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ABSTRACT

Epilepsy affects 2-3% of the population. To study the emer-
gence and spread of focally initiated seizures, we used the
4-aminopyridine (4-AP) model, a well-established, reliable
model of acute focal neocortical seizures. It is important to
understand what changes in the cortical circuit allow a highly-
correlated firing state to emerge, evolve, and recur after focal-
cortical injury. Using the calcium indicator GCaMP6 with in
vivo 2-photon cellular microscopy, we examined the activity
profiles of individual neurons in layer 2/3 (L2/3) of the visual
cortex during focal seizures induced following intracortical
4-AP injections. Here we propose two methodologies for de-
tecting the epochs of significant activity in the context of fo-
cal seizures induced following intracortical 4-AP injections:
a novel methodology based on the noise-interval identifica-
tion of the fluorescence signal of each neuron and another
one based on the recurrence quantification analysis (RQA), a
powerful tool based on the topological analysis of the phase
space of the underlying dynamics. They provide a methodol-
ogy for accurately identifying the onset of significant events,
dissecting the mechanisms of seizure initiation and propaga-
tion within the field of view, and highlighting the recruitment
of neurons in various regions of the field of view.

Index Terms— focal neocortical seizures, epilepsy, re-
currence quantification analysis, temporal correlation

1. INTRODUCTION

Epilepsy is a group of neurological disorders affecting 2-3%
of the global population. Seizures involve the generation
and propagation of hyper-synchronous activity across corti-
cal circuits. Brain injury patients carry high risk of epilepsy
for decades following injury [1], causing morbidity. Injury
causing epilepsy typically leads to excitation/inhibition im-
balance, which drives neural circuits into self-perpetuating
oscillatory activity states, feeding the hyper-synchronous
epileptic bursts seen on cortical-surface EEG [2, 3]. Our
knowledge about how neurons interact to generate the ab-
normal network activity patterns that underlie ictogenesis is

limited [4] and it is critical to understand what changes in the
cortical circuit allow a highly correlated firing state to emerge,
evolve, and recur after focal-cortical injury. Here we employ
the 4-aminopyridine (4-AP) model, a well-established, reli-
able, model of acute focal neocortical seizures.

The underlying dynamical system that governs the behav-
ior of a neuron can be very complex, with its dynamical fea-
tures being partially observed via the corresponding recorded
signals (e.g. fluorescence). Furthermore, the relevant phys-
iological phenomena are typically a fusion of deterministic,
chaotic, and random processes, yielding changes at multiple
time scales, which imposes significant challenges on the sub-
sequent signal analysis.

A critical question is whether the use of statistical features
of the ongoing neuronal firing enables us to accurately detect
the ictal events and signify the occurrence of certain internal
states. Despite the significant progress, the automatic detec-
tion of these events, as well as of their dynamic changes, is
still an open problem. This work proposes two methodologies
for detecting the epochs of significant activity in the context
of focal seizures induced following intracortical 4-AP injec-
tions, namely, (a) a novel methodology based on the noise-
interval identification of the calcium signal of each neuron,
and (b) a method based on the recurrence quantification anal-
ysis (RQA) [5, 6] of the recorded signals, for the detection of
critical transitions in the underlying time-evolving dynamics.

The above two methods are applied on the fluorescence
signals from one mouse during epileptic seizures, and com-
paratively analyse their outcome. The main results are con-
sistent in terms of the number of the events that were identi-
fied, their start, and their duration. The noise-interval based
technique applies simple statistics on the df / f signal of each
neuron and serves as “baseline”/benchmark technique. The
RQA is applied on the population df / f signal, i.e., summed
all the df / f across all neurons in the field of view (FoV), and
thus captures a more “macroscopic” view of the behaviour.

The rest of the paper is organized as follows: Section 2

describes the data acquisition and preprocessing approaches,
whilst Section 3 discusses the most recent related work. Sec-
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Fig. 1. A. The mouse is headposted rested awake and free
to walk on a treadmill. B. Skull picture showing elec-
trode implantation and site of planned window to overly vi-
sual cortex. C. (Left) Craniotomy window after implanta-
tion. Green frame illustrates approximately the field of view
(FOV). (Right) FOV (diameter ~ 500um) showing sponta-
neous activity scanned by the spiral scanning method.

tion 4 analyzes the two methodologies proposed for detect-
ing epochs of significant activity, followed by a comparative
performance analysis. Then, Section 5 discusses our obser-
vations about recruitment of neurons. Finally, Section 6 sum-
marizes the main outcomes and gives directions for further
extensions.

2. DATA ACQUISITION AND PREPROCESSING

Experiment was performed on an adult (>8 weeks old) Thy1-
GaMP6s (C57BL/6J-Tg (Thyl-GCaMP6s) GP4.3Dkim/J)
mouse which expresses the GCaMP6s calcium indicator in
pyramidal neurons [7]. Two-photon calcium imaging was
performed using an in vivo Ultima multiphoton microscope
(Bruker, Madison, WI) equipped with a Ti:Sapphire Insight
pulsed laser (Sprectra Physics, Santa Clara, CA). Calcium
signals were imaged through a 16x water immersion lens
(Nikon, Tokyo, Japan; 0.8 NA, 3 mm working distance) by
exciting the genetically encoded calcium indicator at 920
nm. The field of view (FoV) was scanned in spiral mode at
approximately 5 Hz. We imaged layer 2/3 pyramidal neurons
at ~ 150 pm from the pial surface. A 150-200 pl solution of
12.5 uM 4-AP or an equal volume of vehicle (0.9% NaCl)
was injected 1 mm antero-laterally to the imaged FoV at the
level of the primary visual cortex (V1) at the infragranular
layer (~ 600 pm deep from the pial surface).

About 20 min after each injection, the post injection activ-
ity was recorded. Each recording lasts approximately 10 min.
We have three different measurements for the same mouse:
pre-injection (control), then post-vehicle injection, and post-
4-AP injection. Here we report our preliminary analysis for
the post 4-AP injection using the df /f of the signal, which
corresponds to the raw fluorescence signal minus the baseline
of the signal over the baseline, where the baseline corresponds
to the 10™ percentile of the raw signal.

3. RELATED WORK

Cortical injections of chemoconvulsants are thought to induce
a focus of epileptiform activity from where seizures prop-

agate in the surrounding network [8]. Epileptiform activity
in this surrounding network (often referred to as propagation
area) have been shown to engage cortical neurons in a spatio-
temporal ordered fashion [9], suggesting that neurons that are
physically closer to the injection site get recruited earlier than
neurons located at a larger physical distance. In a follow-up
study [10], the recruitment of neurons at the level of the in-
jection site was compared with the recruitment of neurons in
the propagation area. In such study, the recruitment of large
proportion of neurons in the initiation site appeared to occur
simultaneously (at the temporal resolution of the recordings),
suggesting that the engagement of neurons in the injection site
might not only be determined by their physical distance. Us-
ing wide-field calcium imaging, Rossi et al. [11] have shown
that also brain areas at larger distances to the initiation site
might get recruited earlier than areas physically closer to it
depending on their homotopic connections to the injection
site areas. Whether similar rules govern recruitment in the
injection area as well is to be determined.

RQA has been recently applied to EEG data from epilepsy
patients as well as from epileptic rats, obtaining encouraging
preliminary results in feature detection and identification of
normal, interictal, and ictal EEG signals [12, 13, 14].

4. IDENTIFICATION OF SIGNIFICANT ACTIVITY

This section describes in detail our two approaches for de-
tecting epochs of significant activity, namely, one based on
the noise intervals of the df / f signal of each neuron and the
RQA-based method applied on the population df/f signal,
i.e., summing the df / f signal across all neurons of the FoV.
The RQA-based method applies the global RP on the popula-
tion signals (i.e., aggregate signal of neurons over the FoV).
The methodology is generic and applicable on other datasets
and neuronal populations.

Noise-interval based identification We define as local
plateau of a neuron an epoch of significantly high calcium
activity. The start and end of the plateaus of each neuron is
identified based on the noise intervals of the df / f signal of the
neuron. Specifically, we estimate the Gaussian distribution
that consists of the df /f values less than the 20" percentile
of the neuron’s df / f, “mirroring” also the right part. We es-
timate the standard deviation and define as noise intervals all
the frames that are less than the mean plus two standard devi-
ations of this synthetic distribution. We ignore the small noise
intervals of duration under a certain threshold. Moreover, we
merge events with small inter-arrival intervals between con-
secutive noise intervals. The noise intervals that remain cor-
respond to the “valleys” and the in-between periods indicate
the “plateaus”, which are epochs of significant activity.

The global plateaus correspond to significant activity of
the neuronal population in the FoV and are identified as fol-
lows: If the population/aggregate time series that indicates
the number of neurons which have their own local plateaus



at each frame is above a certain threshold, then the global
plateaus are marked.

RQA based identification A key component of the pro-
posed pipeline is the recurrence plot (RP), a square matrix
whose elements express when a state of a dynamical system
recurs, thus revealing all the timestamps the phase space tra-
jectory of the dynamical system visits roughly the same area
in the phase space. To this end, RPs enable the investigation
of an m-dimensional phase space trajectory through a 2-D
representation of its recurrences. Such recurrence of a state
occurring at time i, at a different time 5 is represented within
a 2-D square matrix with ones (recurrence) and zeros (non-
recurrence), with both axes corresponding to time.

Given the population df / f of length N, {r;}X,, a phase
space trajectory is reconstructed via time-delay embedding,
X; = [T, Tigrreo s Tit(m-1)7) » & = 1,...,Ns where
m is the embedding dimension, 7 is the delay, and N, =
N — (m — 1)7 is the number of states. Having constructed
a phase space representation, the RP is defined by, R; ; =
O (e —||xi —x4llp) , 47 =1,...,Ns, where x;, x; €
R ™ are the states, ¢ is a threshold, || - ||, denotes a general
¢, norm (Euclidean distance (p = 2) is commonly used), and
©O(-) is the Heaviside step function, whose discrete form is
defined by

@(n){l’ itn20 R, )
0, ifn<O

The resulting matrix R exhibits always a main diagonal,
R;; = 1,7 =1,...,N, also known as the line of identity
(LOI). A major advantage of RPs is that they can also be
applied to rather short and even non-stationary data.

Since we are interested in detecting precisely the onset
and offset times of seizure events in the associated sequence
t, a global RP can enhance the understanding of the phase
space trajectories and detect phase synchronous dynamics
even when two distinct states of r do not converge.

Estimation of embedding parameters. In our implementa-
tion, the optimal time delay 7 is estimated as the first mini-
mum of the average mutual information (AMI) function [15].
Concerning the embedding dimension m, a minimal sufficient
value is estimated using the method of false nearest neigh-
bours (FNN) [16]. In practice, the minimal embedding di-
mension is defined as the dimension for which the fraction of
false neighboring points is zero, or at least sufficiently small.

State-change onset/offset detection method. A key prop-
erty of RPs, which is exploited in the detection of state-
change instants, is that it reveals the local difference of the
dynamical evolution of close trajectory segments in the phase
space of the population df / f signal. A time dilation or a com-
pression of the time intervals, where a state-change appears in
the population df/ f, causes a distortion of the diagonal lines
in the corresponding RP. Then, the LOI will be disrupted
yielding the, so called, line of synchronization (LOS) [5].

Although the LOS is continuous, it is not a straight diago-
nal line. This enables the estimation of a non-parametric
rescaling function between the states of the population df / f.

Let 1 € R™s denote the LOS. The interpretation of 1 is
the following: if [; = k, for some 7 = 1,..., N, then, the
state of the the population df /f at time ¢ approximates the
state at time k. In the case of the population df / f, the LOS
is a piecewise linear function. Since, in general, Ny # N, in
practice we apply a zero padding to r in order to obtain a LOS
vector 1 whose length is equal to that of the index vector t.

Finally, having estimated the LOS, we calculate the
first-order differences, d;; = liy1 —1; , @ = 2,...,N .
Doing so, the vector d; € RY will be of the form, d =
[...,...,0,d;,0,0,...,0,d;,0,...], with the zeros corre-
sponding to the intervals where the LOS is constant. Then,
given that d; # 0 and d; # 0, we consider d; to be the onset
time and d; the offset time of an epoch of significant activity.
This interpretation is justified by the fact that the constant
segments of the LOS, or equivalently the zero segments of
d;, correspond to time periods in the population df / f whose
dynamics, as expressed by the corresponding state vectors,
are driven by the same seizure.

Consistent results between RQA and noise-interval
based method in the identification of the epochs of signifi-
cant activities. The identification of the epochs of significant
activity based on the noise-interval approach (plateaus) and
the RQA events is shown in Fig. 3 (top). After the merging
of the small RQA events, according to the same procedure
as for global plateaus and valleys, 16 events remain (marked
with orange color), whilst the noise-interval-based identifi-
cation results in 14 events (marked with green color). The
duration of these events varies (Fig. 3 (bottom)). A sensitivity
analysis was performed to define the thresholds of the short
noise intervals and their inter-arrival as well as the definition
of global plateaus in terms of percent of simultaneous local
plateaus. Our main findings qualitatively remain consistent
across different thresholds. We are in the process of validat-
ing our findings with traces collected from several other mice.
The start and end of events set by the RQA events tend to be
earlier and later, respectively, compared with the start and end
of the global plateaus identified by the noise-interval-based
method. This can be attributed to the time-delayed embed-
ding process, which generates state vectors whose elements
may span adjacent regions of the signal with different dynam-
ics. Doing so, RQA is able to “foresee” upcoming switching
regimes with respect to the inherent dynamics, when entering
(“onset” times) these regions, while still maintaining some
memory when exiting (“offset” times) them.

S. RECRUITMENT OF NEURONS

For each neuron, and for each global plateau, the relative
time lag of its onset of its local plateau compared to the cor-
responding global plateau onset is estimated. Negative lag
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Fig. 2. Mean df / f of the subpopulations of neurons at the four regions of FoV neurons (colored based on their distances from
the injection point). Two representative global plateaus are zoomed to better examine the mean df/f of each region.
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Fig. 3. Events identified by RQA (gold color) and noise in-
terval method (green color) (top). Comparative ECDFs of the
event duration (bottom).

means that the neuron starts prior to the global onset, while
positive means the neuron is following after the global on-
set. We also estimate for each neuron the percentages of
its local plateaus that precede, are in sync, and follow the
global plateaus onsets. The majority of neurons are recruited
after the onset of the global plateau. Neurons, with onsets
before the start of global plateaus, are spread all over the
FoV, suggesting that the effect of 4-AP is long-range (con-
sistent with Rossi et al.’s finding [11]). Taking into consid-
eration the level of the df/f as well as the lags of neurons
from different regions with respect to the approximate injec-
tion point, our analysis revealed two phases of the ictogenesis
process: In the first phase, up to about the frame 1500 (~
Smin), the sub-population near the injection point (blue color
in Fig. 2) reaches relatively high df / f levels, while the other
three sub-populations have significantly lower values. During
that phase, the “blue” population has larger lag compared to
the other sub-populations, with respect to the global plateaus
onsets. As the epileptic activity evolves, the sub-population
near the injection point starts its ictal events earlier than the
others (on average) (Fig. 4 (right)) and the df / f of the other

populations increases.
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Fig. 4. ECDFs of the lag of the local plateau of each neuron
with respect to the onset of the global plateaus 2 and 14, (left)
and (right), respectively; colored based on their region Fig 2,
left.

6. CONCLUSIONS AND FUTURE WORK

It is the first time that such advanced RQA-based techniques
have been applied to identify the neuronal network patterns
of interest, and dissect, in vivo, the mechanisms of focal
epilepsy. We are in the process of validating our results with
datasets from other mice. Our long-term objective is to in-
form the mechanisms of seizure initiation and propagation
to more precisely model in vivo epileptic cortical networks.
We aim to examine the finer spatio-temporal dynamics of the
ictogenesis process, and micro-phases, including the order
of the recruitment of neurons in the seizures, integrating in-
formation from the EEG. We plan to examine whether the
EEG signal can reveal information about the states of other
neurons (e.g., interneurons outside of the FoV) that may play
important role in the propagation or in the control of seizures.
The use of LSTM is one direction that we will pursue. They
have been recently applied in EEG data to declare an immi-
nent seizure and can nicely integrate the temporal dimension
and the sequence that identified neuronal patterns manifest
during the evolution of ictal-events.
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