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Abstract—Absence epilepsy is a common childhood disorder
featuring frequent cortical spike-wave seizures with a loss of
awareness and behavior. Using the calcium indicator GCaMP6
with in vivo 2-photon cellular microscopy and simultaneous
electrocorticography, we examined the collective activity profiles
of individual neurons and surrounding neuropil patches in layer
2/3 (L.2/3) of the visual cortex during spike-wave seizure activity
over prolonged periods in 2 different stargazer mice. Our long-
term objective is to predict in real-time a seizure. In this work,
we focused on identifying the neuronal networks activated during
epochs of interictal activity (i.e., between seizure activities) and
seizure activity and analyzed their functional network connec-
tivity. During interictal activity, most neurons are functionally
connected with a large number of neighbors within the field
of view, while in seizure epochs, the connectivity is reduced
substantially. We also examined the discriminating power of
groups of neurons in identifying seizure events. An SVM model
based on the firing activity of neurons can reasonably accurately
classify the interictal activity vs. seizure (e.g., 77.9% for the total
accuracy with sensitivity equal to 85.3%, and specificity 73%).

I. INTRODUCTION

Absence epilepsy [1], [2] interrupts normal cortical process-
ing, producing reversible episodes of altered consciousness.
Each seizure begins without warning, replacing planned motor
movements with speech arrest and a vacant stare lasting only
a few seconds, followed by sudden and complete recovery
of awareness and intentional behavior. These events can pro-
vide unique functional insight into the coupling of human
perception and volition. The stargazer model, one of over 20
monogenic mouse mutants with this phenotype [1], displays
frequent, recurrent spike-wave seizures with behavioral arrest.
Prior work in humans and animal models of absence epilepsy
present at times conflicting evidence of where and how cortical
activity is modulated during absence seizures.
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Here, simultaneously recorded electrocorticography (ECoG)
and 2-photon microscopy measurements are employed to study
cortical patterns of neuronal activity that emerge in cortical
layer 2/3 during absence seizures versus epochs of interictal
activity.

The identification of patterns of neuronal synchrony (the so
called functional connectivity [3]) reflects underlying direct or
indirect interaction across pairs of neurons as well as distinct
neuronal sub-networks. Neurons within each layer do not fire
independently from each other but rather form computationally
meaningful interconnected neuronal ensembles. Our long-term
objective is to predict in real-time a seizure event. The focus
of this work is to map and compare functional connectivity
patterns in cortical layer 2/3 during epochs of interictal activity
versus absence seizure activity, and then use this information
to predict in real-time a seizure event. We therefore examine
the discriminating power that the firing activity of layer 2/3
neuronal ensembles has in classifying interictal activity versus
seizure events.

Two neurons are functionally connected, if their firing activ-
ity has a statistically significant temporal correlation. The cor-
relation measure has to be chosen carefully, to take into con-
sideration of the special features of spike trains. For relatively
long time-series, Spike Time Tiling Coefficient (STTC) [4] is
superior to commonly used measures, including Pearson, as it
accounts for relative time shifts, local fluctuations of neural
activity or noise, and the presence of periods without firing
events. Here we use STTC to identify and characterize the
functional networks that are present during seizures versus
interictal activity, for different statistical thresholds. We found
distinct interneuronal STTC profiles during epochs of seizure
versus interictal. Morerover, the functional connectivity is
reduced substantially among neurons and neuropil patches
during seizure. Similar to Meyer et al. [5] (who used Pearson
correlation), we found that functional connectivity among pairs
of neurons and neuropil patches was reduced substantially
during seizures. STTC analysis adds a more finely graded
understanding of how cortical L2/3 functional correlations
behave during the transitions from interictal periods to absence
seizures.



We were able to accurately identify periods of seizure
versus interictal activity. Specifically, an SVM classifier can
accurately classify windows of interictal activity vs. seizure,
achieving total mean accuracy of 77.9% (85.3% sensitivity,
73% specificity), in 15-fold cross validation.

Section III describes briefly the 2-photon measurements. In
Section IV, we focus on the temporal correlation and network
analysis, while Section V discusses the preliminary results on
the discriminating power of groups of neurons for identifying
seizure vs. interictal activity epochs using SVM. Section VI
summarizes the main results and future work plans.

II. RELATED WORK

The stargazer model, one of over 20 monogenic mouse
mutants with this phenotype [1], displays frequent, recurrent
spike-wave seizures with behavioral arrest that are sensitive
to blockade by ethosuximide [6]. Loss of the transmembrane
AMPA receptor regulatory protein (TARP) subunit Cacng?2
in stargazer mice leads to mistrafficking of dendritic AMPA
receptors in fast-spiking interneurons in the neocortex [7] and
thalamus [8], [9] and to remodeling of firing properties in
thalamocortical circuitry that favor abnormal oscillations [9].
This loss of inhibition, particularly feedforward inhibition, is
implicated in the pathophysiology of most monogenic models
of absence epilepsy [2], [10]. However, how cortical neurons
are engaged in absence seizure events is not known in detail,
and indeed existing evidence appears at times conflicting.

While several studies in rats showed no activity changes in
visual cortex [11] or in somatosensory and motor cortex [12],
functional magnetic resonance imaging (fMRI) studies in
humans have demonstrated increased ictal blood oxygen level-
dependent (BOLD) activity in the occipital cortex [13] or
biphasic activation and deactivation of large scale networks,
including visual cortex [14], [15].

Cortical network activity at single cell resolution is not
well understood during absence seizure events. Recent results
by Meyer al. [5] showed that the majority of neurons in all
cortical layers reduces their activity during absence seizures.
Inter-neuronal Pearson correlation of 2-photon data acquired in
vivo revealed a surprising lack of synchrony among neurons
and neuropil patches in all layers during seizure. Here we
analyze layer 2/3 cortical functional connectivity patterns in
more detail and study whether we can use them to identify
and discriminate epochs of seizure versus interictal activity.

III. COLLECTED DATASETS

Simultaneously recorded electrocorticography (EcoG) and
2-photon microscopy measurements are employed to study
cortical patterns of neuronal activity that emerge in cortical
layer 2/3 during absence seizures versus epochs of interictal
activity. EcoG is just another reference to epidural EEG
recording as described as follows: 1 mm long, flat Ag/Ag-
Cl electrodes were placed epidurally over the ipsilateral so-
matosensory cortex, 2mm anterior to the middle of the cran-
iotomy, and over the contralateral visual cortex; and a titanium
headpost was permanently attached with dental cement. A

reference electrode was implanted over the contralateral cere-
bellar hemisphere. During imaging sessions, the EEG signal
was sampled at 2 or 5 kHz with filtering cut-offs set at 1 Hz
and 250 Hz. Seizures were detected by visual inspection by
an experienced user (AM) in MATLAB (EEGLab) according
to specific criteria (regular spike-wave burst structure, spike
amplitude 1.5 baseline, spike frequency of 59 Hz, and a
minimum duration of 0.5 s). The peaks of the first and last
EEG spike were considered as the seizure onset and offset,
respectively.

Calcium data were collected from layer 2/3 of area V1, as
described in Meyer et al. [5]. Two animals were analyzed here
(i.e., mice A, B). Raw calcium traces for regions of interest
(ROIs), namely, neuronal cell bodies and neuropil patches,
were created using the mean of all pixel intensities inside
an ROI, and then high-pass filtered (0.1 Hz) and normalized
by their individual baselines to AF/F values. To differentiate
calcium transients from baseline fluctuations, the baseline (F)
at time point t was defined as the mean of the bottom 10% of
all data points within t£20 s.

Firing rates were extrapolated from the AF/F traces using
a modified version of 2 different deconvolution methods
[16], [17], yielding consistent results. The method used to
deconvolve the data we present here was based on a previously
published method [16] that uses (1) an iterative smoothing pro-
cess to remove local low amplitude peaks representing noise
without distorting the AF/F signal stemming from calcium
fluctuations, and (2) inverse filtering of the smoothed traces
with an exponential kernel.

The fluorescence signal f recorded through two photon mi-
croscopy from neurons is deconvolved to obtain an estimated
spike using the deconvolution algorithm, which reports the
most probable spike train given the Calcium signal recorded.
A linear dependence of the fluorescence on the Calcium
concentration is assumed. This calcium concentration is taken
to decay exponentially to the calcium baseline upon excitation.
A well-known issue of this method is that it does not produce
a binary spike train (i.e. eventogram), but it rather gives
an analog output s that represents the probability of spike
existence at all frames. To turn this into an eventogram a
threshold is used. If the analog output is above the threshold
a spike (event) is inserted, otherwise the analog output is
ignored. The threshold is set through the assignment of noise
intervals on the raw fluorescence signal. This is done under
the assumption of low firing rates (< 1Hz). Under this
assumption, the median fluorescence value f,,.q corresponds
to no spike, hence to noise. To find secure noise intervals
in the fluorescence recording, we take only the bins where
the fluorescence value is below the median, f(i) < fimed-
The collection of these bins forms the union of noise intervals
I,,0ise. Once the noise intervals I,,,;. are obtained, we restrict
the deconvolution output signal s on these intervals. This
restricted signal is noise signal, but it is also constrained to
have values below the median f,cq.

To get a more representative noise signal, we create another
artificial copy of I,,;se over which we assign reflected fluores-



cence values W.r.t f,,.q, producing the noise signal $,4;sc. This
reconstructed signal corresponds to noise, since it is projected
from noise intervals in the Calcium signal. The threshold used
for the analog output signal of the deconvolution is based on
the standard deviation of s,,;se. For a recording of the order
of 3000 bins a reasonable threshold is 3 standard deviations
above the mean of s,,4;s¢. If We assume that s,,;s¢ 1S normally
distributed around the mean, then this threshold will only allow
approx. 10 incorrect spikes arising from noise. The thresholded
output sy, is the output of the deconvolution procedure that
we used.

Meyer et al. [5] empirically determined a minimum level
of activity for an ROI below which it was not possible to
determine whether the ROI had statistically significant firing
events due to lack of data points, by calculating the sum of
noise-corrected AF/F signal per minute for each ROIL. ROIs
with mean activity below this threshold were deemed quiet and
excluded from further analysis. The remaining ROIs were then
used for the analysis and are the neurons we report on here.
Specifically, ROIs of 1 to 54 are the neurons, while 55-64 are
the neuropil patches. For each ROI, there is a corresponding
time-series of frames that provides a reasonable approximation
of spiking. Note that it does not indicate the single spikes
but rather whether there was calcium activity or not for each
imaging frame: Each frame of activity could be result of
one or several spikes at a time. More information about the
experiments and the data collection process can be found in

[5].
IV. STTC ANALYSIS

STTC quantifies the temporal correlation between spike
trains [4]. Specifically, for the estimation of the STTC
between spike trains A and B, it computes the proportion of
total recording time which lies within £At of any spike of
the spike trains of A and B, Ty and Tz, respectively. Then,
it computes the proprtion of spikes from A, which lie within
+At of any spike from B (P4). Pp is calculated similarly.
The spike time tiling coefficient can be defined by:

1, P —-T, P—T,
STTC:f( )
2\1-p1, T1-DPT,

The STTC is positive if spikes in train A are correlated with
spikes from train B, and negative if there is less correlation
than expected by chance. The normalization factor (1 - P,T3)
ensures that STTC is in the range of [-1, 1].

For each pair of neurons (i,j), we estimate its (observed)
STTC value (STTC’{”’;S) as well as the control which cor-
responds to the chance level (null). We consider synchronous
firing between neurons (i.e., two neurons exhibit a firing event
within the same frame). For the estimation of the control,
for each pair (4, j), we circularly reshuffle j by a randomly
selected number (in the range of [1, 7], where T is the length
of the spike train). This corresponds to a new spike train
j'. We estimate the STTC between i and j'. We repeat this
process 500 times. This corresponds to the control (null) dis-
tribution. The mean STTC;*! and standard deviation 074"

(D

of the control, for each pair (i, j) are estimated. The neurons
(7,7) have a statistical significant temporal correlation (i.e.,
are connected with an edge), if their STTC value STTCﬁ’;-S
is above a certain z-value threshold, a:
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For each neuron, we constructed a time series during inter-
ictal activity (seizure) by concatenating all frames in interictal
activity (seizure), respectively. We then estimated the STTC
values for all pairs of neurons in interictal activity as well as
in seizure considering their corresponding time series. Thus,
for each pair of neurons, we estimated two observed STTC
values: the observed STTC value during the interictal activity
and the one during seizure (Fig.1).

Distinct pairwise correlation profiles during epochs of
interictal activity versus absence seizure activity. STTC
value profiles (cdfs) are significantly different than the null
distributions in both normal and seizure epochs (as shown
in Fig. 1, for different z-score thresholds). Fig. 1 illustrates
the prominent deviation that observed STTC profiles have
from the corresponding null distributions (the dotted lines
represent 500 circularly shuffled repetitions overlaid on each
other). The mean of the null distribution of STTC values in
the interictal epoch is O and the standard deviation of this
distribution is very tight at 0.01. During seizure epochs, the
STTC values of most pairs of neurons is relatively low. For
example, for threshold 4, during seizure epochs, 90% of pairs
of neurons with a statistical significant connection, have STTC
value equal or below 0.07 (Fig. 1). Furthermore, the STTC
profile obtained during interictal epochs (green) differs from
the one obtained during absence seizures (red) (see also Fig.
8, left column). Specifically, during absence seizure epochs,
most STTC values remain relatively low.

During interictal activity, there is high neuronal degree
of connectivity. The degree of connectivity of a neuron is the
number of statistical significant functional connections that it
has with other neurons. For small thresholds, the majority
of neurons have high degree of connectivity (Fig. 3). The
degree of connectivity decreases for larger thresholds and the
networks become sparser during both seizure and interictal
activity (Table I, Fig. 3). Table I reports the number of statis-
tical significant functional network connections (i.e., edges) in
the functional network that manifests during epochs of seizure
versus during epochs of interictal activity. In parenthesis, we
indicate the number of statistical significant edges that are
unique during each state (interictal activity vs. seizure). The
last column corresponds to the number of statistical significant
edges common to both states. Seizure manifests significantly
reduced synchronicity compared to interictal state.

As expected the higher the z-score threshold, the lower
the number of significant edges in interictal and seizure state
(Table I).
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Fig. 1: Distinct pairwise correlation in interictal activity vs. in seizure, for
mouse A. The observed STTC values versus null (dotted lines) for the
significant edges, in interictal activity and seizure, in green and red color,
respectively, at different z-score thresholds. Neuropil patches are not included.

TABLE I: Total number of significant edges for different thresholds, for mouse
A. The number of unique edges in each state is reported in parenthesis.Seizure
manifests significantly reduced synchronicity compared to interictal epochs.
Note that neuropil patches have been excluded.

Threshold | Interictal (Unique) | Seizure (Unique) | Both states
2 2434 (1420) 1063 (49) 1014
4 1976 (1772) 219 (15) 204
6 1405 (1379) 28 (2) 26
8 817 (812) 5() 5
10 441 (439) 2 (-) 2

Functional network size decreases during seizure epochs.
This is reflected by the reduced number of statistical significant
edges in seizure, compared to interictal activity (Table I) as
well as the reduced degree of connectivity (Fig. 6).

Neuropil patches exhibit higher temporal correlation
than neurons. Pairs between neuron to neuropil patches ex-
hibit higher STTC values compared to pairs between neurons
in epochs of seizure as well as interictal activity (Fig. 8). STTC
values between neurons and adjacent neuropil patches (reflect-
ing in some sense the coupling between neuronal activity at
the soma and the aggregate activity of inputs/outputs in layer
2/3) are higher compared to values obtained between pairs of
neurons. This occurs in both epochs of absence seizures and
epochs of normal (interictal) activity. However, the relative
strength of STTC correlations during interictal activity versus
absence epochs of activity remains the same as described in
Fig. 1 (see Fig.8).

Similar trend exists for pairs between neuropil patches
and inter-neurons in both seizure and interictal activity (as
shown in Fig. 2). Specifically, each point in this scatterplot
corresponds to a pair and includes the STTC and mutual
information values of this pair. The mutual information (MI) of
two random variables is a measure of the mutual dependence
between these variables. More specifically, it quantifies the
“amount of information” obtained about one random variable
through observing the other random variable. Here, the mutual
information of a pair of neurons has been estimated using
their spike trains at frame level. The interictal activity is
in green, while the seizure in red. Pairs between neuropil
patches (in blue) tend to have higher STTC values in seizure
and in interictal activity compared to pairs between neurons.
This trend is prominent for mouse A, where pairs between
neuropil patches are located at the tail of the scatterplot with
significantly higher STTC values than neuron-neuron pairs.
It is clear from Fig. 2 that STTC values are correlated with
mutual information.

Functional connectivity abnormalities precede the onset
of absence events (first EEG spike of the absence seizure).
We identified which STTC “edges” are significant solely
during interictal but not in absence epochs, and then followed
the aggregate number of co-firing events that occur second by
second as a function of time prior to the onset of a seizure
in these edges. Fig. 4 shows that the cdf of co-firing events
one second prior to the onset of the seizure is identical to
the cdf obtained during the seizure. The further away from
a seizure onset, the closer to the interictal activity the cdf
profile returns (e.g., aggregate number of firing events per
window, considering all neurons, for different types of 15-
frame windows, namely interictal activity, seizure, and various
number of seconds prior to a seizure onset, as shown in Fig. 5).
For example, time-windows that start 5-sec prior to a seizure
onset display a pattern similar to that of interictal activity
(Fig. 5 light green, dotted line), whereas time-windows closer
to the seizure onset (See Fig. 5 light green, solid line and
Fig. 4 yellow line) display a pattern of activity increasingly
similar to seizure.
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Similar trends are observed when we consider the aggregate
activity of neurons who participate in significant STTC pairs
only during absence seizure events.

Similar trends are observed in the other mouse. Specifi-
cally, Fig. 6 shows the high degree of connectivity of neurons
in interictal activity, significantly higher than in seizure, for
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interictal activity (dark green), seizure (red), 2-sec, 3-sec, 4-sec, and 5-sec,
prior to seizure onset (solid, dotdashed, dashed and dotted line respectively).

mouse B. For larger thresholds, the functional network in
seizure is destroyed. As threshold increases the functional
connectivity network obtained during absence seizure epochs
gets decimated first, as was seen in mouse A (Fig. 3).

V. CLASSIFICATION OF INTERICTAL ACTIVITY VS.
SEIZURE

For each neuron, we divide the original time-series in a
series of consecutive non-overlapping time windows of 15
frames. Each window is of 1-sec duration. Windows composed
of frames of mixed states were excluded from this analysis.
There are 2276 and 837 windows, in total, in interictal activity
and seizure, respectively, for mouse A. To detect signs of
arousal or inactivation of certain neurons, we calculated the
average number of spikes in interictal and in seizure activity
for each neuron (Fig. 7).

We trained an SVM classifier for identifying the windows of
interictal and seizure activity. For each neuron, we considered
the number of its spike events per window. To handle the
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imbalance between the set of interictal and seizure windows,
we applied under-sampling and randomly selected an equal
number of samples of interictal windows to use in the training
and testing of our model. This process, was repeated for 50
iterations, each time, producing a number of interictal windows
equal to the number of seizure windows. At each iteration, a
15-fold cross validation method (14 folds for training, one
for testing) was used for evaluating our model. The resulted
dataset was used for training and testing. The features of the
SVM models were the number of spike events per window of
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Fig. 7: Average number of spikes per window for interictal activity and seizure,
for mouse A. Note that the first subplot includes only neurons and the second
only neuropil patches which are the ones with ids in the range of 55-64.

a group of ROIs. The label of a window was its state, namely
interictal or seizure. The analysis was performed with a radial
kernel (cost 1, gamma 0.005).

An SVM model exhibits the best performance using all
64 ROIs with 67.2% and 88.5% mean accuracy in interictal
activity and seizure, respectively (Table II). The sensitivity,
which indicates the proportion of the actual ictal windows
that are correctly classified as such, is 85.3%. The specificity,
which measures the proportion of the interictal periods that
are correctly identified as such, is 73%. When we train the
SVM model with only the ROI with the largest increase based
on the ratio of the difference between mean interictal and
ictal firing rate [(mean; — means)/means], the accuracy
in correctly classifying the interictal and seizure windows is
59.7% and 85.6%, respectively (total 72.8%). Sensitivity is
86.6% and specificity is 71.9%. By using only the 30 ROIs
with the largest mean activity difference between ictal and
interictal states, the mean accuracy in classifying correctly the
windows of interictal activity vs. seizure becomes 64.6% and
90%, respectively. The total mean accuracy is 77.3%. This
corresponds to the highest accuracy of seizure activity. Adding
more neurons in the SVM model does not improve the seizure
classification accuracy.
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Fig. 8: Statistical significant STTC links between pairs of neurons (neuron-neuron; left column) and between neurons and adjacent neuropil patches (neuron-
neuropil; right). Histograms are plotted at different thresholds. Note that the distribution of STTC values is much different in interictal (green) versus absence
seizure (red) activity, and this difference is accentuated as threshold increases. The first, second, and third row correspond to thresholds 2, 4, and 6 respectively.

TABLE II: Mean accuracy, sensitivity, and specificity of the 50 training
and testing iterations of the SVM model. The nean accuracy is reported in
parenthesis for the classification of the interictal and ictal activity, respectively.
For each iteration, a number of samples from the set of the interictal windows,
equal to number of ictal windows, is selected randomly. The metrics refer to
the mean numbers for every testing fold of the 15-fold cross validation.

ROIs | Total Accuracy (Interictal, Ictal) | Sensitivity | Specificity
64 77.9% (67.2%, 88.5%) 85.3% 73%
30 77.3%% (64.6%, 90%) 86.6% 71.9%

1 72.8% (59.7%, 85.6%) 80.5% 68.3%

The “discreet charm” of some neurons. The neurons 53
and 38 have a large discriminating power for classifying the
seizure events. For example, with only the neuron 38, the mean
accuracy in the classification of seizure and interictal activity
windows is 85.6% and 59.7%, respectively.

VI. CONCLUSIONS AND FUTURE WORK
Dense functional networks manifest during interictal activ-
ity, while during seizure the functional network connectivity
becomes sparse. Specifically, during interictal activity, most
of neurons are connected with the others in the field of

view, while in absence seizure, the connectivity is reduced
substantially, especially for high z-value thresholds. Pairs of
neuropil patches exhibit the same seizure versus interictal
correlation trends.

An SVM model based on the firing activity of neurons can
reasonably accurately classify the interictal activity vs. seizure
(e.g., 67.2% for interictal activity, 88.5% for seizure windows).
We are in the process of examining further whether the activity
of specific groups of neurons, with distinct temporal dynamics,
can further improve the classification of seizure events and
enable the prediction of seizure events in real-time. Specif-
ically, we examine how STTC analysis can help us define
neuronal groups whose activity as a group differs between
seizure and interictal state for further improving classification.
We observed that the networks change before EEG absence
seizure onset, and therefore, there is a time window that makes
detection possible. Moreover, the integration of the history
of the previous successive windows can further improve the
prediction accuracy of seizure events.

Recurrent Quantification-Analysis (RQA) [18], [19] is an-
other technique that can be applied for seizure pattern identi-



fication. The RQA enables the understanding of the behavior
of a complex dynamic system (e.g., deterministic, random,
chaotic), without making any assumption about the model
that governs the system or the data, e.g., linearity, convexity,
stationarity. The RQA has several other attractive character-
istics: it can handle short time-series, non-stationary data,
and is robust to outliers. Here, time-dependent RQA will
be performed in small windows moving over the recurrence
plot (for different ictal phases) enabling the detection of
phase transitions (e.g. determinism-chaos, chaos-chaos). Such
efforts aim to form the basis for developing new circuit-based
therapeutic strategies targeting specific cell classes.
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