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Abstract

In this work, certain aspects of the structure of the overlapping groups of neurons
encoding specific signals are examined. Individual neurons are assumed to respond
stochastically to input signal. Identification of a particular signal is assumed to
result from the aggregate activity of a group of neurons, which we call information
pathway. Conditions for definite response and for non-interference of pathways are
derived. These conditions constrain the response properties of individual neurons
and the allowed overlap among pathways. Under these constrains, and under the
simplifying assumption that all pathways have similar structure, the information
capacity of the system is derived. Furthermore, we show that there is a definite
advantage in the information capacity if pathway neurons areinterspersed among
the neuron assembly.

1 Introduction

Visual cortex neurons fire action potentials when visual stimuli appear within their
receptive fields, and visual information is encoded in real time via the joint firing of mul-
tiple neurons. Although much is known about the properties of single neuronal units,
the rules by which cortical neurons coordinate their activity to represent information
about stimuli remain elusive. To understand why, one must consider that the responses
of single units are both noisy and ambiguous [1], [2], with large trial-to-trial variability
in response strength and probability [3], [4]. In other words, repeated responses to the
same stimulus vary considerably, and responses to multiple different stimuli can be the
same. To achieve optimal real-time performance, these ambiguities must be resolved at
the level of neuronal populations by the coordinated firing of distinct neuronal ensem-
bles. However, it is not clear how these ensembles must behave in order to allow stable
unambiguous percepts to emerge. In contrast to the typical variability of single neuron
firing, typical stimulus induced percepts (e.g., barring bi-stability phenomena and other
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ambiguous types of stimuli) appear to be definite, effectively noise-free, representations
of the stimulus. This suggests that the coordinated firing of appropriate neuronal ensem-
bles, here called“information pathways”, is able to represent and transmit information
about a wide class of stimuli with low degree of uncertainty.

One important question is how the pathways, where definite information about the
stimulus is encoded, are implemented in the brain. Existence of super-specialized cells
that represent a specific stimulus class or even unique stimuli has been postulated. Such
“grandmother-like cells” that respond reliably to increasingly complex arrangements
of the stimuli (objects) are found in higher associative cortical areas of primates [5],
[6]. They are thought to receive unreliable input from multiple lower-level neurons and
integrate it into a definite representation. However, such cells are not found in early
visual areas, such as area V1, and they are elusive even in higher areas. Hence, it is
likely that earlier visual areas represent definite information in the aggregate, nearly
simultaneous, firing of ensembles of neurons whose collective output reliably represents
a given stimulus (e.g., an oriented bar in area V1). In agreement with this, it has
been shown that recurring recruitment of feature-selective cells into co-firing neuronal
ensembles occurs during natural visual stimulation by visual scenes in area V1 [7], [8].
Moreover, neurons with similar feature-selectivity have increased probability to be wired
together even though in rodents they are distributed in a salt and pepper fashion [9],[10].
Such neuronal ensembles likely represent, in part,“information pathways” that encode
specific visual stimulus features.

In addition to variability, the neurons in V1 have other three computationally im-
portant properties. Firstly, their activity under natural visual conditions is sparse with
low noise correlations [11], [12], [13]. Secondly, V1 possesses a retinotopic map, where
nearby neurons share receptive field locations. Finally, in rodents, despite topografic
organization, the feature-selectivity and direction / orientation tuning are not organized
in columns, but are distributed across V1 in salt-and-pepper manner [9], [10]. Diffuse
localization of sparsely firing feature-selective cells may enable efficient encoding of local
features in the scene. The sparsification resulting in low correlated noise enables the
fine feature discrimination even though the tuning of individual units is relatively broad
[3]. In what follows, we assume that neurons in a pathway respond probabilistically to a
stimulus encoded by the pathway, and different pathways form overlapping information
representing sets. Neuron responses are considered to be independent, reflecting the low
value of noise correlations reported in many vertebrates [14], [15], [13]. Early theoretical
considerations [17], [16] suggest that optimality is achieved when there is little or no
coordinated response of neurons other than the one induced by the jointly independent
response of neurons to a particular signal. These assumptions are based on properties of
V1 neuronal responses, which are known to be sparse under natural visual stimulation
conditions, with low noise correlations and relatively high response variability [11], [12],
[13]. Sparsification resulting in low correlated noise enables fine feature discrimination,
even though the tuning of individual units may be relatively broad [3],[18], [19]. Also,
it should be added, there is evidence of increased neuronal decorrelation of pyramidal
neurons in mice at adulthood [20], suggesting that as more information is encoded in
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the brain, neurons decorrelate.
In what follows, we use simple models to identify the basic principles underlying

the information content of information pathways. Specifically, we explore the compu-
tational properties that may allow overlapping sparsely firing neuronal assemblies to
create unambiguous definite representations of visual stimuli. To achieve this, two con-
ditions have to be satisfied: (i) The encoding must be definite: the probability of an
information pathway to be active when a stimulus is present should be close to 1, while
in the absence of stimulus, the probability should be close to 0. (ii) There should be no
significant interference between different overlapping pathways. We examine the impli-
cations of conditions (i) and (ii) on the degree of pathway overlap and neuronal assembly
architecture. Further, we evaluate the information capacity of three incrementally more
plausible architectures of the information pathways, and find that, in the most plausi-
ble architecture, the number of non-interfering definitely responding pathways that can
co-exist, increases exponentially in the maximum allowed overlap. This in turn is deter-
mined by the response probabilities of the individual neurons. Finally, we examine the
validity of our analysis by analyzing a dataset obtained by two-photon imaging of layer
2/3 neurons in area V1 of adult mice.

The structure of the paper is the following: In Section 2, we analyse the conditions
of definite response and of non-interference of overlapping bimodal pathways. In Section
3, three models for overlapping pathway organization are examined, namely the “Dense
Neighbourhood Pathway Model”, the “Random Selection Model”, and the “Locality
Preserving Random Selection Pathway Model”. The implications of the organization
principle on the information capacity of the system are then assessed. In Section 4,
we test the main findings of the previous sections in the context of the Interneuron
Pyramidal Partner Groups in adult mouse V1 cortical area, as identified by [21], using
the “Locality Preserving Random Selection Pathway Model” (Section 3), since it appears
to be the most relevant for a topographically mapped area like V1. Section 5 concludes
with our main remarks. In the appendix, we analyse a variant of the Locality Preserving
Random Selection Pathway Model, where the probability that a neuron belongs to a
given pathway varies according to the distance from the pathway center.

2 Overlapping Information Pathways with Bimodal Probabilistically Re-
sponding Neurons

In this section, two important requirements of overlapping pathways are examined,
namely the conditions of definite response to a preferred signal, encoded by each pathway,
and the condition of non-interference among overlapping pathways. These conditions are
examined in the abscense of spontaneous firing as well as in the presence of spontaneous
firing.
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2.1 No Spontaneous Firing

In this section two conditions are imposed on pathways in the absence of
spontaneous firing. One is the condition that pathways should respond al-
most definitely to a given signal despite the fact that individual neurons
don’t. The other is that activation of one pathway should not induce the
activation of another whose signal is not present.

Two overlapping information pathways: Let us suppose that we have two information
pathways of n1, n2 neurons each, and suppose that there are two distinct signals S1, S2
that activates them respectively. Here it is assumed that each neuron in pathway i has
probability pi of firing if Si is present and probability 0 of firing if Si is not present.
The two pathways are assumed to have an overlap of n12 neurons. To decide whether
a pathway is active or not, we need to set up a threshold Ki on the number of active
neurons. If in pathway i more than Ki neurons are firing, then the pathway is considered
active, otherwise it is considered inactive.

Let us now consider the condition for pathway i to be active given that Si is present.
Since the neurons are bimodal, the probability of more than Ki neurons firing is given
by the binomial distribution:

P (Fi > Ki|Si) =
∑
k>Ki

(
ni
k

)
pki q

ni−k
i (1)

where qi = 1− pi is the probability of a neuron not firing when the corresponding signal
Si is present. This probability is the probability pathway i is active when Si is present.

To facilitate the calculation we are going to use the De Moivre-Laplace theorem to
approximate the binomial distribution with the normal distribution. This approximation
is considered to be good for ni > 30 and for a range of values of k in the sum that is of
order ni so as to avoid discreteness error. The De Moivre-Laplace theorem tells us:

P (Fi > Ki|Si) ≈
1√
2π

∫ ∞
Ki−nipi√

nipiqi

e−x
2/2dx ≡ 1− Φ(

Ki − nipi√
nipiqi

) (2)

where Φ(z) is the normal cumulative distribution function.
Let us now focus on the condition of definite response (i) of the pathway to signal

Si. Like in any probabilistic response system we have to set a level of certainty above
which we consider the system to give a definite response. Let us call this level 1− ε. The
condition of definite response of information pathways Si assumes the form:

Φ(
Ki − nipi√
nipiqi

) < ε (3)

Condition (3) admits the following interpretation: nipi is the expected number of
neurons that are firing in pathway i. Condition (3) is satisfied when the expected
number of firing neurons is much larger (in units of standard deviation

√
nipiqi) than

the threshold Ki.
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The condition of no interference between the overlapping pathways S1, S2 is a little
bit more tricky since one needs to carefully set the thresholds so as to achieve maximal
separability of the pathways. The probability of Sj , j 6= i, to cause activity in pathway
i is given by

P (Fi > Ki|Sj) =
∑
k>Ki

(
nij
k

)
pkj q

nij−k
j ≈ 1− Φ(

Ki − nijpj√
nijpjqj

) (4)

This probability has to be kept low at confidence interval ε, and this leads to the
condition:

Φ(
Ki − nijpj√
nijpjqj

) > 1− ε (5)

The interpretation of this equation is that the expected number of firing neurons in
the overlap (nijpj) under presentation of signal Sj is much smaller than the threshold
Ki of pathway i.

The threshold Ki should be such that the expected number of firing neurons upon
presentation of signal Si is well above Ki, while the expected number of firing neurons in
pathway i upon presentation of signal Sj due to the pathway intersection is well below
Ki. One could take Ki to be the midpoint of the two expected numbers of firing neurons,
however this would ignore possible differences in the standard deviation of the number
of firing neurons in the two cases. Instead one should take a weighted average of the two
expected numbers by the standard deviations as threshold. This is given by

Ki =
nipi
√
nijpjqj + nijpj

√
nipiqi

√
nijpjqj +

√
nipiqi

. (6)

Suppose now that we set ε = 0.01. Then the condition of definite response (3) can
be solved by using the normal cumulative distribution table to give

Ki − nipi√
nipiqi

< −2.33. (7)

Furthermore, the condition of no interference gives similarly

Ki − nijpj√
nijpjqj

> 2.33 (8)

Setting the threshold to the optimal value (6) the conditions (7) and (8) collapse to
the single condition

nipi − nijpj√
nijpjqj +

√
nipiqi

> 2.33 (9)

Many overlapping pathways: In this case the condition of definite response is the
same for each pathway, however the condition of no interference becomes more compli-
cated since there are now many possible overlaps. This obscures the optimal choise of
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Figure 1: The pathway overlap threshold m0 is plotted against the probability p of a
neuron in a pathway responding to its signal. Here the number of neurons in the pathway
is taken to be n = 1000.

threshold for each pathway since now the optimal threshold of a pathway depends on
firing probabilities and overlapping sets of all overlapping pathways. This suggests that
there must be some uniformity in the expected number of firing neurons in the overlap
ping sets so as to have a possible choise of thresholds that avoid interference.

To proceed further, we will supress the diversity in the neuron number, firing prob-
abilities, and overlapping set size and consider a simplified model in which all pathways
have the same number of neurons (n), and the maximum number of neurons in the
overlap of two pathways is m < n. Furthermore, the firing probability of each neuron in
a pathway under presentation of the signal associated with the pathway is taken to be
constant (p).

In this case, the optimal threshold for all pathways is given by

K =
np
√
m+mp

√
n√

m+
√
n

(10)

The conditions of definite response and no interference (7) and (8) now collapse to
the single condition

(
√
n−
√
m)

√
p

q
> 2.33 (11)

To have maximum number of encoding pathways it is necessary to increase the
overlap m to a maximum value m0, without violating condition (11). This is achieved
when

m0 = [(
√
n− 2.33

√
q/p)2] (12)

where the brackets here denote integer part.
Fig.1 shows how the value of the maximum overlap m0 varies as a function of the

probability of neuronal response p for a fixed number n = 1000 of neurons in a pathway.
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Already at p = 0.06 we have a possible 50% overlap. Hence, we can say that for maximal
number of non-interfering definitely responding pathways of size n = 1000, even for very
low probabilities of response, high overlaps are possible.

One important aspect of these probabilistic overlapping pathways is that a subse-
quent neuron does not need the full set of neurons to decode the signal, like in the case
of k neuron definite encoding, since there are no super-pathways that contain smaller
information pathways inside. If a subsequent neuron is connected to a pathway and
thresholds the overall input at the optimal threshold, then this neuron has the informa-
tion the pathway carries. Hence, such a reading system is implementable in real neural
networks.

2.2 Overlapping Pathways in the Presence of Spontaneous Firing

Let us now suppose that each pathway has n bimodal neurons and that a pair of pathways
has m neuron overlap, as before. In this case, we will assume that there is a spontaneous
probability of firing p0 for a neuron not participating in a pathway whose signal is present.
There is also a stimulated probability of firing p when the neuron is in a pathway whose
associated signal is present.

The spontaneous firing may arise in many ways. It may be, for example, built in the
network so as to maintain dynamic equilibrium. After all, excess firing will generate too
much input to the network and this may lead to seizure if network control fails, while not
firing may result in too little input to the network leading to global silencing. Another
source of spontaneous firing may be the parallel operation of overlapping pathways. It is
possible that a neuron belongs not only to the pair of pathways considered here, but also
to a third pathway that may or may not be active in parallel to our pair of pathways. It
is quite possible that both sources of spontaneous firing mentioned exist and cooperate
in the brain.

A further source for the ”spontaneous” firing (probability p0) may be simply the
signal to the second pathway that is causing increased probability of response to the
first pathway. This may happen for example if the signals are close orientation gratings.
In this case both orientation gratings generate increased response to the neurons of a
pathway, however the preferred orientation generates response with higher probability p
than the nearby orientation which generates a response with probability p0. In this case
we will refer to the pathways as close signal pathways and to the difference dp = p− p0
as the probability resolution of the two pathways.

As before, there is a threshold K for the number of active neurons in a pathway,
above which the pathway is considered active. The condition of definite response again
assumes the form

Φ(
K − np
√
npq

) < ε, (13)

However, in this case, there is one further condition, the condition of non-spontaneous
response
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P (Fi > K|NoSignal) ≈ 1− Φ(
K − np0√
np0q0

) < ε. (14)

Fortunately, this condition is weaker than the non-interference condition hence it is
automatically imposed.

The non-interference condition in this case assumes the form

P (Fi > K|Sj) =
∑

k,l,k+l>K

(
m

l

)
plqm−l

(
n−m
k

)
pk0q

n−m−k
0 < ε. (15)

It is not too difficult to show, following a proof similar to the De Moivre-Laplace
theorem, that in the limit n >> m, m >> 1, P (Fi > K|Sj) can be approximated by

P (Fi > K|Sj) ≈ 1− Φ(
K − (n−m)p0 −mp√

(n−m)p0q0 +mpq
). (16)

This leads to the non-interference condition

Φ(
K − (n−m)p0 −mp√

(n−m)p0q0 +mpq
) > 1− ε (17)

In this case, the optimal choice of threshold is

K =
np
√

(n−m)p0q0 +mpq + ((n−m)p0 +mp)
√
npq√

(n−m)p0q0 +mpq +
√
npq

(18)

As before, setting the confidence limit ε = 0.01, the two conditions collapse to the
following condition:

(n−m)(p− p0)√
(n−m)p0q0 +mpq +

√
npq

> 2.33. (19)

It is this condition that determines the maximum allowed overlapm0 of distinct pathways
in the presence of spontaneous firing.

Condition 19 also admits a different interpretation. Suppose that we have two over-
lapping pathways and two stimuli, A,B, corresponding to the pathways A,B respectively.
If the two signals are close to each other (e.g., nearby orientations), then it is possible
that signal A evokes responce to pathway B neurons with a probability p0 only slightly
smaller than the responce p of pathway B neurons to signal B, and correspondingly for
pathway A. In this setup, the overlap threshold m0 admits the interpretation of the max-
imum overlap allowed so that the two pathways can resolve the two signals at probability
difference dp = p− p0. The value of m0 as a function of p is shown in Fig.2.

What is important in Fig.2 is the fact that there is a minimum overlap threshold
for a given probability resolution dp, irrespective of the precise values of p, p0 as long as
dp = p− p0 remains fixed. Hence, if the overlap is kept below this minimum threshold,
the two pathways can resolve the two signals keeping the individual neuron response
probability well below 1. This allows an extra freedom in the operation of the information
pathways that may be necessary to account for firing rate fluctuations in the brain, as
well as to extra constraints in the firing probabilities of pathway neurons that may arise
from requirements for information processing.
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Figure 2: The overlap threshold m0 is plotted against the probability of response to
signal p for various values of the probability resolution dp = p − p0. Here the pathway
neuron number is n = 1000

3 Number of Signals Encoded

Let us now try to address the question of how many signals can be encoded independently
on a set of N neurons given that the pathway size is n and the maximal overlap allowed
is m0 < n.

3.1 Dense Neighbourhood Pathway Model

In this model, we are going to assume that the neurons are irregularly and randomly
placed in a cortex layer. We will furthermore assume that pathways are constructed by
geometrically adjascent neurons placed closest together.

2D Case: In this case neurons are irregularly and randomly placed on a surface
modeling a cortex layer. Pathways form discs with all neurons in the disc participating
in the pathway. Hence, the number of neurons in this model is proportional to the surface
area that they occupy. We will assign a surface density d to the number of neurons per
unit area. Hence, the areas associated to N , n and to the overlap m are AN = N/d,
An = n/d and Am = m/d. Since the pathways are circular, we can associate a radius
Rn =

√
An/π =

√
n/πd. The overlap area Am is the overlap of two discs, and the size

of this area is fully determined by the radius of the pathway discs and the distance of
the centers of the pathways. In fact it is easy to show that

Am = 2R2
nsin

−1(

√
R2
n −D2/4

Rn
)−D

√
R2
n −D2/4. (20)

By inverting relation (20) it is possible to determine the minimum distance Dm0 allowed
for a maximum overlap Am0 that corresponds to m0 neurons.
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Figure 3: (a) The 2D dense pathway model. Overlapping pathways are dense in the sense
that they consist of all neurons within overlapping circles. Two pathways are indicated
by the blue and red colors. Here blue dots indicate neurons in pathway 1 and red dots
neurons in pathway 2, while blue dots with red circles indicate the overlap neurons. (b)
The pathway fraction Np/N is plotted against the maximum number of overlap neurons
m0. Here the number of neurons in the pathway is taken to be n = 1000.

Defining the regularized distances with respect to the density R̂n = Rn
√
d, D̂ =

D
√
d, (20) assumes the form

m = 2
n

π
sin−1(

√
n/π − D̂2/4√

n/π
)− D̂

√
n/π − D̂2/4. (21)

Consider now the question of how many pathways of size n fit in N neurons if the
maximal overlap allowed is m0 neurons. This question corresponds to the question of
how many circles of radius Rn fit within an area AN of neurons if the nearest distance
of their centers allowed is Dm0 .

This is a question that can be answered easily if we ignore insignificant edge effects
associated with the exact shape of the area AN . For closest packing, the centers of the
pathway discs form a triangular lattice of edge Dm0 , and the area of the triangular cell
of the lattice is Ac = D2

m0

√
3/4. Hence, we get that the number of pathways Np is

Np =
AN
2Ac

=
2N√

3dD2
m0

=
2N√
3D̂2

m0

(22)

From equation (22) we see that the number of pathways Np increases linearly with
N , but with a proportionality coefficient that depends on both n,m0.

The graph of this proportionality coefficient for maximum overlap m0 is depicted in
Fig.3 for n = 1000 pathway neurons. As can be seen, Np/N increases with increasing
m0, however only for very large overlaps it becomes comparable to 1.
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3D Case: Here, the neurons are irregularly and randomly placed in three dimen-
sions, essentially considering the cortical layer to be thick, hence allowing three dimen-
sional structure. We will also assume, as in the 2D case, that pathways are constructed
by adjascent neurons placed closest together, forming overlapping spheres that are clos-
est packed at the overlap permitted. Hence the centers of the pathways form a closest
packed sphere lattice (hexagonal close packed or cubic close packed lattice). In this case,
a volume neuron density d associates volumes with neuron numbers, giving VN = N/d
for the volume of the aggregate of neurons, Vn = n/d for the volume of the neurons in a
pathway and Vm = m/d for the volume of the neurons in the overlap of two pathways.
The radius of the pathway sphere is Rn = 3

√
3Vn/4π = 3

√
3n/4πd. The overlap volume

of two overlapping spheres distance D apart is given by

Vm =
1

12
π(4Rn +D)(2Rn −D)2. (23)

Regularizing by setting R̂n = Rn
3
√
d, D̂ = D 3

√
d, (23) assumes the form

m =
1

12
π(4 3

√
3n/4π + D̂)(2 3

√
3n/4π − D̂)2. (24)

Suppose now that m0 is the maximum allowed overlap, so that pathways do not
interfere with each other. By inverting numerically equation (24) it is possible to obtain
the minimum distance Dm0 allowed between the centers of the pathways. The maximum
number of pathways that can be packed at this minimum distance is equal to the number
of auxiliary hard spheres of radius Dm0/2 that can be packed in the volume VN . A
theorem of Gauss tells us that the maximum fraction of volume that can be occupied
by closely packed hard spheres is π/3

√
2. Hence the volume of the auxiliary spheres is

Vaux = πVN
3
√
2

and the number of them is the quotient of Vaux by the hard sphere volume

VHS =
πD3

m0
6 . Since this is the number of pathways we get that

Np =
Vaux
VHS

=
VN
√

2

D3
m0

=
N
√

2

D̂3
m0

(25)

Equations (24,25) implicitly determine the number of pathways in terms of the num-
ber of pathway neurons n and the maximum allowed number of overlap neurons m0.
Again, the number of pathways increases linearly in the number of neurons N , but with
a higher proportionality coefficient than in the 2d case, as can be seen in Fig.3.

A further consideration in this model is the effect of two coactive path-
ways that overlap with a given pathway P . If Pp << 1 is the fraction of
pathways that are active at a particular time, and OP , of order 1, is the
number of pathways overlapping with P , then the probability that two over-

lapping pathways are active together is
Op(Op−1)

2 P 2
p (1− Pp)Op−2 = O(P 2

p ). Since
the probability that two overlapping pathways with P are coactive is small,
the probability of interference on P by the coactivity of pairs of overlapping
pathways is also expected to be small, assuming of course that there is no
bias on which pathways are active at a particular time.
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Figure 4: (a) On the right: The Random Selection Model. Neurons that form a pathway
are selected at random from the neuron aggregate for every pathways. Here blue dots
indicate neurons in pathway 1 and red dots neurons in pathway 2, while blue dots
with red circles indicate the overlap neurons. (b) On the left: The Locality Preserving
Random Selection Pathway Model. Here two specific pathways are indicated by the blue
and red circles. Black dots within the blue and red pathways indicate neurons that do
not belong to either pathway. Neurons in the overlap are again blue dots with red circles.

3.2 Random Selection Model

In the previously described models, the information pathways formed were local in the
sense that neurons in a pathway were neighbouring neurons. They were also dense in
the sense that all neurons within a radius from the pathway center are in the pathway.
Both these restrictions limit severely the number of pathways that are non-interfering.
To better understand these limitations suppose the pathway neurons are chosen from
the full aggregate. Suppose that we are given a set of N neurons, and that each neuron
is chosen at random with probability p = n/N to participate in a particular pathway.
This does not quite fix the pathway neurons to be n, but rather demands the expectation
value of the number of pathway neurons to be n. Let us say that the non-interference
condition allows m0 neuron overlaps among distinct pathways and that activation of a
pathway by co-activation of two other pathways is a rare event and can be ignored. A
sketch of the pathway structure of the model is depicted in Fig.4.

Since the overlap neuron number m determines whether there exists interference
among pathways we need to calculate the overlap probability P (O = m) where O is
the two pathway overlap random variable. To do this suppose that we have fixed the
n neurons of pathway Pi, and that we count the ways we can choose the neurons of
pathway Pj so as to have m neuron overlap. This number of ways is

(n
m

)(N−m
n−m

)
. Hence,

the probability of m overlap in the pathways Pi, Pj is

P (O = m) =

(n
m

)(N−n
n−m

)(N
n

) (26)

12



Suppose now that we work in the large N limit, that is assume N >> n. Then we
can apply Stirling’s formula to get the N dependence of the overlap probability. Doing
this we get

P (O = m) =
1

m!

(
n!

(n−m)!

)2

N−m. (27)

The importance of this formula is that P (O = m) ∼ N−m. Suppose now that the
condition of no interference is O < m0. Then the probability of interference of the two
pathways is

P (O ≥ m0) =
n∑

m=m0

P (O = m) ∼ 1

m0!

(
n!

(n−m0)!

)2

N−m0 . (28)

To determine the number of non-interfering pathways Np in this model we have to
set a level of tolerance since the pathway overlap is stochastic. A rather strict tolerance
level, that guarrantees that the pathways are operating properly, is to demand that it is
unlikely to have one interfering pair per pathway. This is equivalent to saying that the
expected number of interfering pairs is a small ε fraction of the number of pathways.

0.5Np(Np − 1)P (O ≥ m0) < εNp. (29)

This means that the allowed number of non-interfering pathways is

Np ∼ 2εm0!

(
(n−m0)!

n!

)2

Nm0 (30)

Observe that the situation here is very different from the situation in either the 2D
or the 3D dense neighbourhood pathway models. Here the number of non-interfering
pathways increases like a power of the number of neurons, Np ∼ Nm0 , while in either of
the geometric models it increases linearly in the number of neurons, Np ∼ N . Hence, the
random selection model can store much more information than the dense neighbourhood
pathway models, suggesting that the brain architecture may drop locality when there
are many distinct signals to be encoded.

The situation gets slightly modified when one considers the possibility of
multiple simultaneous activation of pathways. Since a particular pathway
P may overlap with a large number of pathways the effect of multiple ac-
tive pathway overlaps is not negligible. To estimate the effect of this, we will
assume that a fraction f (significantly smaller than 1) of the N neurons avail-
able is active at a particular time due to the activation of multiple pathways.
Since the construction of pathways is random, we can assume that these ac-
tive neurons are uniformly distributed in the aggregate. Now the probability
that the pathway P receives input from m aggregate firing neurons is

P (IA = m) =

(n
m

)( N−n
fN−m

)( N
fN

) ∼
(
n

m

)
(1− f)n−mfm (31)
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and the probability that m exceeds the pathway activation threshold, m ≥ K,
is bounded by

P (IA ≥ K) =
n∑

m=K

P (IA = m) ∼
n∑

m=K

(
n

m

)
(1− f)n−mfm ≤ (e

nf

K
)K (32)

provided that the expected number of aggregate firing neurons within our
pathway P , nf << K. If we now demand that the expected number of
pathways NpP (IA ≥ K) suffering interference is smaller than ε, then we have

Np ≤ ε(
K

enf
)K (33)

Hence, in this case the number of non-interfering pathways increases expo-
nentially in the minimum number of active neurons necessary to activate the
pathway P . Nevertheless, this is only a limit to the number of non-interfering
pathways in the presence of a significant amount of parallel activity in the
pathway aggregate. If this parallel activity is diminished even for a short
time, when a pathway is active, the number of non interfering pathways
increases towards the limit given by (30).

Nevertheless, there is also a penalty to pay. This model for pathway construction is
not appropriate when topographical mapping has to be maintained. Since this happens
in the early visual areas, this model may not be appropriate for pathways in V1. What
we need in V1 is a model that will take the advantages of dilute pathways and combine
them with the locality of the pathways in the dense neighbourhood pathway models.
Such a model is the Locality Preserving Random Selection Pathway Model.

3.3 Locality Preserving Random Selection Pathway Model

This model assumes that the n pathway neurons are uniformly distributed within a
distance Rn from the pathway center. The purpose of this restriction is to allow for
spatially localized pathways, that are necessary for the encoding of local features in
topographically mapped areas like V1.

2D Case: Two densities are associated with this model. One is the neuron density
d = N/Area, and the other is the pathway neuron density dn = n/πR2

n. In terms of
these densities the number Nn of neurons within radius Rn from the pathway center is
Nn = πR2

nd and this is greater than the number of pathway neurons n. The probability
p that a neuron within radius Rn from the pathway center belongs to the pathway is
p = dn/d = n/Nn. We will also assume that the maximum overlap permitted between
pathways is m0 neurons, which is determined by the response properties of the neurons.
The structure of the pathways of the model is depicted in Fig.4.

If the pathways form a closest packed lattice, as in the 2D geometric model, then the
adjacent pathway overlap area is again given by (20). However the expected number of
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overlap neurons m is modified by the ratio of the two densities:

m =

2
n

π
sin−1


√
n/π − D̂2/4√

n/π

− D̂√n/π − D̂2/4

 n

Nn
(34)

Here R̂n = Rn
√
dn, and D̂ = D

√
dn are again the appropriate dimensionless ra-

dius and pathway center distance. Solving implicitly (34) for D̂ after substituting the
maximum overlap m0 for m, gives us the minimum pathway distance D̂m0 .

If D̂m0 is different from zero, this is sufficient to give the maximum number of path-
ways that can be packed in our neuron area to be

NP = Area/2Atriang.cell = 2N/
√

3D̂2
m0
. (35)

In this case, the maximum number of pathways NP increases linearly with the number
of neurons present.

The situation can change when D̂m0 = 0. From (34) it is easy to see that this
happens when

m0 ≥ n2/Nn. (36)

In this case, two pathways can operate without interference at any distance D. How-
ever, if too many overlapping pathways are present, some pairs will interfere. In this
case, it is unlikely to maintain closest packed structure for the pathway centers. Let
us denote by N̂I the number of interfering pairs. As in the Random Selection Model,
we will demand that the expected number of interfering pairs is small compared to the
number of pathways,

EN̂I < Npε. (37)

Let us consider now two adjacent pathways. The probability pb that a random neuron
belongs to the overlap of these pathways is given by

pb =
Am
Area

p2 =
m

N
p2 (38)

where Am is the overlap area and Area is the area of all the neurons. The ratio Am/Area
represents the probability that the neuron picked is in the overlap area, and p2 represents
the probability that it belongs to both pathways.

Consider the interference probability Pm0(D) which is the probability that the overlap
of two adjacent pathways is greater than or equal to m0. Then

Pm0(D) =
∑

m≥m0

(
N

m

)
pmb q

N−m
b . (39)

Since in the regime we are working pb is small, we can apply the Poisson approxima-
tion to the binomial distribution and get

Pm0(D) ≈
∑

m≥m0

(Npb)
m

m!
e−Npb . (40)
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The ratio of two successive terms in this sum is given by

ratio =

(Npb)
m+1

(m+1)! e
−Npb

(Npb)m

m! e−Npb
=

Npb
(m+ 1)

. (41)

Recall that we are in the regime where the expected number of overlap neurons Npb,
when two pathways overlap completely, is less than m0, so as to have D̂m0 = 0. In our
case, we do not have complete overlap, hence the condition Npb << m0 is rather a mild
condition to impose. Hence, in Pm0(D) we can keep only the first term to get

Pm0(D) ≈ (Npb)
m0

m0!
e−Npb (42)

Using now (39) and (20) it is easy to show that

Npb =
2

π

sin−1
√

1−
(
D

2Rn

)2

−
(
D

2Rn

)√
1−

(
D

2Rn

)2
 n2

Nn
≡ f(D)

n2

Nn
. (43)

Here f(D) = Am/πR
2
n is a geometric factor that is valued in the interval [0, 1] and is

zero when D > 2Rn. By applying Stirling’s formula on the factorial in (42) we get

Pm0(D) ≈ 1√
2πm0

e−m0(r(D)−ln(r(D))−1) (44)

where r(D) = n2f(D)/Nnm0 < 1 in our regime of interest. Noticing that the function
g(r) = r− ln(r)−1 is decreasing for r < 1 and r(1) = 0 we get that g(r(D)) > 0. Hence,
we have a negative exponent of m0 in the pathway interference probability.

If we assume that we have random positioning of the pathways, then the probability
that two pathways being in [D,D + dD] apart is

Pp(D)dD =
2πDdD

Area
. (45)

This means that the confusion probability Pm0 which is now independent of the pathway
distance D is

Pm0 =

∫ 2Rn

0
Pm0(D)Pp(D)dD (46)

This is expected to retain the exponential behaviour in m0 with an effective coefficient
g(rmax) where rmax = max{r(D)} = n2/Nnm0. In fact it is easy to see that

Pm0(D) <
1√

2πm0
e−m0(rmax−ln(rmax)−1), (47)

hence we get the bound

Pm0 <
1√

2πm0
e−m0(rmax−ln(rmax)−1) 4Nn

N
. (48)
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In this case, the tolerance condition (37) assumes the form

Np(Np − 1)

2
Pm0 < εNp ≈ ε(Np − 1) (49)

This is guarranteed if

Np
1√

2πm0
e−m0(rmax−ln(rmax)−1) 2Nn

N
< ε, (50)

hence

Np < ε
N

2Nn

√
2πm0e

m0(rmax−ln(rmax)−1) (51)

This model has a linear dependence of the number of pathways Np on the number
of neurons N , however there is an exponential dependence of the maximum pathway
number on the maximum overlap m0. This means that once we have dilute enough
pathways, so that the condition n ≤

√
m0Nn is satisfied, then the number of allowed,

non-interfering pathways, increases rapidly. Furthermore, once the diluteness of the
pathways is regulated in the brain, pathways can be randomly placed in almost arbitrar-
ily large numbers without significant interference. In practice however there probably
are other restrictions, not to be studied here, that limit the number of pathways allowed,
like for example the ability of the brain to adress these pathways.

3D Case: The situation in 3D differs only by the geometric factors. In this case

m =

[
1

12
π(4 3

√
3n/4π + D̂)(2 3

√
3n/4π − D̂)2

]
n

Nn
(52)

Here R̂n = Rn
3
√
dn, and C = D 3

√
dn are again the appropriate dimensionless radius and

pathway center distance. Solving implicitly (52) for D̂ after substituting m0 for m gives
us D̂min. As in the 3D Dense Neighbourhood Pathway Model, the number of pathways
that can be packed at this closest distance is

Np =
N
√

2

D̂3
min

(53)

The situation is again expected to change when D̂min = 0. This happens, as in the
2D model, when m0 > n2/Nn. In this case

Npb = N
Vm
Vn

p2 = (1 +
D

4Rn
)(1− D

2Rn
)2
n2

Nn
≡ f(D)

n2

Nn
(54)

Again the bound for Pm0(D) is given by (47), as in the 2D case. There is a difference
however in the bound of Pm0 for disordered pathways because now

Pp(D)dD =
4πD2dD

Area
. (55)
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The new 3D bound is given by

Np < ε
N

4Nn

√
2πm0e

m0(rmax−ln(rmax)−1), (56)

where rmax is as in the 2D case.
It is also interesting to see what is the effect of a significant amount of

parallel operation of pathways. When D̂min > 0 the number of overlapping
pathways to a given pathway P is O(1). This means that if the probability of
a pathway being active at a particular time is Pp, then the probability that
two pathways overlapping with P are coactive is O(P 2

p ). Since Pp is expected
to be small, the effect of interference on P by pairs of overlapping pathways
is insignificant.

When D̂min = 0 the situation changes since the model permits much more
extensive overlaps of pathways. If locally a fraction f of the Nn neurons are
active at a particular time due to parallel operation of pathways overlapping
with our pathway P , then the probability that the pathway receives input
from m firing neurons is

P (IA = m) =

(n
m

)( Nn−n
fNn−m

)( Nn

fNn

) <

(
n

m

)
(1− f)n−mfm (57)

and the probability that m exceeds the pathway activation threshold, m ≥ K,
is bounded by

P (IA ≥ K) =
n∑

m=K

P (IA = m) <
n∑

m=K

(
n

m

)
(1− f)n−mfm ≤ (e

nf

K
)K (58)

provided that the expected number of aggregate firing neurons within our
pathway P , nf << K. If we now demand that the expected number of
pathways NpP (IA ≥ K) suffering interference is smaller than ε, then we have

Np ≤ ε(
K

enf
)K (59)

Hence, in this case the number of non-interfering pathways increases expo-
nentially in the minimum number of active neurons necessary to activate the
pathway P . Nevertheless, this is only a limit to the number of non-interfering
pathways in the presence of a significant amount of parallel activity in the
pathway aggregate. If this parallel activity is diminished even for a short
time, when a pathway is active, the number of non interfering pathways
increases towards the limit given by (56).

4 Test case: Interneuron Pyramidal Partner Groups in mouse V1

We will try to test the implications of the above calculations with two-photon data
collected from layer II/III of the V1 area of adult mice [21]. In [21], Palagina et al.
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raise the possibility that pyramidal neurons connected to certain types of interneurons
may form distinct interconnected information pathways. We note that this is not a
universally accepted assumption, as there is evidence that various types of interneurons
also exert more global, non-specific, control over their neighboring neuronal circuit.
Nevertheless, we believe that there may be room for both hypotheses: for example,
under certain conditions, global quenching of the network activity may be required,
while under others it may be beneficial to have the capacity to specifically quench the
activity of one pathway while sparing activity in nearby distinct pathways. The latter
can be efficiently accomplished if there is a “local controller” of information pathways,
and this role may be played by specific interneurons. Accordingly, there is evidence that
pyramidal neurons, functionally connected to a particular interneuron, tend to have
similar tuning properties [21], which is compatible with the possibility that they form a
joined group processing information [21],[22],[23].

Such groups of pyramidal neurons linked to local interneurons may represent a frame-
work of information pathways. In such a cluster, the coordinated firing of functionally
similar pyramidal cells may be controlled by the partner interneuron(s). Of course it
is unlikely that there is an interneuron dedicated to every pathway because this would
demand too many interneurons. Indeed, many types of interneurons were shown to form
synapses with a majority of pyramidal cells in the vicinity [24],[25],[26], [27], [28]. The
coexistence of this blanket anatomical connectivity and feature-selective interneuron –
pyramidal cell functional clusters, likely results from the graded synaptic connectivity
strength between an individual interneuron and pyramidal cells that surround it [26],
[29], [30], [31], and also from the graded synaptic connectivity strength between pyra-
midal cells themselves and from the specificity of their connections [32], [33], [34], [35],
[36], [37]. Thus, during operation under natural viewing conditions, when the activ-
ity of V1 neurons is sparse [11], [39], [12],[38], a specific feature likely recruits only a
subset of pyramidal cells and interneurons with strongest reciprocal connections. Such
subsets may represent largely separated feature-selective information pathways with low
inter-pathway interference.

Here we proceed under the assumption that the interneuron-pyramidal-partner clus-
ter pathways identified by Palagina et al. [21](see also [22]) constitute basic information
processing pathways, and we apply the strategy outlined above to check whether such
pathways have internal consistency with regard to their information encoding properties.
As the groups identified have limited spatial extent, we will use the locality preserving
random selection pathway model after extrapolating the data, which were acquired in-
plane, to 3-dimensions. To perform the extrapolation we use the fact that neuronal
diameter is 10 microns, therefore in-plane photon recordings typically record from neu-
rons over a thickness of dt 20 microns. The cut-off radius for extrapolation was taken to
be Rn 250 microns, the distance over which functional connectivity of pyramidal neu-
rons to the ”parent” interneuron decays [21]. We assume constant pyramidal neuron
density within Rn. Although approximate, this should capture the basic structure of
the pathways described in [42],[40],[41]. Note that we do not in any way imply that the
pathways have a strictly spherical shape. The actual pathways have significant direc-
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tional properties and their extend is anyway limited by the border of the mouse cortical
layer (layer 2/3).

The overlap between different pathways is estimated as follows: First two interneu-
rons i, j are selected. With the interneuron positions as pathway centers, the area of
the intersection, Aij , of the circles of radius Rn that is within our recording area, is
selected and pathway intersection neurons that are within Aij counted. Table 1 lists
these overlaps from an experiment whose field of view contained 5 interneurons. This
number is associated to cortical volume Vij = Aij × dt, and can be extrapolated to the
overlap volume of the two spheres of radius Rn by proportionality (results listed in table
1). The diagonal elements of table 1 correspond to the number of pyramidal neurons
that constitute the information processing pathway associated with each interneuron,
and the last column (Nn) is the total number of pyramidal neurons contained within
sphere Rn, whether they belong to the corresponding pathway or not.

We then ask the question whether the extrapolated intersection numbers Nij (table
1) are compatible with the definite-response non-interference condition computed in
equation (19). In order for pathways not to interfere with each other with confidence
limit ε = 0.01, ε = 0.05 and ε = 0.1, the discriminant (D) given by

D =
(n−m)(p− p0)√

(n−m)p0q0 +mpq +
√
npq

(60)

should be D > 2.33, D > 1.65 or D > 1.29 respectively. For orientation tuning, p stands
for the neuron probability of response at its orientation tuning, while p0 is the probability
of response at resolution angle to the orientation tuning. Since typical values of both p
and p0 vary considerably depending on the tuning of particular neurons, we will only fix
the probability resolution dp = p − p0 = 0.1 to typical values, and we will take a near
worst case scenario by assuming p = 0.5, p0 = 0.4. This maximizes the potential for
interference of two overlapping pathways (neuron number n, overlap neurons m), tuned
at resolution angle difference, each responding to its orientation tuning with probability
p and to the orientation tuning of the other with probability p0. (dp = 0.1; see fig.2).

Fig.5 plots the values of D for all pairs of interneuron pathways obtained from 4
different animals. Horizontal lines represent confidence limit thresholds. Note that all
but one pathway pairs (x-axis) satisfy the non-interference definite-response condition
at the ε = 0.05 confidence limit. This result is encouraging. Naturally, much more work
is needed to test empirically how the predictions of the model fit with experimental data
in different information encoding situations. In the future, we plan to check this for
different types of information processing pathways in different V1 cortical layers.

5 Conclusion

We examined the properties of neuronal information encoding pathways under a series
of simplifying assumptions. Individual neurons were assumed to respond stochastically
to input signals and definite encoding of a particular signal was assumed to result from
the aggregate near synchronous activity of a set of neurons, which form an information
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Table 1: Interneuron Pathway Overlap Data

Real Overlap Projected Overlap
Int. No. 1 2 3 4 5 1 2 3 4 5 Nn

1 73 32 21 42 13 1972 642 267 468 178 3694
2 32 72 42 52 31 642 2014 657 756 365 3842
3 21 42 50 44 27 267 657 1653 1359 506 3202
4 42 52 44 81 34 468 756 1359 2274 714 3282
5 13 31 27 34 42 178 365 506 714 1188 3593

Table 1: Real overlap data is the interneuron pathway overlap data observed, while the
projected overlap data is the projected overlap data of spherical interneuron pathways
of radius Rn. The diagonal elements are the (real or projected) pathway neurons. Nn

is the projected number of pyramidal neurons within the radius Rn, no matter whether
they belong to a pathway or not.

encoding pathway. We then derived conditions for the response of this pathway to be
(i) definite, and (ii) not to interfere with the spontaneous firing of neighboring distinct
pathways.

The following conclusions can be drawn: (a) Information capacity of neuron ”infor-
mation pathway” ensembles is severely limited if pathways are dense. Hence, it is not
favored to have pathways that include all neurons within a region around the pathway
center. The reason for this is that pathways cannot come close together without causing
interference. Maximization of the information capacity in this case forces the pathways
to maintain a lattice geometric structure (ordered phase) which is not observed in mouse
V1. In contrast, intermixed pathways allow random spatial placement of pathway cen-
ters (disordered phase), achieving much larger information capacity. (b) For pathways in
the ordered phase, and assuming that only pairwise overlaps cause confusion, the num-
ber of pathways that fit in an N-neuron ensemble increases linearly in N. In the random
selection model without distance restriction, this linear behavior changes to a power
law behavior Nm0 where m0 is the maximum allowed overlap between two pathways.
However, this is not realistic since pathways are formed by random selection of neurons
from the whole neuron assembly. A more realistic hybrid model that maintains locality
while allowing ”dilute” pathways is the locality preserving random selection pathway
model with a sharp cutoff. For this model, once the density of neurons engaged in the
formation of pathways is low enough to allow complete overlap of the pathways (in the
geometric sense), the pathway organization enters in the disordered phase. In this phase,
the number of pathways increases linearly in N but exponentially in m0, allowing a large
number of non-interfering pathways to coexist. Here m0 is expected to be a significant
fraction of the number of pathway neurons. (c) A similar behavior is expected to oc-
cur for a more realistic model that does not exhibit a sharp cutoff or a completely
random connectivity distribution, but has the probability that a neuron belongs to
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Figure 5: The discriminant D is plotted for every pathway (interneuron) pair. The value
of D should be above the cutoff line for every pair of pathways to avoid interference.
The three cutoff lines correspond to the confidence limits ε = 0.01, ε = 0.05 and ε = 0.1.
The top left panel corresponds to the table dataset. Interneuron pair (3,4) appears to
have interference. Note that the two interneurons are also very close together. The other
three pannels correspond to three more adult mice.

a pathway drop with distance from the pathway center (see Appendix), assuming this
probability is small enough to ensure pathways are “dilute”. This occurs because for
sufficiently ”dilute” pathways it is possible to bring two pathway centers on top of each
other without an overlap higher than the allowed overlap m0, leading to an exponential
increase in the number of pathways Nem0 . The exponential increase in the number of
non-interfering pathways arises from counting the geometrically overlapping pathways
that are “dilute” enough not to interfere with each other. (d) We used our model to
study a particular type of postulated information processing pathway consisting of pyra-
midal neurons functionally connected to particular “partner” interneurons in Layer 2/3
of area V1 of adult mice [21]. Pathways identified were found to satisfy the constraints
imposed by our models. However, the analysis we propose here is more general and
should apply to differently identified neuronal ensembles that constitute information
encoding pathways.

The most important simplifications we made in drawing our conclusions are the
following: (a) Definite information is carried by pathways that are either collectively
active or inactive, based on whether a signal is present or not (“bimodal pathways”).
Such bimodal pathways seem to be well suited for object and discrete signal recognition,
such as parallel (pop-up) object recognition. Similar pathways have been theorized to
contribute to neural computations [42],[41] and bear resemblance to ensembles of neurons
that encode odors in the olfactory system of the fruit fly, particularly in the Kenyon
cell group[43],[44],[45],[40],[41]. Information from the olfactory receptors converges to
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projection neurons and then it is vastly sparsified by projecting to approximately 2500
kenyon cells through random connections [44], [43]. Simulations carried out in [45]
indicate that the formation of sparse probabilistic information pathways (termed odor
hashes) allows for maintaining efficiently odor similarity according to the overlap of the
sets of pathway neurons encoding the distinct odors. This suggests the formation of
sparse pathways, that are not only non-interfering since thay encode distinct odors, but
that also maintain information carrying overlap structure. (b) We took all pathways
to have equal size and neurons to be randomly placed within the physical region where
the pathway lies. Size equality is similar to the ’Equal Citizen’ principle proposed by
Valiant [42]. We do not expect these assumptions to lead to qualitative differences in the
conclusions we draw. (c) The response properties of individual neurons are stochastic
and were taken to have similar probability for all neurons in a given pathway. It is
evident that in real mice not all neurons have the same response properties, however
this simplifying assumption still captures the essential qualitative features that emerge
at our level of analysis. (d) Another implicit assumption is that the neuron or neurons
that will “read” the output of an “information pathway” has the ability to adjust its
threshold, or the synaptic inputs it receives from the pathway, so as to achieve maximal
discriminability. This is the same thing as saying that if the pathway can distinguish
among two signals, then the read-out neuron can also read this distinction. This implies
a sigmoid response function of adjustable slope and seems also to be physiologically
plausible.

Note that, although information capacity increases drastically in the disordered
phase, the ability to manipulate and address this information can be problematic. For
example, lets assume that there is a direct control on pathways by interneurons as ar-
gued in [21]. The number of interneurons is much smaller (at best on the order of 15%)
than the number of neurons N, hence this would likely limit too severely the information
capacity unless combinations of interneurons are used to adress pathways. However, one
pyramidal neuron is functionally connected with only a small number of interneurons.
Nevertheless, in some situations it would be advantageous to exert direct control over
the pathways in a way in which the organism can turn one pathway on or off selectively,
without interfering with distinct neighboring pathways that encode other signals. Hence
there must be a mechanism to address individual information pathways for information
processing and memory retrieval. In this work, we do not attempt to answer the impor-
tant question of pathway addressing. It might well be that interneuron control is not
exerted over single pathways, but rather over specific ”root” pathways that may control
the thread of information processing across multiple more elementary pathways.

The way information pathways are packed together can teach us about the structure
of the firing patterns of neurons that encode and transmit information. Experiments
that concentrate on extracting information from multi-neuronal population activity are
expected to reveal the structure of the information pathways that operate in neocortical
areas and whether their properties conform with our predictions, as well as with the
predictions of other groups (e.g., [42], [40], [41],[45]) that study associations and memory.
Further experimental and theoretical work on the nature of information pathways and
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how they get modified by learning has a lot to teach us about how computations are
performed in the brain.

6 Appendix: The Case where the Pathway Inclusion Probability De-
pends on Distance from Pathway Center

6.1 2D Case

Let us now suppose that there is a probability P (|r − rA|) for a neuron at position r
to belong to the pathway A, whose center is located at rA. Each neuron is assumed to
have uniform probability to be anywhere in the area considered. Since in this model the
number of neurons in a pathway can vary, we will normalize the number of such neurons
by the expectation value

N

Area

∫
P (|r|)d2r = n. (61)

This gives us that the expected value of the distance of the neurons in a pathway is
given by Er = n

2π
Area
N . The probability that a neuron belongs to both pathways A and

B is given by

pb =
1

Area

∫
P (|r− rA|)P (|r− rB|)d2r. (62)

This probability is naturally expressed in elliptical coordinates since it involves
distance from two poles. If we set the distance of the two pathway centers to be
|rA − rB| = 2a then equation (62) becomes

pb =
a2

Area

∫ 2π

0

∫ ∞
0

P (a coshu+a cos v)P (a coshu−a cos v)(sinh2 u+ sin2 v)dudv (63)

The probability of m neuron overlap is given by

P (O = m) =

(
N

m

)
pmb q

N−m
b (64)

where qb = 1− pb.
The probability of interference of two pathways is given by

Pm0(|rA − rB|) = Pm0(2a) =
∑

m≥m0

P (O = m) ≈ 1√
2π

∫ ∞
(m0−Npb)√

Npbqb

e−z
2/2dz (65)

where m0 is really determined by the neuron probability of firing given pathway signal
and the probability of firing spontaneously for the two pathways. Here, for the last
equality we have used the normal approximation of the binomial distribution.
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6.2 3D Case

In the 3D case the pathways are assumed to have spherical shape with a neuron density
that varies with distance from the center. Since the probability that a neuron is located
in d3r is d3r/V , we have that the probability that a given neuron belongs to pathway A
is 1

V

∫
P (|r− rA|)d3r. This leads to the neuron number expectation value normalization

N

V

∫
P (|r|)d3r = n (66)

As in the 2D case, the probability for a neuron to belong to both pathways A, located
at rA, and pathway B located at rB is given by

pb =
1

V

∫
P (|r− rA|)P (|r− rb|)d3r (67)

This overlap probability simplifies again if we use elliptical coordinates on a plane
through the two pathway centers and then we rotate on the axes of the two pathway
centers. In this way we get

pb =
a2

V

∫ 2π

0

∫ ∞
0

P (a coshu+ a cos v)P (a coshu− a cos v)(sinh2 u+ sin2 v)2π|y|dudv

=
2πa3

V

∫ 2π

0

∫ ∞
0

P (a coshu+ a cos v)P (a coshu− a cos v)(sinh2 u+ sin2 v) sinhu sin vdudv

=
4πa3

V

∫ 1

−1

∫ ∞
1

P (a(w1 + w2))P (a(w1 − w2))(w
2
1 − w2

2)dw1dw2, (68)

where y in the above formula stands for the cartesian y coordinate and w1 = coshu
while w2 = cos v. Again, the probability of interference Pm0(|rA− rB|) of two pathways
is given in terms of this 3D overlap probability pb by equation (65).

As in the locality preserving random selection pathway model, we expect that we
have two phases assuming maximum pathway number. One is the ordered phase where
pathway centers are not allowed to overlap, since in this phase two overlapping pathways
share enough neurons to cause interference in their operation. This phase occurs when
the pathways are ”dense”. The other phase is the disordered phase. In this case, even
when the pathway centers overlap, the number of common neurons in the two pathways
is small and not sufficient to cause interference. In this case, the lattice structure is
difficult to maintain, since two pathways can, on their own, come as close as necessary.
In this phase, pathways can be randomly placed on the plane or 3D space up to a
certain density of pathways that makes interference likely. This second phase occurs
when pathways are ”dilute” in the sense that within a neighbourhood of the pathway
center a small fraction of the neurons belongs to the pathway. As has become clear from
the locality preserving random selection pathway model, in this phase the information
capacity is very large, increasing exponentially in the number of overlapping neurons.
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