p; is equal to:

e 0iffjeP’
e 1liffjeP’
e iiffjeP”

Similarly, the elements of Q are from the set: {0,2,2i} and the element of the j-th
column g is equal to:

e 0iffjeQ’
e 2iffjeQ’
o 2iiffjeQ
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By the definition of revision, we have that: R=PeQ=P+Q, thus the elements of R are
taken from the set:

S={0,2,21,1,3,1+21,i,2+i,31}.

Let R=[r; 12 ... 1o ]=[p1tq1 p2+q2 ... Pntdnl-

By the definition of RL,RE, we have that RL(RE(R))=[k] for some ke R*".

For all je {1.2,...,n}, we have that r;eS, thus rje(C“), and Re(1j)<I or Im(rj)<I (easily
verified). Thus by lemma 13.2, for the only line of R, we have that:
k=RLo(RE(r1),REq(r2),....REq(rn))=

=l-min{Re(r}).Im(r;) } +1-min{Re(r2),Im(r;) } +...+1-min{Re(ryp),Im(r,) } =
=n—(min{Re(r),Im(r;) }+min{Re(r,),Im(rp) } +...+min{Re(r,).Im(r,)}) (1).

By looking at the set S, we can easily deduct that for each je {1,2,...,n} we have that:
min{Re(r;j),Im(rj)}=1 iff r;=1+2i or r;=2+i and

min{Re(r;),Im(rj)}=0 otherwise.

Equivalently:

min{Re(r;),Im(rj) }=1 iff p;j=1, q;=21i or p;=1, ¢;=2 which is true iff:

jeP"and jeQ orjeP and jeQ =je(P'nQ)UP NQM).

Thus:

min{Re(r;),Im(r;) }+min{Re(r),Im(r,)} +...+min {Re(r,),Im(r,) } =|(P"NQ)U(P NQ")|.
Applying the above result to (1) we get:

k=n—|(P""Q )u(P nQ")|, and the proof is complete.

The following proposition offers a way to emulate Dalal’s algorithm under our
framework. The Element Reliability function used is different from the one used in
[7] for the respective proposition, but lemma 13.2 implies that the selection of the RF
factors makes the difference unimportant. Specifically:

Proposition 13.1
Let p.gel’ be two satisfiable propositional expressions in DNF and let r be the
(0 the

revision of p with q under Dalal’s algorithm (r=pe"q). Moreover, let PeC
matrix related to p via the TT function, using an RF of 1 for all atoms (P=TT(p)),

QeC™™™ the matrix related to q via the TT function, using an RF of 2 for all atoms

(Q=2-TT(q)) and Re C™™ the matrix resulting by the update of P with Q under our
framework (R=PeQ). Finally, we define the functions RE, RL and LS as in the above
lemmas (13.1, 13.3, 13.4).

Under these parameters, the resulting propositional expression (to be used in queries)
is logically equivalent to the expression r as defined above, that is: QT(R)=r.

Proof

At first, we will assume that both p and q are min-terms. Then P,Q.Re cra,

We also assume the sets P+,P_,PO,Q+,Q_,QO as usual.

Let S=(P"nQ)u(P nQ").

By lemma 13.7, the least ke N for which mod(G*(p)Aq)=D is k=[S| and that for this k
it holds that:

mod(G*(p)Aq)=I;xIpx...xI, where for all je {1,2,...,n}:

o I={1}.iffjeQUQ’NP")

o [={0},iffjeQ U(Q’P)

o [={0.1},iffjeQ’~P’

Therefore, by the definition of the operator o, it follows that:

mod(r)=IixLx...xI,, where I;, je {1,2,....,n} as above.
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Returning to our method, we have that Re C"", so B=RL(RE(R))e R™"!.
Therefore: YcLL.S(B)c{1}=LS(B)={1}.
So, MS(R,LS(B))=MS(R,{1})=R.
Let P=[p;], Q=[q;], j=1.2.....n.
Then: R=[rj]=[pj+q].
Moreover MN(R)=C=[c¢;], such that ¢;=Re(rj)-Im(r;).
For all je {1,2,...,n} there exist the following possibilities:
e ifjeQ, then qi=2 and:
o ifjeP”, then p=1=1=3=¢=3.
o 1ifjeP, then pmi=r=2+1=c¢=1.
o ifjeP’, then p=0=>1=2=>¢;=2.
e ifjeQ, then gj=2i and:
o ifjeP’, then pi=l=r=1+2i=>ci=1.
o 1ifjeP, then pmi=r1=31=>c;=-3.
o ifjeP’, then p=0=>1=2i=>c;=2.
o ifjeQ’, then q=0 and:
o ifjeP’, then p=l=r=1=c=1.
o 1ifjeP, then pmi=r=i=ci=1.
o ifjeP’, then pi=0=>1;=0=>¢;=0.
In short:
o ¢>0iffjeQ UQ NP
o ¢<0iffjeQ uU(Q’NP)
o ¢~0iffjeQ’P’
Thus, mod(C)=J;xJ,x...xJ,, where for all je {1,2,....n}:
o J={1}iff c=1=jeQ U(Q’PY)
o J={0} iff cmicjeQ U(Q'NP)
o J={0,1} iff ¢;=0=jeQ’~P’
By comparing J; and [, it follows that mod(r)=mod(C).
However, mod(QT(R))=mod(TTI(C))=mod(C)=mod(r)=QT(R)=r.
In the general case, where p is the disjunction of m min-terms and q is the disjunction
of I min-terms, we have that:
P=PIVP2V...VPm, q=qiVQaV...vq, Wwhere each pj, je{l.2,...m} and each g,
je{l,2,...,]1} are min-terms.
Let k be the minimum integer for which mod(Gk(p)/\q);t@ .
Then we have that:
mod(r)=mod(pe"q)=mod(G*(p)Aq)=mod(G*(p1vpav.. VpmA(QIVQV. .. V)=
= mod(Gk(pl)v Gk(pz)v. .V Gk(pm))/\(qlquv. V)=

i=m,j=l

= Ymod(G*(p,)rq,) (1).

i=l1,j=1
In the above relation, we notice that all p; and q; are min-terms. For each arbitrary
selection of ie{1,2,....m},je{1,2,....]1}, we can define the sets P+,P7,PO,Q+,Q*,Q0 as
usual for the min-terms p;, q; respectively, as well as the quantity:
=[(P""QHUP NQ")eN".
There are three possibilities regarding t:
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e t<k: In this case, we have that mod(Gt(pi)/\qj);t@, by lemma 13.7, so the union:
i=m, j=l
Y mod(G' (p,) Agq,)# D, which means that mod(G'(p)Aq)=D for some t<k,
i=1,j=1
which is a contradiction by definition of k.
e t>k: In this case, by lemma 13.7, t is the least integer for which the relation
mod(G'(pi)Aq;)#@ holds, and since t>k we have that mod(Gk(pi)/\qj)ZQ.
e t=k: In this case, by lemma 13.7 again, mod(Gk(pi)/\qi)zllxlzx...xIn where for all
de{1.,2,....n}:
o I={1},iff de Q" U(Q"’~P")
o I~{0},iff deQ U(Q’P")
o I&={0,1},iff deQ"~P’
We will call T the set of (i,j) pairs for which the equation t=k holds. There exists at
least one such pair, because if it didn’t exist then we would have that:
mod(G*(p)Aq)=, which is a contradiction by the definition of k; therefore TG
It follows by (1) that:
mod(r) = Ymod(G"(p,)rq,) (2).
()l
For each (1)) pair, we can define t;; as above, and for all 1,j it holds that: t;=k. Since
the set T contains the (i,j) pairs for which t;=k, we can deduct that:
T={{)lie{l.2,....m},je{1,2,.. 1} ti<tiy, forall i'e {1,2,....m},j’€ {1,2,....1} }.
On the other hand, it is obvious that:

P=TT(p)=VvTT(p,)= | TT(p,) and:
= i=1

0=2-TT(q) =2~»/}\l=/1TT(qj) =2 LTT(qj) = L(2-TT(qj)).

By the definition of the operator of revision, it follows that:
i=m,j=I

R=P°Q=(vnlqlTT(p,‘))°(‘il(2-TT(q,)))= | IT(p)+2-TT(q,)) (3.

i=1,j=1
Each of the TT(p;), TT(q;) are matrices with only one line, so the above relation is the
expression of R as the juxtaposition of its lines.
Let us suppose that R=[rqy], de {1,2,....m-1}, he{1,2,....n}. Then:

I L, o I
RL . er rzz r2n .
(RE(R)) = RL(RE( ) =
rm-ll rm-]2 o rm-ln
REO (rll) REO (rlz) REO (rln)
o REC) RE() e RESG) |

REO (rm-ll ) REO (rm-IZ) REO (rm-]n)
m-l
= | RL(RE () RE,(r) - RE,(x,))-

By this relation we can deduct that RL(RE(R))e RO™ “and each element of this
matrix can be computed using lemma 13.8.

Let us arbitrarily select a dge {1,2,...,m-1}. We also select:
10=((d¢—1) div m)+1 and jo=((d¢p—1) mod m)+1 (4).
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It is trivial to verify using relation (3) that line dy of matrix R (denoted by R‘*) is
equal to:

R =TT(p, )+2-TT(q, ).
Moreover, by lemma 13.8: RL(RE(R(d")))Z[n—tl.OJO], where the t; are as defined

above.
Thus:

m-l

RL(RE(R)) = | [n—t, 4, ], where i(d),j(d) the indexes related to d, as specified by
o )J(d:

relations (4). Let B'=RL(RE(R)).

By the definition of LS it follows that:

LS(B'):{hE { 1,2,.. ,ml} :Vh'e { 1,2,.. ,ml} n—ti(h)j(h)Zn—ti(h')j(h')}:
={he{1.,2,....m1}:Vh'e{1,2,....m-1} ti(h)j(h)ﬁti(h')j(h’)}-

By comparing the set T above:

T={(j)lie {1.2,....m}.,je{1.2,... I} ti<tyy, forall i'e {1,2,....m}.,j’ € {1,2,....1} },
with the set LS(B’) we can deduct that:

heLS(B")<(i(h).j(h))eT.

It follows that:
C'=MS(R,LS(B)= | R"™ = | (IT(p,)+2-TT(q,)) and that:
heLS(B") (i,))el ’
D=MN(C") = MN((_ _I) T(TT(p,»)+2-TT(q,.))) =, ,I) TMN(TT(p,.)+2-TT(q,)) -
L,J)E ,])€E
Finally:

mod(QT(R)) = mod(TTI(D)) = mod(D) =mod( | MN(TT(p,)+2-TT(g,))) =

(4,))el
= mod((,, ]_V)E,/,MN(TT(PJ +2-TT(q,)) = Ymod(MN(TT(p,)+2-TT(q,))) (5).
7 (i,))er
Let us arbitrarily select a pair (1,j)€T, and let Ap=TT(p;), Aq=2-TT(q;).
Both p; and g are min-terms, and let S:p]'.qu. Then:

mod(s)Zmod(Gk'(pi)/\qj), for the least k’eN’ for which mod(Gk'(pi)/\qj);t@. By the
definition of T, it follows that k'=t;;=k.
Given that Ap,Aqe C"", we have that: QT(ApeAg)=TTI(MN(ApeA)).
Moreover, the proposition has already been proven for min-terms, so:
mod(s)=mod(QT(ApeAq))=mod(TTIMN(ApeAq)))=mod(MN(TT(p))+2-TT(q;)))=
=mod(G*(pi)Ag)=mod(MN(TT(p;)+2-TT(q)))).
The above equation holds for all (i,j) €T, thus:
@)= mod(r) = Ymod(G*(p,)nq,) =
(i.))eT

= Ymod(MN(IT(p,)+2-TT(q,))) = mod(QT (R)) by (5).

(i,/)el

Therefore: r=QT(R), and the proof is complete.

Regarding the above proposition, some comments are in order. First of all, it
must be stressed that Dalal’s algorithm is based on different semantics, therefore
emulation cannot be perfect. In effect, the above proposition offers a way to interpret
in logical terms (logical expressions) the result of the update under our semantics in
order to be equivalent with the result of the same update under Dalal’s algorithm.
Dalal’s algorithm does not take into account iterated revisions and neither do we. If
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we perform a second revision on the resulting matrix, the result may no longer be the
same as Dalal’s. In order to deal with iterated revisions we have to readjust the matrix
representing the KB before each new revision. The method does not hold for
propositions not in DNF, or for unsatisfiable propositions, at least under these
parameters. The revelation of parameters under which the emulation covers those
cases is an ongoing work.

14. Conclusions and Future Work

In this report, we presented a novel representation of propositional expressions
and its theoretical foundation. We successfully applied this representation to the
problem of belief revision. The introduction of the Reliability Factor (RF) and the
quantitative nature of the table representation introduce an increased expressiveness in
propositional logic, allowing the use of features not normally available. This could
possibly speed up existing algorithms or provide solutions to existing problems in
propositional logic or its applications. We believe that much more work needs to be
done in order to fully exploit its capabilities.

Regarding belief revision, we provided a framework for addressing the
problem based on the table transformation. The operations of contraction ([8, 14]),
update and erasure ([12]) are included in our model in a very direct manner, without
the need of additional operators. The result of the revision is a matrix and not a logical
proposition; this fact opens up interesting possibilities regarding the interpretation of
the result. Despite the fact that revision is performed in a clearly defined way, the
result’s interpretation can be heavily parameterized, in effect providing a different
revision algorithm per parameter selection. This allows the definition of a whole class
of algorithms, whose optimum member(s) may be application-dependent. Performing
some tests with different parameters is an interesting area for future work.

Some theoretical work on these parameters may also be in line. For example,
the search for the general conditions (parameters) under which the algorithm satisfies
the AGM postulates is an ongoing effort, as well as the simulation of other
algorithms, like those proposed in [16, 17] by Williams, in [15] by Nebel etc.

References

[1] Alchourron, Gérdenfors, Makinson, “On the Logic of Theory Change: Partial
Meet Contraction and Revision Functions”, 1985, The Journal of Symbolic
Logic 50, pp.510-530.

[2] Dalal M., “Investigations Into a Theory of Knowledge Base Revision:
Preliminary Report”, In Proceedings of the Seventh National Conference on
Artificial Intelligence, pp. 475-479, 1988.

[3] Dalal M., “Updates in Propositional Databases”, Technical Report, DCS-TR-
222, Department of Computer Science, Rutgers University, February 1988.

[4] Darwiche A., Pearl J., “On the Logic of Iterated Belief Revision”, UCLA
Cognitive Systems Laboratory, Technical Report (R-202) In R. Fagin (Ed.),
Proceedings of the 1994 Conference on Theoretical Aspects of Reasoning about
Knowledge (TARK 94), Pacific Grove, CA, 5-23, March 13-16, 1994. In
Atrtificial Intelligence, 89(1-2):1--29, 1997.

[5] Delgrande J., “Considerations on a Similarity-Based Approach to Belief
Change”, 16th International Joint Conference on Artificial Intelligence
(IJCAT'99), Stockholm, Sweden, August 1999, pp. 180-185.

-37-



[6] Fagin, Ullman, Vardi, “On the Semantics of Updates in Databases”, 1983,
Proceedings of Second ACM SIGACT-SIGMOD, Atlanta, pp. 352-365.

[7] Flouris G., Plexousakis D., “Belief Revision in Propositional Knowledge
Bases”, to appear in the 8" Panhellenic Conference on Informatics, November
2001, Nicosia, Cyprus.

[8] Gérdenfors P., “Belief Revision: An introduction”, pp. 1-20 in Belief Revision,
ed. by P. Gardenfors, Cambridge University Press, 1992.

[9] Giérdenfors P., “The dynamics of knowledge and belief: Foundational vs.
coherence theories”, Revue Internationale de Philosophie 44, pp. 24-46.
Reprinted in Knowledge, Belief and Strategic Interaction, ed. by Bicchieri and
M. L. dalla Chiara, Cambridge University Press, Cambridge, 1992, pp. 377-396.

[10] Hansson Sven Ove, “In Defense of Base Contraction”, Synthese 91, pp. 239-
245, 1992.

[11] Katsuno, Mendelzon, “Propositional Knowledge Base Revision and Minimal
Change”, KRR-TR-90-3, March 1990, Technical Reports on Knowledge
Representation and Reasoning, University of Toronto.

[12] Katsuno, Mendelzon, “On the Difference Between Updating a Logical Database
and Revising it”, in Belief Revision, P. Gardenfors, Cambridge Press, 1992.

[13] Liberatore P., “The Complexity of Iterated Belief Revision™, In Proceedings of
the Sixth International Conference on Database Theory (ICDT'97), pages 276-
290, 1997.

[14] Makinson, “How to Give it up: A Survey of some Formal Aspects of the Logic
of Theory Change”, 1985, Synthese 62, pp. 347-363.

[15] Nebel B., “A Knowledge Level Analysis of Belief Revision”, In Proceedings of
the First International Conference on Principles of Knowledge Representation
and Reasoning, pp. 301-311, 1989.

[16] Williams, “Anytime Belief Revision”, 1997, International Joint Conference on
Artificial Intelligence, 1997.

[17] Williams Mary-Anne, Williams David, “A Belief Revision System for the
World Wide Web”, Web: http://u2.newcastle.edu.au/webworld/ai-internet.html.

-38-



