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Abstract

The field of neuroscience is experiencing rapid growth in the complexity and quantity of the recorded neural activity
allowing us unprecedented access to its dynamics in different brain areas. The objective of this work is to discover
directly from the experimental data rich and comprehensible models for brain function that will be concurrently robust
to noise. Considering this task from the perspective of dimensionality reduction, we develop an innovative, robust to noise
dictionary learning framework based on adversarial training methods for the identification of patterns of synchronous
firing activity as well as within a time lag. We employ real-world binary datasets describing the spontaneous neuronal
activity of laboratory mice over time, and we aim to their efficient low-dimensional representation. The results on the
classification accuracy for the discrimination between the clean and the adversarial-noisy activation patterns obtained
by an SVM classifier highlight the efficacy of the proposed scheme compared to other methods, and the visualization of
the dictionary’s distribution demonstrates the multifarious information that we obtain from it.

Keywords: Dictionary Learning, Supervised Machine Learning, biological neural networks.

1. Introduction

The advances of imaging and monitoring technologies,
such as in vivo 2-photon calcium imaging at the meso-
scopic regime as well as the massive increases in compu-
tational power and algorithmic development have enabled
advanced multivariate analyses of neural population activ-
ity, recorded either sequentially or simultaneously.

More specifically, high resolution optical imaging meth-
ods have recently revealed the dynamic patterns of neural
activity across the layers of the primary visual cortex (V1)
leading to this important question: Neuronal groups that
fire in synchrony may be more efficient at relaying shared
information and are more likely to belong to networks of
neurons subserving the same function. By using 2-photon
imaging, we monitored the spontaneous population bursts
of activity in pyramidal cells and interneurons of mouse in
L2/3 V1. We found that the sizes of spontaneous popula-
tion bursts and the degree of connectivity of the neurons
in specific fields of view (FOVs) formed scale-free distri-
butions, suggestive of a hierarchical small-world net ar-
chitecture [1]. The existence of such groups of ”linked”
units inevitably shapes the profile of spontaneous events

?Fully documented templates are available in the elsarticle pack-
age on CTAN.

observed in V1 networks [2, 3, 4]. Thus, the analysis of the
spontaneous activity patterns provides an opportunity for
identifying groups of neurons that fire with increased lev-
els of synchrony (have significant ”functional connectivity”
between each other).

In order to analyze these populations and to find fea-
tures that are not apparent at the level of individual neu-
rons, we adopt dictionary learning (DL) methods, which
provide a parsimonious description of statistical features of
interest via the output dictionary, discarding at the same
time some aspects of the data as noise. Moreover, dictio-
naries are a natural approach for performing exploratory
data analysis as well as visualization. Given the fact that
the dictionary is the new space of reduced dimensionality,
the computational complexity of its management is much
smaller compared to the initial raw data and thus, for all
these advantages, DL has been applied in various domains.

In brain signaling specifically, the K-SVD algorithm
[5], has been used for capturing the behavior of neuronal
responses into a dictionary, which was evaluated with real-
world data for its generalization capacity as well as for its
sensitivity with respect to noise [6]. DL has been also
suggested for the EEG (electroencephalography) inverse
problem. Specifically, Liu et al. [7] proposed a supervised
formulation of source reconstruction and supervised source
classification to address the estimation of brain sources
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and to distinguish the various sources associated with dif-
ferent status of the brain. Moreover, accurate EEG signal
classification plays an important role in the performance
of BCI (Brain Computer Interface) applications. Ameri
et al. [8] adapted the projective dictionary pair learning
method (DPL) for EEG signal classification. They learned
a synthetic as well as an analysis dictionary, which were
used in the classification step to increase the speed and
accuracy of the classifier. Morioka et al. [9] proposed a
dictionary learning, sparse coding method to address the
issue of the inherent variability existing in brain signals
caused by different physical and mental conditions among
multiple subjects and sessions. Such variability compli-
cates the analysis of data from multiple subjects and ses-
sions in a consistent way, and degrades the performance of
neural decoding in BCI applications.

In this work, we propose the Adversarial Dictionary
Learning (ADL) algorithm, which captures the synchronic-
ity patterns among neurons, and its extended version, the
Relaxed Adversarial Dictionary Learning (RADL) for cofir-
ing patterns within a time lag. Adversarial training is the
process of explicitly training a model on adversarial ex-
amples, in order to increase its robustness to noisy inputs.
Thus, we create an adversarial learning environment by
using clean and adversarial-noisy activation patterns. The
main objectives are the construction of a dictionary that
will be robust to the measurement noise (i.e. calcium fluc-
tuations) as well as to the identification of firing events
emerging by chance. Both ADL and RADL construct the
output dictionary by selecting only those patterns of the
input data that contribute to a better reconstructed rep-
resentation of the clean input signal than the adversarial-
noisy one. After obtaining our trained dictionary, we quan-
tify its quality and robustness by training a supervised
classifier with the reconstructed clean and noisy signals as
well as with the raw ones, and examine when the classifier
exhibits the smallest testing error. To assess whether the
trained dictionary has captured the underlying statistics
of the input data, we employ the classification accuracy
(i.e. the extent to which the classifier can discriminate the
clean from the noisy signal).

To validate the proposed algorithms, we employed two
real-world binary datasets that depict the neuronal activ-
ity of a 9-day old and a 36-day old C57BL/6 laboratory
mouse. Data was collected using 2-photon calcium imag-
ing in the V1, L2/3 area of the neocortex of the animals.
Fig. 1 illustrates the format of our data, where each col-
umn represents an example-activation pattern that con-
sists of 0s for the non-firing events, while 1s represent the
firing events.

While DL has delivered impressive results in various
domains (such as pattern recognition, and data mining),
the construction of the appropriate dictionary depending
on the application still remains challenging. A common
drawback in DL algorithms is the generation of real-numbered
dictionaries, which in our domain have no physical mean-
ing, and thus they cannot be directly used for extracting

useful information from the data nor for visualizations.
Thus, an innovative aspect of our work is shaped by the
requirement of constructing binary dictionaries (given the
binary activation patterns). Additionally, while the major-
ity of the algorithms require a dictionary size parameter,
often there is no prior-knowledge on the number of pat-
terns that should be used. To overcome these limitations,
ADL constructs a dictionary, using the most representative
and robust patterns of the input data and automatically
estimates the dictionary size, as the algorithm does this
itself during the dictionary construction. RADL offers the
same benefits and is extended to discover temporal pat-
terns within a lag (i.e. temporal patterns in larger time
windows). The contributions of this work are summarized
as follows:

• Adversarial DL outputs robust to noise dictionar-
ies by excluding those patterns from the input data,
which could be a result of noise, caused mainly from
calcium fluctuations or other sources of imaging noise.

• Acquisition of an interpretable dictionary, as the dic-
tionary elements are selected from the input data
and thus, the dictionary construction is not a re-
sult of a mathematical transformation, as opposed
to other methods, such as K-SVD [5] or PCA [10].

• In contrast to other methods that require a choice of
dimensionality K (dictionary size), here this is not a
parameter that has to be determined by the user, or
be estimated (e.g. based on the choice of arbitrary
cutoff values or cross-validation methods [11]).

• Detection of statistically significant synchronous and
within a lag temporal patterns of activity, which
can be distinguished from shuffled data (adversarial-
noisy examples), whose temporal correlations are de-
stroyed.

The remainder of the paper is organized as follows: In
Section 2, we describe the proposed approaches. Evalua-
tion methodology and experimental results are presented
in Section 3. Related work is discussed in Section 4, while
conclusions are drawn in Section 5.

2. Proposed Dictionary Learning Framework

In this section we present the proposed DL methods:

• Adversarial Dictionary Learning Algorithm (ADL)
identifies the synchronicity patterns, i.e. patterns
where the neurons fire within the same time bin
(W = 1). For example, in Fig. 1 Neurons 2, 4 and 6
(yellow boxes) fire simultaneously.

• Relaxed Adversarial Dictionary Learning Algorithm
(RADL) is the extension of ADL, which gives the
potential to detect firing activity within a temporal
window of length that is determined by the user. For
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example, in Fig. 1 Neurons 4 and 5 (green boxes)
are not activated simultaneously but within a time
window interval W = 2.

Figure 1: Temporal patterns: Synchronous (W = 1) and within
larger time windows (W > 1).

We also employ a supervised machine learning framework
to quantify the learning capacity of the dictionaries that
are produced by the two methods as well as their robust-
ness to adversarial noise.

2.1. Adversarial Dictionary Learning Algorithm

ADL aims to identify synchronous activation patterns
existing in the input data and outputs them to a dictio-
nary. It is an iterative algorithm, which in every iteration
selects randomly an example-activation pattern from the
data and examines if it will be included in the dictionary
or not. Every iteration consists of two stages. In the first
stage, the algorithm examines the contribution of the se-
lected example in the representation of the input data via
two representation errors. In the second stage it examines
the contribution of the example in the representation of the
noisy data (i.e. data that we have artificially added noise)
based also on two other representation errors. When these
two stages are completed, they are combined in order to
determine if the selected example will be included in the
dictionary or not.

Given a training set Yclean ∈ BM×N , where B is the
binary set consisting of 0 and 1, M is the number of neu-
rons, N the number of clean examples (yj)

N
j=1, where each

one represents an activation pattern (i.e. the activity of
all neurons within one time bin as shown in Fig. 1), we
aim to construct a dictionary D ∈ BM×K , which at the
end of the algorithm will have K dictionary elements that
capture the activity among those neurons. Zero columns
and those with only one 1-entry (firing of only one neuron
within one time bin) have been removed from the training
set Yclean, as we are interested only in synchronicity pat-
terns (i.e. when two or more neurons fire simultaneously
within the same time bin).

ADL constructs the dictionary D incrementally, as in
every iteration of the algorithm one example yi of the set
Yclean is examined as to whether it will be included in
the dictionary or not. The algorithm iterates N times (i.e.
for each one of the examples yj that are in the set Yclean

and stops when all of them are examined. Apart from the
output dictionary D the algorithm also uses an auxiliary

dictionary D′, which in every iteration of the algorithm
has all the elements of D as well as an extra example
yi, which at the current iteration is the example that is
examined whether it will be included in the dictionary D
or not. Namely, if at the iteration i, D ∈ BM×k then D′ ∈
BM×(k+1). D is initialized randomly with an example yj

of the set Yclean and at the first iteration of the algorithm
when the first yi is to be examined, dictionaries D and D′

have the following form:

D = yj and D′ = [D,yi] = [yj ,yi] (1)

At the first stage of the algorithm, in order to vali-
date and decide if the example yi should be included in
the dictionary or not, we also use a set of clean valida-
tion examples Vclean ∈ BM×(N−1), which consists of all
the examples of set Yclean, except the current example yi

under consideration, namely Vclean =
{

(yj)
N−1
j=1 , j 6= i

}
.

According to the sparse representation framework, given
the dictionaries D and D′, we search respectively for the
coefficient matrices X ∈ Rk×N and X′ ∈ R(k+1)×N . An
approach to this problem is the minimization of the fol-
lowing l0 norm problems:

min
X
||Vclean −DX||22, subject to ||xj ||0 ≤ T0 (2)

min
X′
||Vclean −D′X′||22, subject to ||x′j ||0 ≤ T0 (3)

where ||xj ||0 and ||x′j ||0 are the l0 pseudo-norms, which
correspond to the number of non-zero elements for ev-
ery column j of the sparse coefficient matrices X and X′,
respectively. The sparsity level T0 denotes the maximal
number of non-zero elements for every column j of X and
X′. Namely each column can have at most T0 elements.
These minimization problems are solved using the OMP
Algorithm [12].

Based on eqs. (2) and (3), we examine whether DX
or D′X′, which represent the sets Vclean reconstructed and
V′clean reconstructed respectively, better approach the val-
idation set of examples Vclean. Thus, the question under
discussion is if the example yi, which is included in D′,
contributes to a better representation of the set Vclean.
The metric we used to answer this question is:

Eclean = {RMSE(Vclean,Vclean reconstructed)} (4)

E′clean = {RMSE(Vclean,V
′
clean reconstructed)} (5)

where RMSE is the root mean squared error. In case of

E′clean < Eclean (6)

this means that the example yi, which was only included
in D′ had indeed an effective result in the representation
of the validation set Vclean.

We will keep up with the description of the second stage
of our algorithm, which is partially inspired from adversar-
ial learning methods [13, 14], justifying the characterism
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adversarial that we have given to it. The combination of
the first and second stage will determine if the example
yi will be ultimately added in dictionary D. More specif-
ically, in order to include the example yi in dictionary D,
besides its good contribution to the representation of the
validation set Vclean, it should be simultaneously a non-
helpful factor for the representation of an adversarial noisy
signal. This aims to the creation of a dictionary that will
be robust to noise. In order to achieve this, we create
a set of adversarial-noisy examples Ynoisy ∈ BM×N by
circularly shuffling the spike train of each neuron of the
initial set Yclean by a random number, different for each
neuron. Fig. 2 depicts a simple example with five neurons
spiking at various time bins showing how the adversarial-
noisy signal is created. In order to create the noisy signal,
we perform circular shifting to each neuron of the initial
signal independently. For example, the spike train of the
first neuron is circularly shifted by 2 positions-time units.
Accordingly, the spike train of the second neuron is circu-
larly shifted by 5 positions-time units etc. From both the
initial and the noisy signal, zero columns and those with
one single active neuron are removed (filtering). This type
of noise is much more realistic compared to other types,
such as random flipping of events, gaussian noise etc., as
it preserves the spike distribution of each neuron (firing
rate), while it destroys the synchronicity patterns between
individual neurons. We also create a validation set of noisy
examples Vnoisy ∈ BM×(N−1), which consists of all the ex-
amples included in set Ynoisy except from a random one
that is removed so that Vclean and Vnoisy have the same
number of examples.

Figure 2: Creation of noisy dataset with circular shift and removal
of zero columns and those where only one neuron is active from the
initial and the noisy signal (filtering).

In order to evaluate the contribution of the example
yi to the representation of the set Vnoisy, the following
minimization problems are solved using again the OMP

algorithm:

min
Xnoisy

||Vnoisy −DXnoisy||22, s.t. ||xj,noisy||0 ≤ T0

(7)

min
X′

noisy

||Vnoisy −D′X′noisy||22, s.t. ||x′j,noisy||0 ≤ T0

(8)

Using the same metric as that in eqs. (4) and (5), we get
the following representation errors:

Enoisy = {RMSE(Vnoisy,Vnoisy reconstructed)} (9)

E′noisy = {RMSE(Vnoisy,V
′
noisy reconstructed)} (10)

This time we should have

E′noisy > Enoisy (11)

A bigger error in E′noisy suggests that the presence of
the example yi in dictionary D′ does not contribute to the
good representation of the noisy set of examples Vnoisy.
That would be exactly the prerequisite for the inclusion
of the example yi in D, if we took into account only the
second part of our algorithm. Note that the dictionary
D consists only of examples from the set Yclean. The set
Vnoisy, which results from the set Ynoisy is used by the
algorithm during the training procedure only in order to
determine the appropriateness of the example yi in the
dictionary D.

Eventually, to determine whether or not to include yi

in dictionary D, (6) and (11) are combined in the following
way:

E′clean
E′noisy + ε

<
Eclean

Enoisy + ε
(12)

where ε is a very small positive quantity, so as zero de-
nominators are avoided.

If (12) holds, then yi will be also added in dictionary D.
Dictionaries D and D′ would then temporarily be exactly
the same, until the next iteration, where another example
yi would be added in dictionary D′, in order to be exam-
ined as to whether it should be eventually included in D
or not. Otherwise, if

E′clean
E′noisy + ε

≥ Eclean

Enoisy + ε
(13)

then yi is removed from dictionary D′ and it is obviously
never included in D. The algorithm keeps up with select-
ing randomly the next example yi and iterates until all of
the examples are examined and a desirable dictionary D
is formed. The procedure that we have described so far is
depicted in steps 1-6 of Fig. 3. In step 1 a random example
yi is selected and the representation errors Eclean, E′clean,
Enoisy and E′noisy of stages one and two of the algorithm
are computed. Fig. 3 is a snapshot of our algorithm at
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Figure 3: Proposed approach: ADL selects all the appropriate examples of set Yclean (steps 1-5) and obtains a dictionary D. Steps 1-5 are
repeated 4 times-epochs and in every epoch dictionaries D and D′ are initialized with the dictionary obtained from the previous epoch (step
6). After the 4 epochs we report the final D.

some iteration j, as D and D′ are initialized with the ex-
ample y4, and the example y2 was already examined and
included in dictionary D, while some other examples may
have also been examined but were not included in D. So,
at the jth iteration another example yi (in blue color) is
examined as to whether it will be included in D or not.
Step 2 of Fig. 3 is the combination of stages one and two
of our algorithm, i.e. it is the step, where the inclusion
of the example yi in dictionary D is determined. In step
3, after we have finished with the example yi, we keep up
by selecting randomly the next example yi+1 and steps 1-2
are repeated again for this example too. Step 3 is repeated
for all the examples y′js. In step 4 we obtain the dictionary
D, and in step 5 we move on to the next epoch, where D
will be used to initialize D and D′ (step 6).

In order to report the final dictionary D, the steps
1-6 of Fig. 3 are repeated 4 times-epochs in exactly the
same mode that was described previously (we use 4 epochs
because as shown and discussed later in Fig. 14, after the
third epoch the performance of the algorithm is stabilized).
In every epoch of the algorithm the examples in set Yclean

are randomly selected and examined as to whether they
will be included in the dictionary or not. Moreover, from
the second epoch onward the dictionaries D and D′ are not
initialized with one random example as in the first epoch.
Instead, the algorithm initializes both dictionaries D and
D′ with the dictionary D that was formed in step 5 of the
previous epoch, which is essentially used as a baseline for
the construction of the next dictionaries.

The reason for introducing the idea of epochs in our al-
gorithm is that in every epoch new examples can be added,

which in previous epochs were kept out of the dictionary,
because at the time they were selected and examined some
other examples with which they could make a good com-
bination were not examined yet, and as a result at that
epoch they remained out of the dictionary. After the com-
pletion of these 4 epochs the algorithm terminates and as
shown in Fig. 3 we report our final dictionary D. We em-
phasize once more that the dictionary size does not have to
be predefined by the user, as the algorithm decides itself
for the number of the dictionary elements-patterns that
are sufficient for the effective representation of the data.

2.2. Relaxed Adversarial Dictionary Learning Algorithm

In this section we describe the RADL algorithm, which
is the extension of the ADL algorithm that was described
in the previous part. In addition to the synchronous activ-
ity (i.e. firing activity within the same time bin), RADL
can identify temporal patterns within bigger time window
intervals and outputs them to a dictionary.

We define a time-window parameter W , which deter-
mines the number of time bins that will be used, in order to
search for patterns with some temporal correlation within
that interval. Thus, by defining the length of the time-
window to be W time bins, we add the content of every
W columns-time bins in an overlapping mode. Namely, we
sum the columns y1 + y2 + ...+ yW , y2 + y3 + ...+ yW+1,
y3 + y4 + ...+ yW+2 etc. We also normalize all the values
that come out from this summation by dividing with the
length of the time-window (i.e. by W ), so that the values
are normalized in the scale {0 1}. The procedure and the
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idea behind this approach, i.e. the reason why the sum-
ming of the columns gives us the possibility to identify
temporal patterns within bigger time window intervals is
explained with the following example, which is depicted in
Fig. 4. If we define the time window for example to be
W = 2 time bins, we add the content of every 2 columns-
time bins in an overlapping mode as shown in Fig. 4.
Namely, we sum up the columns y1 + y2, y2 + y3, y3 + y4
etc. and the values that come out from this summation
are 0, 1 and 2 (highlighted in blue). The first column of
the matrix after the summations indicates that neurons 1,
2 and 3 have some temporal correlation, which is indeed
true, as neurons 1, 2 and 3 in the initial signal are acti-
vated in consecutive time bins. More specifically, neuron
1 is activated exactly one time bin before neurons 2 and
3, while 2 and 3 are synchronous in the same time bin.
In this mode we check temporal correlations among other
neurons too. Then, at the normalization step, all values
are normalized in the scale {0 1} by dividing with W so
that the and thus, values 0, 0.5, and 1 for W = 2 time bins
represent:

• 0: Neuron did not fire at all within W = 2 time bins

• 0.5: Neuron fired in one of the two time bins

• 1: Neuron fired consecutively at each time bin

Then, at the filtering step, zero columns and those with
only one non-zero entry are removed. The same procedure
as it is depicted in Fig. 4 is obviously repeated for the
noisy signal too. The summing of the columns in the ini-
tial signal results to a signal that has less zero columns and
columns where only one neuron is active. We can also ob-
serve this in Fig. 4, where the initial signal included three
zero columns and one column where only the first neuron
was active, while after the summing of the columns the
signal remained with only one zero column. Thus, dur-
ing the filtering procedure the amount of columns that
are removed is much smaller than before (i.e. when we
applied the ADL algorithm and there was no column sum-
ming), which results to a training set Yclean with more
examples. Thus, as we increase the time window, the
number of columns that have to be removed during the
filtering is much smaller, which results to an increase in
the number of the examples of each set as shown in Ta-
ble 1. The increase in the number of the training examples
brought also an increase in the size of the dictionary, which
RADL outputs and in order to compress it, apart from
the sets Yclean, Vclean and the corresponding noisy sets
Ynoisy and Vnoisy, we also introduce during the train-
ing procedure a testing set T1 ∈ FM×S of S clean and
adversarial-noisy examples, where F is the set of normal-
ized values in scale {0 1}. T1 is independent from the
testing set T2 ∈ FM×Q, where Q is the number of clean
and adversarial-noisy examples that will be used in the
final step of the algorithm, in order to obtain the final
performance of our model.

Figure 4: Searching for patterns with temporal correlation within
a time window W = 2. We sum the signal every 2 columns in an
overlapping mode (step 1), we normalize the values (step 2) and we
remove zero columns and those where only one neuron is active (step
3), for both initial and noisy signal.

For the compression of the dictionaries that are pro-
duced in every epoch, we use only the clean examples of
the set T1 (the noisy examples of set T1 are used only
after the compression to evaluate the performance of our
algorithm in every single epoch). More specifically, in or-
der to compress the dictionary formed in each epoch we
remove all the dictionary elements that are not used signif-
icantly in the representation of the clean testing examples
of the set T1. So, after the formation of each dictionary
D (step 4 in Fig. 3), and before we use it in the next
epoch, we examine how much each dictionary element is
used for the representation of the clean examples of set
T1. The contribution of each dictionary element is mea-
sured in the following way: Given the dictionary D that
is formed in the current epoch, we obtain the Coefficient
Matrix X, whose columns refer to the clean testing ex-
amples of set T1 described above. For every row-vector
i of the Coefficient Matrix X, namely for every xi that
refers to the specific column-vector dictionary element di,
we calculate its l2-norm. Then, we sum all the elements of
the row-vector xi and if the summation is smaller or equal
with the l2-norm, then we remove the element di from the
dictionary. The intuition behind this technique is that we
remove all dictionary elements that are used negatively for
the representation of most of the examples (i.e. when row-
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vector xi has many negative values). Eventually, in the
last epoch of the algorithm (i.e. the 4th epoch) we obtain
the final dictionary D, which is used with the testing set
T2 that we have available for the testing procedure, in
order to evaluate the performance of our algorithm.

So, what essentially changes from ADL is the input
data that we give to the system, where every column-time
bin in the new data represents patterns that have a tempo-
ral correlation within W time bins. Obviously, this infor-
mation but in a compressed format is also encoded in the
dictionary, providing an insight into temporal correlations.
Additionally, during the training procedure of the RADL
algorithm, we compress the dictionary of each epoch by
removing the dictionary elements that have small contri-
bution in the representation of the clean examples in T1.

2.3. Evaluation of the dictionary quality

In order to evaluate the quality of the output dictionaries
in terms of learning capacity and robustness to noise, we
employ a supervised machine learning framework by train-
ing an SVM-classifier with the clean and noisy raw data
as well as with the reconstructed ones (i.e. the output of
DX). We aim to examine the extent to which the clas-
sifier can discriminate the clean from the noisy activation
patterns, and whether its training with the reconstructed
data results to a better classification performance, rather
than when we use the raw data. Thus, the classification
performance is the quantitative metric offering an insight
about the extent to which the output dictionary has cap-
tured the underlying statistics of the data.

3. Performance Analysis

3.1. Dataset Collection

To evalute the merits of the proposed modeling approach,
we employed two real-world datasets that were collected
using two-photon calcium imaging in the neocortex of a
9-day old mouse and a 36-day old one (C57BL/6). The
first dataset of the 9-day old mouse includes 183 neurons
of the layer 2/3 of the V1, and neurons were imaged us-
ing calcium indicator OGB-1 (imaging depth 130 microns
from pia). The dataset of the 36-day old mouse includes
126 neurons of the layer 2/3 of the V1 area. Addition-
aly, for the 9-day old mouse 29 minutes of spontaneous
activity were recorded, comprised of 11970 frames, each of
0.1451 seconds duration, while for the older one the total
movie length was 30 minutes comprised of 11972 frames,
each of 0.15 seconds duration. The raw fluorescence movie
was motion-corrected to remove slow xy-plane drift. After
motion correction, we used ImageJ software [15] to draw
the ROIs of cells around cell body centers, staying 1-2 pix-
els from the margin of a cell in the case of the 9-day old
mouse, in order to avoid contamination with neuropil sig-
nals and 1-2 pixels for the 36-day old mouse. We then av-
eraged the signals of cell ROI pixels and converted them to
dF/F [16]. To determine the onsets of spontaneous calcium

responses, the dF/F timecourse for each cell was thresh-
olded, using the noise portion of the data, to 3 standard
deviations above noise. To make a binary eventogram of
the responses, for each cell the frames containing the on-
sets for this particular cell were assigned the value 1, and
all other frames were assigned the value 0. The result-
ing binary eventogram of all cells was used in subsequent
analysis.

3.2. Adversarial Dictionary Learning (ADL)

In this section, we illustrate the performance of our pro-
posed algorithm ADL for the case of one time bin window
interval (W = 1), with respect to other methods, such as
K-SVD [5], Analysis K-SVD [17], LC-KSVD [18] and ODL
[19]. More specifically, we examine which of the trained
dictionaries produced from these methods are more robust
to adversarial noise. In order to quantify this information,
we examine the extent to which each trained dictionary
can discriminate the clean from the adversarial-noisy acti-
vation patterns. Through this analysis the impact of the
following parameters is also explored:

• Dictionary size (DS), which is the number of ele-
ments considered in the dictionary. While in all ex-
amined methods, DS must be defined by the user,
in our method, it is automatically inferred.

• Sparsity level (SL), i.e., the maximal number of dic-
tionary elements that are used for representation of
the examples.

We also present some more qualitative results of the dic-
tionary that are produced from our proposed method.

3.2.1. Parameter Setup

After the completion of the filtering that is described in
Fig. 2, we select 50% of the examples of the clean filtered
signal, namely 1138 examples to train K-SVD. Regarding
our proposed method, in order to train the dictionary we
select the same 50% examples from the clean filtered sig-
nal, as well as 50% of the examples from the noisy filtered
signal. Subsequently, the other half of the clean and noisy
filtered signal sets will serve as the testing set for each
one of the two methods. Namely, they will be used for
the training and testing of an SVM-classifier with gaus-
sian kernel and scale σ = 0.01. The classifier is trained
and tested with the:

(i) Raw clean and noisy data

(ii) Reconstructed clean and noisy data, which are bi-
narized by considering all values greater than 0.5 as
activations (1s), while the rest as zeros.

The number of the testing examples in set T2 as well as
the number of the training examples in set Y, where Y
consists of the clean examples Yclean and the adversarial-
noisy examples Ynoisy for the case of one time bin window
interval (W = 1) are depicted in Table 1. Note that all sets
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Size W = 1 W = 2 W = 3 W = 4

Training Set (Y ) 2276 2964 3648 4156
Testing Set (T1) - 1866 2270 2578
Testing Set (T2) 2324 2744 3336 3770

Table 1: Sizes of the Sets Y , T1 and T2 for all Ws

described in Table 1 (Y, T1 and T2) include the number
of both the clean and the adversarial-noisy examples (i.e.
half of the size of each set described in Table 1 refers to the
clean examples and the other half refers to the adversarial-
noisy examples).

Fig. 5 shows the distribution of the original clean (5
(a)) and of the noisy signal (5 (b)), as it results from the
circular shifting procedure. The distributions refer to the
activity of the 9-day old mouse before the process of the
filtering. Namely, in both figures axis x indicates the size
of co-firing neurons (i.e. the number of neurons that co-
activate within one time bin) and the log-scaled axis y
indicates the number of these patterns that exist in the
data. We observe that for the noisy signal, circular shift-
ing has caused a reduction in zero columns-patterns and
a simultaneous increase in doublets (i.e. patterns where 2
neurons co-activate within a time bin) as well as in pat-
terns where only one neuron is active within a time bin.
Finally, more complex patterns with more than seven neu-
rons firing simultaneously are completely destroyed.

(a) (b)

Figure 5: (a) Clean signal distribution (b) Noisy signal distribution

3.2.2. Evaluation Results

Fig. 7 illustrates the performance of the SVM-classifier
regarding the discrimination between the clean and the
noisy signals for the 9-day old mouse, as a function of the
sparsity level when the classifier is trained and tested with
the raw data, the reconstructed data produced by our pro-
posed method ADL and the reconstructed data produced
by the K-SVD algorithm. Each point in the errorbar plots
corresponds to the mean accuracy of 4 runs and in every
run the examples in the training set are given with a dif-
ferent sequence in terms of the columns (i.e the second
column of the training set in the first run may be the fifth
column of the training set in the second run). These 4

runs are executed in order to examine the sensitivity of
our algorithm with respect to the different sequence that
the examples are selected. Thus, the K-SVD algorithm is
initialized with a different dictionary in every run, as the
columns are presented with a different sequence. Regard-
ing our algorithm, the different sequence in the columns of
the training set in every run, results to the selection and
as a consequence to the examination of the examples with
a different sequence as to whether they will be included
in the dictionary D or not. The testing set remains the
same in all runs. The vertical error bar demonstrates the
standard deviation of these four runs (i.e. how much the
accuracy of each run differs from the mean accuracy of the
four runs). More specifically, as it is illustrated in each sub-
figure of Fig. 7, we give as input to the K-SVD algorithm a
different dictionary size, and we evaluate the performance
of the algorithm compared to our proposed method. Fig.
6 depicts the corresponding dictionary sizes that are pro-
duced from our method for the case of W = 1. More
specifically, for every sparsity level (SL), Fig. 6 demon-
strates the size of the final dictionary D that is obtained
from the 4th epoch for each one of the 4 runs.

Figure 6: Size of the final dictionary D for every run and Sparsity
Level (SL).

We observe in Fig. 7 that when the classifier is trained
and tested with the raw data, the accuracy that it achieves
is almost 51%. This percentage is quite low and indicates
the difficulty of the problem that we are supposed to solve.
By using the reconstructed data that are produced by the
K-SVD algorithm we observe that the classifier achieves a
better performance with an accuracy of 56% for DS=150
elements and for SL=2. In all of the subfigures we ob-
serve that as the SL increases, the accuracy of the clas-
sifier decreases, which can be attributed to overfitting of
the system. Moreover, the three different dictionary sizes,
which were tried as input to the K-SVD algorithm do not
affect significantly the performance of the classifier. When
we use the reconstructed data that are produced from our
method and as depicted in Fig. 7, the classifier achieves
better performance results compared to the performance
of the K-SVD algorithm. More specifically, we obtain an
accuracy of 62% for SL=3 and mean dictionary size (of the
4 runs) equal to 418. We observe that for values of spar-
sity level greater than 3 the performance deteriorates due
to overfitting. Nevertheless, our proposed method gives
better performance results for every value of sparsity level.
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(a) DS=150
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(b) DS=200
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(c) DS=300

Figure 7: Mean accuracy classification performance when the classifier is trained with the raw data, the reconstructed data produced by our
method ADL and the reconstructed data produced by the K-SVD.

In Table 2, we report the mean accuracy performance
of 4 runs for several DL methods and for various values of
DS and SL. The parameters that we used for each method
were selected after exhaustive search, so that they give
the best possible accuracy performance. Regarding ODL
and Analysis K-SVD, the SL parameter is only used with
the OMP algorithm to obtain the coefficient matrix corre-
sponding to the testing data (for their reconstruction) and
not during the training procedure (i.e to obtain the out-
put dictionary). We observe that Analysis K-SVD outper-
forms all the other methods for all the examined param-
eters, but still gives a worse accuracy performance com-
pared to ADL. The corresponding DSs of ADL for each
SL are reported in Fig. 12.

We also applied the PCA method, which is a dimen-
sionality reduction algorithm, not dictionary learning based,
on both the clean and the noisy test data. We obtained
the corresponding coefficients and used them in order to
train and test the classifier, which gave an accuracy per-
formance of 51.55%

As it is already stated, our algorithm executes 4 runs,
where in every run the examples of the training set are se-
lected and examined with a different sequence as to whether
they will be included in the dictionary or not. Thus, we
want to ensure that neurons’ firing activity captured by
the dictionaries of each run will be similar and not with
intense variations. To that end, we demonstrate Fig. 8,
which depicts the variation in the number of firing events
that neurons have across the 4 dictionaries formed in each
run, under the consideration of W = 1 and SL = 2. We
observe that for most of the neurons (almost 50 neurons)
the maximum variation across the 4 dictionaries is only 2
firing events, while only one neuron has a variation of 8 fir-
ing events. Thus, we end up with 4 dictionaries that have
almost the same number of firing events for each neuron,
indicating the robustness of our algorithm with respect to
the different sequence in the selection of the examples.

Unlike all the methods that we compared, which pro-

Methods DS SL=2 SL=3 SL=4 SL=5

ODL

150 0.508 0.5161 0.5157 0.5155

200 0.5105 0.5062 0.5065 0.5065

300 0.5077 0.5056 0.506 0.506

LC-KSVD1

150 0.5077 0.4976 0.5063 0.4996

200 0.5041 0.5011 0.5006 0.5025

300 0.5069 0.5032 0.5018 0.5037

LC-KSVD2

150 0.5267 0.5077 0.5188 0.51

200 0.5284 0.542 0.5388 0.5267

300 0.5297 0.5374 0.5138 0.5211

Analysis K-SVD

150 0.5553 0.5577 0.5639 0.5678

200 0.5688 0.5749 0.5747 0.5818

300 0.5658 0.5617 0.559 0.5663

ADL - 0.6059 0.6185 0.5436 0.5436

Table 2: Mean accuracy performance when the classifier is trained
with the reconstructed data produced by ODL, LC-KSVD1, LC-
KSVD2, Analysis K-SVD and ADL.

Figure 8: Neurons grouped in the same bin have the same variation
in the number of firing events across the 4 dictionaries formed in
every run (W = 1, Sparsity Level=2).

duce real-numbered dictionaries with no physical meaning
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for our application, our proposed method ADL produces
dictionaries that provides us with quantitative as well as
with qualitative information, giving us an insight about
the synchronicity patterns existing in the data. So, Fig. 9

Figure 9: Distribution of the two dictionaries (W=1, Sparsity
Level=3).

demonstrates the distribution of two dictionaries (we used
the dictionaries that were produced from the 4th run of
our algorithm, for SL = 3) that refer to the spontaneous
neuronal activity of a 9-day old and a 36-day old mouse.
Namely, axis x indicates the size of the co-firing neurons
that exist in the dictionary, i.e. the number of neurons that
co-activate within one time bin, such as doublets (when 2
neurons co-activate within one time bin) or triplets (when
3 neurons co-activate within one time bin), etc and axis
y indicates the number of these patterns (doublets etc.)
that exist in the dictionary. The dataset that refers to
the 9-day old mouse, firing events occupy the 0.487% of
the data, while for the 36-day old mouse firing activity
occupies only the 0.364% of the dataset. These percent-
ages show the sparseness of our datasets and by extension
indicate the low frequency of the neurons’ firing activity
for both laboratory animals. Moreover, these percentages
reveal that the 9-day old mouse has a more intense firing
activity, which can be attributed to its young age. All
this information is depicted in the distribution of the two
trained dictionaries Fig. 9, as we observe that the num-
ber of the various synchronicity patterns for the 9-day old
mouse is greater than the number of patterns for the 36-
day old mouse. Additionally, the dictionary that refers to
the activity of the 9-day old mouse includes more complex
patterns with more than six neurons firing simultaneously,
while for the 36-day old mouse such patterns tend to be
zero. Eventually, the size of each dictionary also reveals
information about the data that we summarize. Namely,
the dictionary that refers to the activity of the 9-day old
mouse has a size of 411 elements as depicted in Fig. 6,
while the dictionary that refers to the older mouse has a
size of 51 dictionary elements, which correctly verifies that
it fires less.

3.3. Relaxed Adversarial Dictionary Learning (RADL)

This section demonstrates the analysis for temporal
correlation patterns within larger time window intervals
(W > 1). The analysis assesses the impact of the follow-
ing parameters:

• Time window interval (W ), from which we can ex-
tract information about temporal correlations.

• Sparsity level (SL), i.e., the maximal number of dic-
tionary elements that are used for representation.

3.3.1. Parameter Setup

After the completion of the procedure that is described
in Fig. 4 we select 40% of the examples of the clean filtered
signal, as well as 40% of the examples of the noisy filtered
signal for the set Y, which will be used for the training
of the dictionary. Then, we select 25% of the examples of
the clean filtered signal for the set T1, which will be used
for the compression of the dictionaries that are produced
in every epoch as well as 25% of the examples of the noisy
filtered signal in order to evaluate the performance of our
algorithm at every epoch of each run. Eventually, the
other 35% of the clean and noisy filtered examples will be
used by the set T2 and will serve as the testing set, whose
half of the examples will be used for the training of an
SVM-classifier with gaussian kernel and scale σ = 0.01 and
the other half will be used for the testing of the classifier.
The number of the training examples in set Y, as well as
the number of the testing examples in sets T1 and T2 for
all the time window intervals are depicted in Table 1. As
it was also stated in the parameter setup section of ADL,
all sets described in Table 1 (Y, T1 and T2) include the
number of the clean and the adversarial-noisy examples.
The classifier is trained and tested with the:

(i) Raw clean and noisy data

(ii) Reconstructed clean and noisy data whose values are
processed as we describe in the following example

As it was described in section II, for the cases of time
window intervals, where W > 1, activation patterns are
not represented by the values 0 and 1 due to the summing
of the columns and the normalization step. For example
in the case of W = 3, if one neuron has not fired at all
within 3 consecutive time bins, we get a 0-event. If it has
fired once, we obtain the normalized value of 1

3 , which are
the most prevalent values with the 0 value. Additionally,
if the neuron has fired twice, we obtain the value 2

3 and
if it has fired consecutively in all of the 3 time bins, we
obtain a 1-event, which is not very common due to the
refractory period. Because of the fact that we deal with
a reconstruction problem, reconstructed values other than
those described before may appear. Thus, without loss of
generality we make the simplification, which is depicted in
Fig. 10. Namely, for W = 3 all values which are smaller
than 1

6 are turned into zero. Values in space
[
1
6 ,

1
2

)
are
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turned into 1
3 and values in space

[
1
2 ,

5
6

)
are turned into

2
3 . Any other value is turned into 1. Accordingly, we work
for any time window W .

Figure 10: Processing the values of the reconstructed events.

3.3.2. Evaluation Results

Fig. 11 illustrates the performance of the SVM-classifier
regarding the discrimination between the clean and the
noisy signals for the 9-day old mouse, as a function of
the SL when the classifier is trained and tested with the
raw data and the reconstructed data produced by the
RADL algorithm. Each point in the errorbar plots cor-
responds to the mean performance of the 4 runs of the al-
gorithm, where in every run the examples in the training
set are selected and examined with a different sequence
as to whether they will be included in the dictionary D
or not. The vertical error bar demonstrates the standard
deviation of these 4 runs. More specifically, as it is illus-
trated in Fig. 11, each subfigure refers to the performance
of the classifier for different time window intervals. When
the classifier is trained and tested with the raw data, the
highest accuracy that it achieves, taking into account all
the time windows is 51%, which is a quite low percentage.
When we use the reconstructed data that are produced
from our proposed method, we observe that as we increase
the time window interval, we obtain a better classification
performance. More specifically, for SL = 5 and W = 3
as well as W = 4, we obtain the highest accuracy perfor-
mance equal to 65%. Moreover, we notice that for time
window intervals W > 1, when the SL is increased, the
classification performance is increased too. This happens
because the patterns for time windows W > 1 are greater
in number (Table 1) and more complex (more firing events
per signal) compared to the patterns of W = 1. Thus, by
increasing the SL, the algorithm obtains greater flexibil-
ity, as it can use more dictionary elements to represent
the data. Consequently, the algorithm can better general-
ize and does not overfit as in the case of W = 1.

Fig. 14 illustrates the classification performance that
is obtained in every epoch of the algorithm for all the runs
and for SL=3. We observe that for all the cases of time
windows the classification performance is either improved
or it remains the same in every epoch of the algorithm.
Thus, as it is depicted in Fig. 14 the dictionary that is
obtained in the 4th epoch of each run, ensures the best
possible accuracy performance for the specific run com-
pared to the dictionaries that are formed in the previous
epochs.
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Figure 11: Classification performance when the classifier is trained
with the raw data and the reconstructed data produced by RADL
with respect to different time window intervals.

Figure 12: Size of the final dictionary D for every run and Sparsity
Level (SL)

Fig. 13 demonstrates the distribution of two dictio-
naries (we used the dictionaries that were produced from
the 4th run of our algorithm) that refer to the sponta-
neous neuronal activity of the 9-day old and the 36-day
old mouse under the consideration of W = 3 and SL = 3.
The figure demonstrates the number of various patterns
(doublets, triplets etc.) co-activating within a temporal
window of 3 time bins. As in the case of W = 1, we
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Figure 13: Distribution of the two dictionaries (W=3, Sparsity
Level=3).

observe that the number of the various synchronicity pat-
terns for the 9-day old mouse is greater than the number
of the patterns for the 36-day old mouse. Additionally,
the dictionary that refers to the activity of the 9-day old
mouse includes more complex patterns with more than 20
neurons having a temporal correlation within 3 time bins,
while such patterns appear in much smaller numbers for
the 36-day old mouse. Finally, the size of each dictionary
also reveals information about the data that we summa-
rize. The dictionary that refers to the activity of the 9-day
old mouse has greater size than the dictionary that refers
to the activity of the 36-day old mouse, which correctly
indicates and verifies that it fires less.

3.4. Time Complexity and Convergence Analysis

The main computational burden of ADL lies in the
calculations of the coefficient matrices. ADL performs 4
epochs, and each epoch executes a number of iterations
equal to the number of training examples (Section II, Fig.
3). To compute the reconstructed signals Vclean reconstructed,
V′clean reconstructed, Vnoisy reconstructed and V′noisy reconstructed

at each iteration, so that they are used in the calculation
of the representation errors Eclean, E′clean, Enoisy and
E′noisy respectively, our algorithm calculates 4 coefficient
matrices using the OMP method. The time complexity of
OMP at a given iteration T0 is O(kM2 + k + T0M + T0

2)
[20], where k is the number of dictionary atoms, M is the
dimension of the signal and T0 indicates the number of
atoms that have been selected (i.e. the sparsity level).
Thus, given the fact that in every iteration of our algo-
rithm, OMP is calculated 4 times and our algorithm exe-
cutes 4 epochs, the cost of our method is O(16N1(kM2 +
k + T0M + T0

2)), where N1 is the number of iterations of
ADL. Regarding the time complexity of the RADL algo-
rithm, after we obtain the dictionary D and before the be-
ginning of a new epoch, RADL uses the set T1 to keep only
those dictionary elements, which are mostly used for the
representation of this set (Section II). Thus, the time com-
plexity of the RADL isO(16N2(kM2+k+T0M+T0

2)+4k),
where N2 is the number of iterations of RADL. Notice that

in the case of the RADL algorithm, it has a larger set of
training examples (N2 > N1), which results to more iter-
ations, and thus to a higher time complexity.

Concerning the convergence nature of the algorithms,
we report in Fig. 15 the objective function values of ADL
as well as of RADL (W=2) with respect to the number of
iterations of the algorithms, when they execute 8 epochs.
We observe that the objective function values of both algo-
rithms are non-increasing during the iterations, and they
both converge to a small value. Compared to ADL, RADL
converges faster and to a lower value than ADL. It also
needs only one epoch for that, while ADL reaches its low-
est value in the 4th epoch.

4. Related Work

The past several years have witnessed the rapid de-
velopment of the theory and algorithms of DL methods.
DL has been successfully applied in various domains, such
as image classification and denoising, remote sensing, face
recognition, digit and texture classification etc. The suc-
cess of these methods lie in the fact that high-dimensional
data can be represented or coded by a few representative
samples in a low-dimensional manifold.

In remote sensing, Li et al. [21] addressed the prob-
lem of cloud cover and accompanying shadows, which are
two of the most common noise sources for the majority
of remote sensing data in the range of the visible and in-
frared spectra. For the recovery of surficial information,
which is very important for target recognition, classifica-
tion, segmentation etc, they proposed two multitemporal
DL algorithms, expanding on their K-SVD and Bayesian
counterparts. Li et al. [22] also addressed the problem that
remote sensing images are easily subjected to information
loss, due to sensor failure and poor observation conditions.
Thus, they proposed an analysis model for reconstructing
the missing information in remote sensing images, so that
more effective analysis of the earth can be accomplished.

In image and video processing, where it is common to
learn dictionaries adapted to small patches, with training
data that may include several millions of these patches,
Mairal et al. [19] proposed an online dictionary learn-
ing (ODL) algorithm based on stochastic approximations,
which scales up to large datasets with millions of train-
ing samples handling also dynamic training data changing
over time, such as video sequences. In the same context
of image processing, Iqbal et al. [23] proposed a DL al-
gorithm, which minimizes the assumption on the noise by
using a function derived from the α-divergence, which is
used in the data fidelity term of the objective function in-
stead of the quadratic loss or the Frobenius norm. The
algorithm is applied on various image processing applica-
tions, such as digit recognition, background removal, and
grayscale image denoising.

For the task of face as well as object recognition, Li
et al. [24] proposed a discriminative Fisher embedding
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Figure 14: Classification performance with respect to the epochs of the algorithm for each run (Sparsity Level=3).
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Figure 15: Convergence curves of the objective function values versus
iterations for (a) ADL (W=1) and (b) RADL (W=2)

DL algorithm to concurrently preserve both interclass vari-
ances and intraclass similarities of the learned dictionary
and coding coefficients in the embedding space. One of
the first successful attempts in discriminative DL was the
Discriminative K-SVD (D-KSVD) algorithm [25] for face
recognition. They extended K-SVD by incorporating the
classification error into the objective function, thus allow-
ing the performance of a linear classifier and the represen-
tational power of the dictionary to be considered at the
same time in the same optimization procedure, while in
our work these are considered two seperate steps (i.e. clas-
sification error is not incorporated in the objective func-
tion). In several variants of discriminative DL methods
are proposed to improve the data representation and clas-
sification abilities by encoding the locality and reconstruc-
tion error into the DL procedures, while some of them aim
to concurrently improve the scalability of the algorithms
by getting rid of costly norms [26, 27, 28]. Recently, DL
has also been extended to deep learning frameworks [29],
which seek multiple dictionaries at different image scales
capturing also complementary coherent characteristics.

5. Conclusions and Future Work

In this work we proposed the Adversarial Dictionary
Learning algorithm (ADL) that was applied on real-world
data that refer to the spontaneous neuronal activity of a
9-day old and a 36-day old mouse over time. In order to
examine the extent to which the trained dictionary had
captured the underlying statistics of the data, we trained
and tested an SVM-classifier with the reconstructed clean
and noisy signals that were produced from our method
as well as with the reconstructed signals produced from
other dictionary learning methods. The results on the
classification accuracy showed that our method can better
discriminate the true from the noisy activation patterns,
indicating the robustness of our method. Moreover, in con-
trast to other dictionary learning methods, our framework
also produces an interpretable dictionary, consisting only
with the most robust activation patterns of the input data
and not with real-numbered values, which have no physi-
cal meaning. We also extended the idea of ADL to a more
relaxed approach, proposing thus the RADL algorithm,
which produces a dictionary that captures patterns within
bigger time window intervals and is not restricted to the
synchronous activity of neurons within the same time bin.
Experimental results demonstrate that increasing the ac-
tivation patterns time window, has a positive effect on the
classification performance.

Future work will focus on the extension of our algo-
rithm with graph signal processing methods, which could
provide insights related to the temporal dynamics of the
network as well as its functional network activities. We
also plan to explore the potential of the proposed method
in characterizing normal brain organizations as well as al-
terations due to various brain-disorders, such as schizophre-
nia, autism, and Alzheimer’s disease.
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[4] A. Luczak, P. Barthó, K. D. Harris, Spontaneous events outline
the realm of possible sensory responses in neocortical popula-
tions, Neuron 62 (3) (2009) 413–425.

[5] M. Aharon, M. Elad, A. Bruckstein, K-svd: An algorithm for
designing overcomplete dictionaries for sparse representation,
IEEE Trans. on signal processing 54 (11) (2006) 4311–4322.

[6] E. Troullinou, G. Tsagkatakis, G. Palagina, M. Papadopouli,
S. M. Smirnakis, P. Tsakalides, Dictionary learning for sponta-
neous neural activity modeling, in: 25th European Signal Pro-
cessing Conf. (EUSIPCO), IEEE, 2017, pp. 1579–1583.

[7] F. Liu, S. Wang, J. Rosenberger, J. Su, H. Liu, A sparse dictio-
nary learning framework to discover discriminative source acti-
vations in eeg brain mapping, in: Thirty-First AAAI Conference
on Artificial Intelligence, 2017.

[8] T. Zhou, F. Liu, H. Bhaskar, J. Yang, H. Zhang, P. Cai, Online
discriminative dictionary learning for robust object tracking,
Neurocomputing 275 (2018) 1801–1812.

[9] H. Morioka, A. Kanemura, J.-i. Hirayama, M. Shikauchi,
T. Ogawa, S. Ikeda, M. Kawanabe, S. Ishii, Learning a com-
mon dictionary for subject-transfer decoding with resting cali-
bration, NeuroImage 111 (2015) 167–178.

[10] I. T. Jolliffe, Principal component analysis and factor analysis,
in: Principal component analysis, Springer, 1986, pp. 115–128.

[11] J. P. Cunningham, M. Y. Byron, Dimensionality reduction
for large-scale neural recordings, Nature neuroscience 17 (11)
(2014) 1500.

[12] J. A. Tropp, A. C. Gilbert, Signal recovery from random mea-
surements via orthogonal matching pursuit, IEEE Trans. on
information theory 53 (12) (2007) 4655–4666.

[13] L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein, J. Ty-
gar, Adversarial machine learning, in: Proc. of the 4th ACM
workshop on Security and artificial intelligence, ACM, 2011,
pp. 43–58.

[14] P. Stone, M. Veloso, Towards collaborative and adversarial
learning: A case study in robotic soccer, International Journal
of Human-Computer Studies 48 (1) (1998) 83–104.

[15] M. Abramoff, P. Magalhaes, S. Ram, Image processing with
imagej. biophotonics int. 11: 36–42, Google Scholar (2004).

[16] C. Stosiek, O. Garaschuk, K. Holthoff, A. Konnerth, In vivo
two-photon calcium imaging of neuronal networks, Proc. of the
National Academy of Sciences 100 (12) (2003) 7319–7324.

[17] R. Rubinstein, T. Peleg, M. Elad, Analysis k-svd: A dictionary-
learning algorithm for the analysis sparse model, IEEE Trans.
on Signal Processing 61 (3) (2012) 661–677.

[18] Z. Jiang, Z. Lin, L. S. Davis, Label consistent k-svd: Learn-
ing a discriminative dictionary for recognition, IEEE Trans. on
pattern analysis and machine intelligence 35 (11) (2013) 2651–
2664.

[19] J. Mairal, F. Bach, J. Ponce, G. Sapiro, Online dictionary learn-
ing for sparse coding, in: Proc. of the 26th annual international
conf. on machine learning, ACM, 2009, pp. 689–696.
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