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Abstract: The neocortex is composed of six main layers of neurons that form an intricate micro-22

circuit with connections within a cortical area and the rest of the brain (Callaway, 1998). This laminar23

circuit motif has been proposed to be the fundamental module of cortical computational processes24

(Mountcastle, 1978; Douglas and Martin, 2010). However, the algorithmic principles as well as the func-25

tional role of each layer remain unclear to date. In this study, we conducted a systematic investigation26

of the information coding properties for stimulus contrast across different cortical layers of the macaque27

primary visual cortex. We adopted an approach using a uniform-field flicker stimulus with alternating28

contrast conditions and analyzed the statistical features of the distribution of stimuli that elicited spikes29

(Smirnakis et al. 1997; Meister and Berry, 1999; Liu and Gollisch, 2015) as a function of time after the30

transition. Neural responses were modelled as linear-nonlinear (LN) functions (Schwartz et al., 2006),31

whose linear component was taken to be proportional to the neurons’ spike-triggered average (STA)32

responses. We found that both the parameters of the STA and the nonlinearity during the steady-state33

contrast response varied systematically both between contrast levels and across cortical depths. Closer34

investigation of the dynamics of adaptation to new contrast conditions revealed a rich repertoire of35

trajectories for the firing rate, the STA and the nonlinearity.36

1 Introduction37

The visual sensory system constantly receives stimuli whose statistics can vary considerably across mul-38

tiple spatial and temporal scales. If the brain operates as an efficient encoder (Barlow et al., 1961),39

visual neurons have to represent deviations from a mean luminance level such that the range of con-40

trasts matches the dynamic range of spiking responses (Laughlin, 1981). Adaptation to contrast can41

potentially affect a cell’s computational properties while inducing changes in feature tuning or its re-42

sponse sensitivity(Solomon and Kohn, 2014). In the mammalian primary visual cortex, a considerable43

number of studies have investigated contrast-related effects in single neuron responses. Although many44

neurons tend to increase their activity at high contrasts until a saturation point, some key properties45

of their receptive fields such as orientation, direction and spatial frequency selectivity appear to be46

contrast invariant (Chao-Yi and Creutzfeldt, 1984; Skottun et al., 1987; Anderson et al., 2000; Albrecht47

et al., 1984; Sclar and Freeman, 1982; Albrecht, 1995; Albrecht and Geisler, 1991; Van Hooser et al.,48

2005; Nowak and Barone, 2009). These observations were proposed to result from contrast gain control,49
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which maintains neuronal feature coding by reducing the sensitivity of cells to stimulus fluctuations in50

high contrasts (Shapley and Victor, 1978; Ohzawa et al., 1982; Albrecht et al., 1984; Ohzawa et al.,51

1985; Sclar et al., 1989). Such adaptive changes take place at all stages of the visual hierarchy and have52

several components that occur on a multiplicity of time scales (reviewed in Wark et al, 2007 and Weber53

et al, 2019). In general, adjustments that relate to feature tuning have been shown to happen within54

less than 100 ms after a change in contrast in the retina (Victor, 1987; Chander and Chichilnisky, 2001;55

Baccus and Meister, 2002)(but see Smirnakis et al, 1997) as well as the visual cortex (Sharpee et al.,56

2006; Ghodrati et al., 2019). However, adaptive changes related to contrast sensitivity and spiking fre-57

quency can unfold over several seconds or minutes (Ohzawa et al., 1985; Smirnakis et al., 1997; Baccus58

and Meister, 2002; Sharpee et al., 2006; Ghodrati et al., 2019) ,(see Wark et al, 2007 for a review).59

The underlying mechanisms as well as the functional role of these various components are still not fully60

understood but it is very likely that they arise from a combination of intrinsic single-cell mechanisms61

such as synaptic depression (Chance et al., 1998; Carandini et al., 2002) and circuit ones such as divisive62

normalization (Heeger, 1992; Carandini et al., 1999; reviewed in Weber et al, 2019).63

While a number of studies has focused on single cell mechanisms (reviewed in Solomon and Khan,64

2014), it remains largely unknown how contrast adaptation manifests in the cortical microcircuit. Dis-65

entangling potential intracortical interactions requires a detailed analysis of laminar processing of image66

contrast, which is absent in the literature. Past research on the lamination of neuronal functional prop-67

erties in V1 have had mixed results. Although some studies reported differences in spontaneous firing68

rates, noise correlations, response-onset latency and feature tuning ((Snodderly and Gur, 1995); Hawken69

et al, 1996; (Schmolesky et al., 1998); (Self et al., 2013)), others found no laminar or cell type (simple70

vs complex) dependence for contrast adaptation speed and temporal frequency tuning (Ohzawa et al,71

1985; Hawken et al, 1996). Therefore, it is not clear what the role of layers in contrast adaptation is or72

whether they play any important role at all.73

Our study aimed to shed light into the aforementioned issues by conducting a detailed analysis of con-74

trast adaptation across the cortical layers in macaque primary visual cortex. To that end, we employed75

a simplified stimulation protocol, namely a uniform-field flicker stimulus, previously used in studies in76

the retina (Smirnakis et al, 1997; Liu and Gollisch, 2015). We modelled temporal contrast encoding77

with single neuron linear-nonlinear (LN) models (Schwartz et al, 2006) to describe both feature tuning78

(linear filter) and response sensitivity(nonlinear response function). We hereby show that contrast-79
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induced changes in cell responses and LN descriptions challenge the notion of invariance. Moreover,80

these changes appear to share both similar and different features across the cortical layers.81

2 Materials and Methods82

2.1 Data collection83

The data were collected from the primary visual cortices of 3 anesthetized adult rhesus macaques using84

chronically implanted 24-tetrode arrays. These are the same animals from Ecker and collaborators85

(2014), where details regarding the surgical procedure and the electrophysiological recordings are fully86

described. Neuronal activity was recorded at a 30 kHz sampling rate for each recording site, and the87

tetrode arrays were subsequently advanced by approximately 100-150 µm in increasing depths through88

the cortical layers. Action potentials were detected offline when the amplitude of the signal from any89

of the four channels was five times larger than the standard deviation on the corresponding channel.90

Spike sorting was performed for action potentials recorded in the same site, utilizing methods that91

were developed by Tolias et al (2007; Ecker et al, 2014). In brief, the principal components of spike92

waveforms were extracted and the resulting features were used for clustering to reveal putative single93

cells. The clusters were fitted with a mixture of Gaussians model, which was also used to estimate94

cross-contamination/overlap between clusters. Quality of single-unit isolation was, thus, assessed by95

considering the aggregate percentages of false positives and false negatives in cluster assignments. The96

former referred to the spikes that were assigned to a particular cluster but were generated by another97

while the latter referred to spikes that were generated by a cluster but assigned to another. We excluded98

from the analysis the set of all cells with composite false positive and false negative rate beyond 10 %99

of the total spikes. Moreover, as an additional criterion for the quality of isolation, we considered the100

percentages of refractory period violating (under 2ms) inter-spike intervals per cell. The set of cells that101

contained more than 5 % of such intervals were also excluded from the analysis. While we ensured the102

isolation quality of the cells for analysis, it is important to note that any possible cross-contamination103

is present only among cells of the same tetrode and not between different recording sites or different104

depths.105
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2.2 Stimulation106

The cells were stimulated with spatially uniform grayscale luminance that changed every 2/60 seconds107

and each value was drawn randomly from a Gaussian distribution (Figure 1.A). The stimulation alter-108

nated between low and high contrast ensembles (Figure 1.B) that had the same mean luminance (i.e.109

127.5/255 in the photopic range) but different standard deviations, namely, σ = 6/255 for low and σ =110

35/255 for high contrast. An entire stimulation session consisted of 30 repetitions of 60-sec long blocks111

for each contrast level, presented in alternating sequence (Figure 1.B).112

2.3 Depth classification113

We grouped the recording sites into three major categories of depth according to the laminar domain114

where they were situated, namely granular, supragranular and infragranular (Balaram et al, 2014).115

The classification was based on the Current-Source Density (CSD) temporal trace across the depth of116

V1 (Mitzdorf, 1985).For CSD analysis, a spatially uniform stimulus with the maximum luminance was117

presented for 1 second, which was followed by 4 seconds of presentation of the mean luminance gray118

screen.This stimulation was repeated 50 times in each depth session and this experiment was performed119

across all depth sessions prior to the main experiment. The CSD analysis was performed by analyzing120

local field potentials in response to the stimulus within each tetrode site. The signal was first lowpass121

and highpass filtered to have a frequency range of 1 to 100Hz. Then, the visually evoked responses to122

the stimulus were aligned with respect to the relative stimulus onset time across depths and were treated123

as simultaneously recorded. To consider irregular sampling in depth,a kernel CSD method was applied124

(Potworowski et al. 2012).125

We identified the granular layer (layer 4) as the spatial region that exhibited the deepest current126

sink within a temporal window of 50-150 ms after a pulse stimulation. The regions above and below the127

granular layer were characterized by the presence of transient current sources at distinct phases within128

the same temporal window. The recording sites located at these regions were classified accordingly129

as supragranular (layers 2/3) and infragranular (layers 5 and 6) V1 layers. Lastly, a number of sites130

that were between source and sink areas were defined as border regions either between granular and131

supragranular or granular and infragranular layers [CSD stimulation and analysis to be filled in here].132
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Figure 1: Stimulation protocol and Current Source Density (CSD) analysis A. Shaded rectangles on top
depict the spatially uniform screen at different intensities. The light intensity was piecewise constant for
33.3 ms and changed abruptly to the next value which was randomly drawn from a Gaussian distribution
(second row). The mean luminance M, was the same but the standard deviation σ changed periodically
to a wide or short range of light intensities. B. The entire stimulation period consisted of thirty cycles
of low (LC) vs high contrast (HC) 60-sec long stimulus epochs, for a total of 1 hour. C. CSD profile
plotted as a function of cortical depth in µm and time in seconds relative to the maximum luminance
stimulus onset (t = 0, white dashed line). Current is color-coded on a scale from negative (sink) to
positive (source) values. Tetrode recording sites (white asterisks) that were located in regions enclosed
with dashed rectangles were assigned to the supragranular (SG), granular (G) or infragranular (IG)
domain. Non-enclosed regions between sinks and sources were considered as border regions.
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2.4 Firing rate adaptation133

In order to assess the stationarity of neural responses, we calculated the mean firing rate of each clus-134

tered unit/putative cell in each tetrode and depth, over the whole course of the recording session. We135

determined whether a neuron’s spike train contained non-stationary segments with the following pro-136

cedure. We estimated the temporal averages and standard deviations in the first two stimulus blocks.137

Then, if any subsequent block exhibited firing rate that exceeded twice the standard deviation of the138

temporal averages, that particular block was marked as non-stationary and was not considered in the139

analysis.140

We then sought to identify all contrast-responsive cells, that is the ones with significantly different141

responses after an upward and a downward step in contrast. Given that adaptation could either take142

place almost immediately or gradually over several seconds (Ozhawa et al, 1985; Smirnakis et al, 1997;143

Baccus and Meister, 2002; Sharpee et al, 2006; Ghodrati et al, 2019), significant changes in activity could144

be observed either at the early phase (first 6 secs) or at steady state (48-60 seconds). Therefore, we145

applied Wilcoxon rank-sum tests that compared the steady state block-averaged activity in low contrast146

with both the early and the steady-state block-averaged activity in high contrast. In order to describe147

the time course of slow adaptation, we fitted the block-averaged activity trajectories (Figure 2.A) with148

exponential models of the form:149

r(t) = a+ b(e
t
τ ) (1)

where a, b and τ are free parameters, and τ is the time constant that quantifies the rate of exponential150

adaptation. We evaluated the significance of the fitted models with ANOVA tests. For the significant151

fits, we extracted the features of the exponential model that characterize the adaptation, namely the152

initial firing rate at the first time point after contrast transition, the steady state rate at the last time153

point of the block, and the adaptation constant, τ .154

2.5 Linear-nonlinear characterization of contrast responses155

We characterized each neuron’s response to the uniform-field flicker by a linear-nonlinear model (Schwartz156

et al, 2006). In this formulation, the firing rate, r(t), is determined by a weighted sum of a sequence of157

preceding inputs, s(t), which is passed on to a nonlinear function, f.158
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r(t) = f(
∑
ws(t)) (2)

This characterization corresponds to the estimation of a temporal linear filter w and the nonlinear159

function f. Our aim was to investigate encoding differences across the cortical layers by assessing160

whether the parameters of the linear and the nonlinear model components varied significantly with161

respect to cortical depth.162

We restricted the first stage of this analysis to the steady-state part of the spiking responses, i.e.163

after each cell had adapted to the transition of contrast level. The length of the adaptive stage varies164

considerably among neurons in V1 as demonstrated both in past studies (Ohzawa et al, 1982, 1985;165

Sharpee et al, 2006; Levy et al, 2013) as well as in our data. We could not rely on individual time-166

constants to determine the adaptive stage as not all neurons could be fit with an exponential model, and167

even among those that could, the highly variant time-scale of adaptation would result in a massively168

uneven exclusion of spike train segments for different neurons. Thus, we chose the median time-constant169

for all cells per contrast to determine a common starting point for the steady state.170

At the second stage of this analysis, we sought to answer whether the features of the linear and171

nonlinear components adapted immediately or gradually after changes in contrast. Instead of excluding172

the adaptive stage, we divided the block duration in 10 consecutive 6-second bins, with the first bin173

starting immediately after each contrast transition and the last bin ending at the 60 seconds, i.e. the174

end of each block.175

2.5.1 Spike-Triggered Average176

Provided that the stimulus distribution is Gaussian, a single linear filter can directly be estimated with177

the spike-triggered average (STA), i.e. the average deviation from the stimulus mean that preceded a178

spike. We calculated the STA separately for low and high contrast stimuli, for every cell in each tetrode179

and cortical depth, according to the following formula (Aljadeff et al, 2016):180

STA =
1

N

N∑
i=1

n(t0)is(t)i (3)

For each spike a neuron emitted, we selected the preceding stimulus values s(t), in a temporal window181
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t of millisecond resolution, which included an entire second before the spike. Each s(t) sequence in the182

sum was mean centered, divided by the standard deviation of its luminance distribution and multiplied183

by the number of spikes n(t0) that occurred at time t0, the most recent time-bin of the window t, and184

the entire sequence ensemble was averaged over the total number of spikes, N . In addition to the spike-185

triggering stimuli, we also selected an equal sample of stimulus values within the second immediately186

after each spike. Because neurons are causal, these advanced stimuli had no influence on the spike that187

they followed and thus formed a control ensemble.188

To assess whether the deviations in the STA waveforms are significantly different than random189

fluctuations, we measured the ratio of the amplitude of the most prominent peak for each STA over190

the standard error of the mean (SEM), at the time point of that peak, separately for low and high191

contrast. We also extracted an equivalent ratio from the point of maximum amplitude in the advanced192

STA. Subsequently, we subtracted the ratios of the advanced STAs from the ones of the pre-spike STAs193

and the resulting quantity was considered as a criterion for determining significant STA peaks. Any194

peak with a ratio that was greater than 3 was deemed significant. Only the STAs that had at least195

one significant peak were considered in the analyses. Moreover, we relied on this criterion to identify196

different types of STAs based on the number of the peaks found to be significant.197

To obtain a signature of the STAs that enables comparisons across cortical depths, we extracted a set198

of time-domain parameters pertaining to the peaks of each STA. More specifically, for each significant199

primary and secondary peak, we measured their time to peak before the spike, their width at half-200

amplitude, their amplitude and their peak-to-peak amplitude (Figure 4.A points of interest a, b, c and201

d respectively). The peak order from the first to the last was defined according to the proximity to the202

spike, with the first being the most proximal. Furthermore, we also extracted the length of the STA203

temporal integration window (Figure 4.C e) which we employed for computing the response function.204

To estimate the length of this window we identified the peak that was most distal to the spike and205

moved by a step twice its width at half amplitude towards the tail of the waveform.206

The criteria and parametrization that we conducted at the steady-state analysis were the same for207

the second stage analysis which tracked the adaptation dynamics of the STA.208
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2.5.2 Effective stimulus response function209

Although the STA represents a cell’s first-order feature tuning, it does not provide the full picture of210

the neuronal response, which requires an additional estimation of the nonlinearity f, denoted in (2).211

To estimate the nonlinearities for every neuron at steady-state, we computed the effective stimulus212

response functions, separately in low and high contrast, for each neuron that yielded significant STAs.213

We obtained the effective stimulus by a sliding projection of the entire input stimulus separately for low214

and high contrast onto the neuron’s STA, with a step-size of 2 ms. The same procedure and subsequent215

analysis was followed for tracking the adaptation dynamics of the response function, albeit separately216

for each 6-second segment of the blocks. The effective stimulus distributions in both contrasts were217

transformed in units of standard deviation of the low contrast distribution. The firing rate predictions218

across the distribution were calculated by dividing the spike counts we found within 2 ms after each219

effective stimulus value, with the aggregate time from all 2-ms bins after each such value occured.220

We characterized the response function of each neuron by fitting the firing rate predictions with221

sigmoid models. Since cortical nonlinearities can assume various shapes (Rust et al, 2004) we employed222

either single sigmoid models for the entire effective stimulus range, or a combination of such models223

separately for the positive and the negative semi-axes. Each nonlinearity was parametrized by its slope,224

its threshold and its upper and lower plateaus (Figure 6.B). The slope was defined as that of the tangent225

line at the half of the maximum modulation. Since the dynamic range could vary considerably in different226

cells we normalized the response curves with respect to the maximum firing rate prediction in each cell,227

prior to the slope extraction. The effective threshold was defined as the x-axis intercept of the tangent228

at the half-maximum. This threshold signified an estimate of the point in the effective stimulus where229

the firing rate modulation took off exponentially. Finally, the maximum and minimum predicted firing230

rates were extracted from the upper and lower sigmoid plateaus, respectively.231

3 Results232

In order to investigate how different layers in the primary visual cortex encode stimuli of different233

contrasts, we analyzed the responses of cells recorded from 3 anesthetized rhesus macaques. The total234

number of the recorded putative cells was 590, 854 and 929 for the first, second and third subject,235

respectively. Out of this sample, we found that a combined subset of 1536 were well-isolated cells,236
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that is below the contamination threshold we defined (see Materials and Methods: Data collection).237

The laminar domains for the sites of these well-isolated cells were determined from the CSD analysis.238

The 255 cells (16.7%) who were located in the current sink were labelled as granular while 680 cells239

(44.2%) at the sink reversal from above and 264 cells (17.1%) at the deeper sink reversal were labelled240

as supragranular and infragranular respectively. The remaining 337 cells (22%) were located between241

source and sink regions, and thus were considered as border-zone due to the uncertainty regarding the242

depth assignment. Although these 1199 cells comprised the sample for all our analyses, every subsequent243

stage involved further exclusion criteria.244

3.1 Firing rate adaptation245

The majority of the recorded V1 cells modulated their firing rate following contrast switches, but re-246

sponses varied within the population and between cortical layers. We identified 726 contrast-responsive247

cells with significantly different mean activity either in the first time bin, i.e. during the first 6 seconds248

(see Materials and Methods: Firing rate adaptation) after a change in contrast or at steady state, i.e.249

at 48-60 seconds after contrast change(Wilcoxon rank-sum test, p < 0.05). Following previous studies250

(Smirnakis et al, 1997;Baccus and Meister, 2002; Liu and Gollisch, 2015) we aimed to describe adap-251

tation in contrast-responsive cells by fitting exponential models to the block-averaged activity in both252

contrasts. We were able to obtain significant fits (ANOVA, p < 0.05) in both contrast conditions for253

295 (40%) of contrast-responsive cells. In another subset of 226 cells (31%), exponential adaptation254

was only present in one condition whereas in the other one, the activity trajectory was relatively flat.255

The remaining 205 (29%) responsive cells exhibited immediate jumps to a higher or lower activity state256

which was maintained for the duration of each block(Figure 2.A right) and thus could not be captured257

by an exponential model in either condition. We considered this last group of cells as one with fast258

contrast adaptation.259

Within the subset of 295 cells with clear exponential-like adaptation in both contrasts, we found260

2 major modes of slow adaptation. Similarly to retinal ganglion cells (Smirnakis et al, 1997;Baccus261

and Meister, 2002; Liu and Gollisch, 2015) and in agreement with studies on primary visual neurons262

that responded to oriented gratings (Sclar et al, 1990; Ghodrati et al, 2019), a number of neurons263

(n=62, 21%) increased their firing rate immediately after a step increment in contrast and decayed264
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to a lower steady state. For the same neurons, a step decrement in contrast induced an abrupt drop,265

followed by exponential recovery to a higher activity (Figure 2.A center graph). However, contrary to the266

aforementioned studies, we also found a strikingly larger number of cells (n=232, 78.6 %) that exhibited267

the reverse pattern of adaptation, i.e. increased firing rate, decaying to steady state after a transition to268

low contrast versus a transient initial suppression followed by recovery in high contrast (Figure 2.A left269

graph). Also, one exceptional cell was found to display decay to steady state following a transition to270

either condition. Interestingly, the relative prevalence of these modes of adaptation for each contrast had271

a clear association with cortical depth (χ2(2) = 70.8065, p = 4.4409e−16). We tested this hypothesis on272

the aggregate sample of 295 exponentially adapting cells with the subset of 226 that had exponential-like273

behaviour only in one contrast. The cells with decay in low contrast and/or recovery in high contrast274

dominated the supragranular layers (Figure 2.B), when examined in post-hoc comparisons with granular275

(χ2(1) = 43.5971, p = 1.2103e − 10) and infragranular layers (χ2(1) = 63.7888, p = 3.9969e − 15, with276

Bonferonni correction for multiple comparisons).277
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Figure 2: The laminar profile of firing rate adaptation to contrast in primary visual cortex
neurons A. of slow and fast mean firing rate adaptation dynamics after a transition to low (blue) and
to high contrast (red). Time is represented in seconds before and after a transition (t=0) from low to
high contrast. Black vertical dashed lines indicate the borders between 60 sec blocks. Blue and red
curves are the fitted exponential models to the firing rate profile after a transition to low versus high
contrast. Tau: adaptation time constant τ . Error bars denote standard error of the mean. Segments
beyond the [-60, 60] interval are periodic repetitions of the data. B. Distribution of cells with different
firing rate adaptation modes across the cortical layers. To be included cells had to have at least one
significant fit for one contrast transition. Percentages were calculated per layer. C. Scatter plot of
steady state (60 seconds after a transition) firing rate at low (abscissa) vs high (ordinate) contrast.
Distinct laminar domains are represented with different colors. D. Scatter plot of the ratio of the initial
firing rate divided by the steady-state firing rate following a transition to low (abscissa) versus high
(ordinate) contrast. Cells cluster in two different groups depending on the pattern of adaptation they
exhibit. Distinct laminar domains are represented with different colors. E. Laminar distribution of the
adaptation constant (τ), separately for each contrast condition.
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Despite the contrast-induced changes that we observed in firing rates of individual exponentially-278

adapting cells (n=295), the adapted, steady state population-level activity did not differ significantly279

between contrasts for any laminar domain (Wilcoxon ranksum test, p = 0.4145 for supragranular,280

p = 0.3889 for granular and p = 0.7341 for infragranular cells). Pairwise 2-dimensional Kolmogorov-281

Smirnov tests with Bonferonni-adjusted p values for multiple comparisons further showed that this282

behaviour was uniform across layers (KS = 0.2902, p = 0.369, for supragranular vs granular layers,KS =283

0.1502, p = 0.99, for supragranular vs infragranular layers and KS = 0.2408, p = 0.99, for granular vs284

infragranular layers). What contrast affected in this group of cells was the initial firing rate after a285

transition. We expressed the initial firing rate as a fraction of the steady-state rate at a given contrast286

level for each cell. This resulted in the formation of two clusters (Figure 2.D), which corresponded to287

the two major modes of slow adaptation (Figure 2.A left and middle). Not surprisingly, while granular288

and infragranular cells were scattered evenly across the two clusters (Wilcoxon ranksum test, p = 0.9841289

for granular and p = 0.4597 for infragranular cells) supragranular cells mostly favoured higher initial290

activity in low contrast in conjuction with lower initial activity in high contrast (p = 3.51e − 11).291

These laminar differences were further confirmed by pairwise 2-dimensional Kolmogorov-Smirnov tests292

(KS = 0.341, p = 0.0009 for supragranular vs granular layers,KS = 0.3164, p = 0.001 for supragranular293

vs infragranular layers and KS = 0.2239, p = 0.99 for granular vs infragranular layers). Finally, the rate294

of adaptation as assessed by the τ constant varied wildly within the entire dataset. While all laminar295

populations had cells whose adaptation was either complete in the first few seconds or lasted and296

even exceeded the duration of the blocks, the rate of adaptation was differentially affected by contrast297

depending on laminar position. Specifically, the supragranular cells adapted faster than granular cells298

(Kruskal-Wallis test, χ2 = 10.7462, p = 0.0046, Bonferonni-adjusted post-hoc comparisons, p = 0.0061)299

but no other significant differences were observed. In high contrast, we found larger time constants300

in supragranular cells compared to infragranular cells(Kruskal-Wallis test, χ2 = 10.0243, p = 0.0067,301

Bonferonni-adjusted post-hoc comparisons, p = 0.0045), but all other differences were not significant.302

Cross-contrast tests for each layer separately, also revealed that supragranular cells exhibited faster303

adaptation in low contrast than in high contrast(Wilcoxon ranksum test, p = 3.2961e − 12), while304

granular and infragranular cells seemed to be unaffected by contrast (Wilcoxon ranksum test, p = 0.8288,305

for granular and p = 0.1104, for infragranular cells). However, since these contrast-induced changes could306

essentially reflect differences between the processes leading to decay and recovery, we also grouped and307
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compared cells in each layer according to the that distinction, regardless of contrast. We found that308

recovery was significantly slower than decay in supragranular (Wilcoxon ranksum test, p = 1.0829e−11)309

as well in infragranular (Wilcoxon ranksum test, p = 8.1586e− 05), but not in granular cells (Wilcoxon310

ranksum test, p = 0.7873).311

3.2 Contrast-dependent changes and laminar distribution of the STA pa-312

rameters313

We investigated the temporal feature tuning to full field contrast stimuli in macaque V1, by calculating314

the STA for all cells separately in low and high contrast. We were able to obtain significant STAs in315

both contrast conditions for 676 cells, as per the criterion described in the ”Materials and Methods”316

section. Out of these cells, 526 could be assigned to a specific laminar domain and 507 (96%) of317

them were contrast-responsive. This final subset consisted of 281 supragranular, 124 granular and318

121 infragranular cells. The shapes of the STAs varied from monophasic to multiphasic (Figure 3.A)319

although the majority of them were biphasic or triphasic (Figure 3.B). We found no significant association320

between the proportions of STA types and laminar position either in low (χ2(6) = 0.062, p = 0.99,) or321

high contrast (χ2(6) = 0.0454, p = 0.99,). Furthermore, these proportions were similarly unaffected by322

contrast level within supragranular (χ2(3) = 0.0399, p = 0.99,), granular (χ2(3) = 0.037, p = 0.99,) and323

infragranular populations (χ2 = 0.1383, p = 0.98,).324
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Figure 3: Temporal filters adapt to changes in contrast A. Four spike-triggered average examples
in low (blue) and high (red) contrast. Spike triggered values are expressed as deviations from the mean
intensity normalized to unit standard deviation, and are computed separately for low and high contrast.
Shaded regions around the curves represent the standard error of the mean. The number of spikes used
for computing each STA is shown in the legend. A time interval of 500 milliseconds before the spike
occurrence at t=0, is plotted here. Typical STAs exhibit positive and/or negative peaks within a 500ms
temporal window preceding the spike and gradually approximate the mean at longer time delays. The
number of peaks observed varied from one (monophasic, top left graph) to four (quadriphasic, bottom
right graph). B. Bar graph of the proportion of different STA types across cortical depths .
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Despite this trend, when we examined how individual cells behaved between contrast levels, we found325

that only approximately half of the entire sample retained the same number of peaks (Figure 4.C). The326

other half either gained or lost a positive or negative peak from low to high contrast, which suggested327

qualitative changes in temporal filtering as a function of contrast, that are not only differences in filter328

scale. Two such examples of cells with markedly different behaviour between contrasts are provided in329

Figure 4.B.330

Figure 4: Temporal STA profiles are not always the same across contrasts. A. Parameter
extraction for the STA: a: Time to peak, b: width of peak at half-amplitude, c: amplitude of peak, d:
peak-to-peak amplitude, e: integration window of the STA, illustrated as the part of the filter that is
enclosed in the dashed rectangle. B. Examples of cells with STAs that gained (top graph) or lost peaks
(bottom graph) from low to high contrast. C. Pie chart illustrating the percentages of cells that retain
or change their temporal processing profiles in terms of number of peaks across contrasts.

In order to characterize contrast-dependent STA parameter alterations and perform comparisons331

across cortical layers, we restricted our analysis to biphasic cells that displayed peaks of corresponding332

positive or negative polarity between contrasts. A subset of 180 cells satisfied this criterion, out of333

which, 76 were supragranular, 30 were granular, 34 were infragranular and the rest 40 were in border334
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regions between layers and thus were excluded from the analysis. We further divided these cells into335

those that had a positive first peak (n=69) and those that had a negative first peak (n=71). Then, we336

tested for the effect of contrast on every time-domain STA peak parameter in each layer. Moreover,337

we performed pairwise Kolmogorov-Smirnov tests with Bonferroni-adjusted p values on the laminar338

cross-contrast distributions of the STA parameters (Figure 5).339

Figure 5: Distributions of STA peak parameters across the cortical layers. A. Time to Peak
in ms. B. Width at half amplitude in ms. C. Peak amplitude in std units of the stimulus intensity.
D. Peak-to-peak amplitude in std units of the stimulus intensity. All x axes represent parameter values
measured in low contrast and all y axes represent such values in high contrast. Black dashed lines denote
the identity line. Every comparison for the first and the second peak was made separately depending
on the peak polarity. Colour conventions for the laminar domains are the same as in Figure 2.
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Despite the fact that we scaled the STAs with the standard deviation of each contrast condition, we340

still found that raising the contrast induced a significant increase in the amplitude (Figure 5.C) and peak-341

to-peak amplitude (Figure 5.D) of the peaks. This signified a decrease in temporal feature sensitivity342

at high contrasts, that exceeded what would be expected if the filter was scaled proportionately with343

the change in contrast. This change was observed in all cortical layers and for all peaks regardless344

of polarity and proximity to spike (24 Wilcoxon rank sum tests for all layers and peak categories for345

which p < 0.05). Moreover, this effect was uniform across the cortical layers as shown by subsequent346

sets of pairwise Kolmogorov-Smirnov tests in each peak category (p > 0.05). Contrary to the above,347

the time to peak (Figure 5.A) and the half-amplitude width (Figure 5.B) were not altered significantly348

by contrast in any peak category or laminar domain (24 Wilcoxon rank sum tests for all layers and349

peak categories for which p > 0.05). However, we found significant paiwise differences between the 2-350

dimensional cross-contrast distributions of the supragranular and the infragranular cells only in the case351

of the first positive peak (KS = 0.5985, p = 0.019, for the time to peak and KS = 0.6147, p = 0.013,352

for the peak width) .353

3.3 Contrast-dependent changes in the response function354

We computed the effective stimulus for each cell by projecting the stimulus onto the STAs separately355

in each contrast condition. The resulting values for both contrasts were normalized with the standard356

deviation of the effective stimulus distribution at low contrast. Then, we fitted the responses as a357

function of the effective stimulus with sigmoid models. We were able to obtain significant fits for 453358

cells (ANOVA test, p < 0.05), out of which 244 were located in supragranular, 105 in granular and 104359

in infragranular layers. The responses were predominantly simple-cell-like sigmoid curves that displayed360

baseline activity at negative effective stimulus values (i.e. temporal modulations of the stimulus that are361

roughly in opposite direction to the modulation seen in the STA ) and peaked towards larger correlations362

with the STA (positive semi-axis). Most cells (N = 310, 69%) retained their sigmoid response profiles363

in both contrasts, albeit with rescaling the parameters (Figure 6.A, top left). A minority of cells364

displayed more complex-cell-like responses in both contrasts, i.e. sigmoid modulation for positive and365

negative effective stimulus values alike, in the form of symmetric excitation (N = 10, 2.2%) as in366

the example of Figure 6.A bottom right or symmetric suppression (N = 9, 2%)shown in Figure 6.A367
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bottom left. Finally, a number of other cells displayed more remarkable changes with contrast as368

their sigmoid response in low contrast was transformed to a symmetric one of either excitation (Figure369

6.A, top right) (N = 90, 20%) or suppression (N = 34, 7.5%) in high contrast. As with the types370

of STA, the distributions of response types were similar across the layers (Figure 6.C) both in low371

(χ2(2) = 2.0562, p = 0.725,) and high contrast (χ2(2) = 8.0565, p = 0.089). However, when we examined372

the effect of contrast on these response types, we found significant changes in their relative proportions in373

supragranular (χ2 = 22.1823, p = 1.5246e−5), granular (χ2 = 34.0922, p = 3.9535e−8) and infragranular374

layers (χ2 = 14.3929, p = 7.4924e− 4,). High contrast seemed to introduce a greater degree of nonlinear375

behaviour even among cells that had regular sigmoid responses in low contrast(Figure 6.C).376
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Figure 6: Effective Stimulus Response Functions A. Four cells with different effective stimulus
response functions, in low (blue) vs high (red) contrast conditions. Effective stimulus values (x axis)
are in units of standard deviation of the low contrast distribution. Left y axis: frequency of effective
stimulus values, normalized so that the peak of the distribution is one. Right y axis: firing rate in
spikes/sec (Hz). Colored dots denote the cells response to the corresponding effective stimulus values
(blue: low, red: high contrast). Error bars indicate standard error of the mean. Solid black curve:
fit for low contrast responses. Dotted black curve: fit for high contrast responses. B. Parameters of
the effective stimulus response function. C. Distribution of effective stimulus response types across the
cortical depths for low and high contrast.
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As previous reports documented (Ozhawa et al, 1982; Ozhawa et al, 1985; Sclar et al,1989), adap-377

tation to luminance contrast involves changes in the cell’s sensitivity to deviations in light intensity.378

These changes might affect the operating range where a cell exhibits graded responses by adjusting the379

slope at the half-maximum of the sigmoid curve or the effective threshold which signifies the point in380

the effective stimulus where these graded responses take off. To capture the extent of the changes in the381

operating range, we expressed both the low and high contrast effective stimulus distributions in units382

of standard deviation of the low contrast one. Contrast-induced changes might also alter the predicted383

dynamic range or shift the baseline of a cell by adjusting the maximum and minimum predicted firing384

rate of the sigmoid curve. Our analysis showed that primary visual neurons in the macaque display all385

the aforementioned effects to an extent. We conducted this stage of the analysis separately for two cells386

groups, a first one of the 310 cells with simple-cell response functions (Figure 7.A-D main plots) and a387

second one with the aggregate set of 143 cells with complex-cell responses either in one or both contrasts388

(Figure 7.A-D insets). For the second group, the comparisons were based on parameters extracted from389

sigmoid curves with baseline modulation at smaller effective stimulus values and maximum modulation390

at larger ones.391

Firstly, the slope at the half-maximum was strikingly smaller in high contrast relative to low contrast.392

This was uniformly expressed in both cell groups (Figure 7.A, main plot and inset) and in all cortical393

layers as supragranular, granular and infragranular cells significantly reduced their slopes by a median394

factor of 3.6, 3.5 and 3.3 respectively for the first cell group (Wilcoxon rank sum test, p = 5.163e−28, p =395

1.019e− 16 and p = 2.989e− 20) and 2.7, 3.2 and 4.6 respectively for the second group (Wilcoxon rank396

sum test, p = 4.729e − 17, p = 8.465e − 10 and p = 1.415e − 05). Subsequent pairwise Kolmogorov-397

Smirnov tests confirmed the uniform character of this change for all layers in V1 in both cell groups398

(KS = 0.1876, p = 0.3170, KS = 0.3028, p = 0.0777, for supragranular versus granular cells in first399

and second group respectively, KS = 0.2028, p = 0.1233 , KS = 0.3810, p = 0.0812 for supragranular400

versus infragranular cells in first and second group respectively and KS = 0.1495, p = 0.99 , KS =401

0.2424, p = 0.99 for granular versus infragranular cells in first and second group respectively). Upward402

changes in stimulus contrast also induced adaptive changes in the effective threshold of supragranular403

cells in both groups. The thresholds at high contrast in these populations were shifted towards the404

negative semi-axis by a median of 4.5 (first cell group, Figure 7.B main plot) (Wilcoxon rank sum test,405

p = 3.2381e−11) and 2.6 (second cell group, Figure 7.B inset) (Wilcoxon rank sum test, p = 2.9967e−7)406
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standard deviation units of effective stimulus. However, granular and infragranular thresholds in both407

cell groups remained relatively unchanged by contrast (Wilcoxon rank sum test, p = 0.6354 , p = 0.0545408

for granular cells of the first and second group respectively and p = 0.3054, p = 0.0585e for infragranular409

cells of the first and second group respectively).410

Figure 7: Distribution of effective stimulus response parameters for low and high contrast across the
cortical layers. All main scatter plots illustrate the distributions for cells with sigmoid response functions
whereas inset plots represent the same distributions for all other cells. A. The slope at half maximum
of the sigmoid fit, with the maximal firing rate plateau normalized to 1. B. The effective threshold, i.e.
the x-axis intercept of the linear part of the sigmoidal fit, where responses to effective stimulus begin
to rise. C, D. Maximum and minimum (baseline) firing rates from the upper and lower plateaus of the
sigmoid model. Axes and color conventions are the same as in figure 5.

Contrast-dependent changes were observed in the response range of the sigmoid curves. Interestingly,411

granular cells in the first and second group raised their maximum modulation plateau in high contrast412

on a median level from 16.9 to 30.7 (Figure 7.C, main plot) (Wilcoxon ranksum test, p = 0.0081) and413
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from 14.4 to 18.5 spikes per second (Figure 7.C, inset) (Wilcoxon ranksum test, p = 0.0274) respectively.414

Infragranular cells also followed that trend but only for the first cell group, as they raised their maximum415

plateau on a median level from 10.4 to 16.5 spikes per second (Wilcoxon ranksum test, p = 0.0274).416

No other significant differences were observed regarding this parameter. Lastly, contrast induced some417

small but statistically significant shifts in the predicted baseline responses for the supragranular and418

infragranular cells of the first group but left the rest of the cell populations unaffected. While a degree of419

variability was present in these changes low contrast baseline rate was overall higher than in high contrast420

by a median of 1.5 spikes per second for both supragranular (Wilcoxon ranksum test, p = 0.0069) and421

infragranular cells (Wilcoxon ranksum test, p = 0.0109).422

3.4 Adaptation dynamics of the linear-nonlinear models423

Since contrast adaptation has been shown to involve both fast and slow components (Ozhawa et al, 1982;424

Ozhawa et al ,1985; Ghodrati et al, 2019), we investigated the temporal dynamics of the parameters of425

the STA and the nonlinearity during adaptation by carrying out the same analysis, as in steady-state,426

but in 10 successive 6-second bins for every contrast condition. Most neurons in this analysis, exhibited427

variable quality regarding the STAs and response functions throughout the entire 60 second interval.428

Therefore, we chose to track differences between only the early phase of adaptation (0-6 seconds) and429

the steady-state. The steady-state in this analysis was defined as the last 24 seconds in a contrast block,430

so as to have more reliable estimates. As a first stage, we were able to confirm previous results on the431

fast time-scale of STA adaptation (Sharpee et al, 2006; Ghodrati et al, 2019). As in previous reports, no432

significant differences were found between any of the parameters that were extracted during the early433

adaptive stage (0-6 secs) and the steady state, in any laminar cell population (Wilcoxon ranksum test,434

p > 0.05). This indicated that contrast-dependent changes in the STA waveform, happened on a faster435

time-scale than our temporal resolution could capture. As for the response function, we found 169 cells436

that could be significantly fitted (ANOVA, p < 0.05) with a single or a combination of sigmoid models,437

at both phases of the adaptation. Since the dynamics of the response function could be related to the438

dynamics of firing rate adaptation, we separated the cells into a group that displayed exponential decay439

after a contrast transition (Figure 8.A low contrast and Figure 8.B high contrast), another one that440

displayed exponential recovery (Figure 8.A high contrast and Figure 8.B low contrast) and a third one441
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that consisted of cells which showed fast or no adaptation to contrast, and were therefore not expected442

to change between the early adaptive stage and the steady state.443

Figure 8: Examples of adaptation to contrast. A. Example of a supragranular cell’s mean firing
rate around contrast transitions and response function from the first 6 seconds and the steady state.
For this cell, the maximum and minimum firing plateau appear to be the chief sigmoid parameters that
change from 0-6sec post contrast transition to steady state.B. Same plots for a granular cell that changes
only its maximum firing plateau from the first six seconds to the steady-state phase of adaptation C.
Same plots for an infragranular cell whose effective response function shows little change following a low
contrast transition, compared to a change in slope and a shift in the maximum firing plateau following
a transition to high contrast. All conventions are the same as in figures 2, 3 and 6

Some individual cells showed slow adaptive changes within a contrast block that took the form of444

either a translational baseline shift (Figure 8.A) or a change in the dynamic response range (Figure445

8.B). However, there were large variations to this behaviour which resulted in a mixed picture at the446
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level of the population (Figure 9). In order to test the trends in the population we conducted mixed447

factorial ANOVA test by considering the phase of the adaptation as a within-subject factor and the448

mode (i.e. decay, recovery and fast or no adaptation) and cortical depth as between-subject factors. We449

found no significant main effects on any of the aforementioned factors (p > 0.05). Notably, the group of450

cells whose mean spiking activity adapted rapidly or did not change as a function of contrast, showed451

similar variation to the other two groups in virtually every parameter difference that we measured. This452

was probably an indication that the quality of the fitted sigmoid models deteriorated when the response453

functions were estimated in 6-second time bins. As a result, this level of noise could have rendered any454

potential subtle differences undetectable.455
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Figure 9: Adaptation of the parameters of the response function. Scatter plots depict pairwise differences
of the response parameters from measurements during the early phase (0-6 secs) and the steady state
(42-60 secs) for every cell across the cortical depths. The cells were separated into 3 categories depending
on adaptation mode in eah contrast, namely decay (filled circles), recovery (filled diamonds) and fast
or no adaptation (hollow circles). A, B. Differences in the slope and the effective threshold. C, D.
Differences in the maximum and minimum (baseline) plateaus from the sigmoid fits. The dispersion
along the x-axis for each of the laminar distributions does not represent any feature of the data, but
is solely for a clearer illustration of the sample densities. Medians per cortical depth are denoted with
black horizontal lines with circle, diamond or no marker for decay, recovery and fast or no adaptation
respectively. All other conventions are the same as in Figures 2, 3 and 6.

4 Discussion456

Contrast adaptation is a process of fundamental importance for the early visual system. In this study,457

we investigated how contrast shapes linear-nonlinear descriptions of single-cell encoding in V1 using a458

simplified uniform-field flicker stimulus in low and high contrast. We also asked whether the features of459

these encoding descriptions are in any respect different among different layers of the macaque primary460

visual cortex. Our findings revealed a previously undiscovered rich set of contrast-dependent changes461
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in the mean activity adaptation dynamics, temporal filtering (STA) and the responsivity to contrast462

(effective stimulus response function). Interestingly, raising the contrast did not only result in scaled463

versions of the STAs and the nonlinearities, but also induced, in some cases, qualitative changes that464

transformed temporal feature tuning and polarity dependence of response. Furthermore, while the465

majority of cells modulated their activity in response to upward and downward steps in contrast, the466

time-scale and the modes of adaptation varied considerably across the population. Despite that, most467

population-level parameter alterations in the STA and the response function happened within the first468

few seconds following a contrast transition. Finally, we found that contrast adaptation is to a certain469

extent, not a uniform phenomenon across all cortical depths, as the parameters of the mean firing rate470

dynamics and the response functions varied considerably depending on laminar location.471

A widely held view is that cells in the visual pathway adapt to different contrast conditions such that472

their spatiotemporal encoding properties remain invariant with respect to contrast (Movshon et al, 1978;473

Albrecht and Hamilton, 1982; (Nowak and Barone, 2009); (Berens et al., 2012)). It has also been sug-474

gested that contrast invariance can be attained with divisive normalization of cell responses ((Carandini475

and Heeger, 2012)). However, various studies have presented evidence against contrast invariance for476

spatial summation, spatial frequency tuning and orientation selectivity ((Sceniak et al., 1999); (Sceniak477

et al., 2002); (Durand et al., 2012); (Lee et al., 2019)) as well as for temporal visual features such as478

temporal frequency tuning and high-frequency cut-offs ((Holub and Morton-Gibson, 1981); (Dean and479

Tolhurst, 1986); (Reid et al., 1992); (Hawken et al., 1996)). Our findings lend further support against480

invariance. The preferred temporal visual features in our data did not scale proportionately with the481

contrast level as would be predicted by frameworks that advocate gain control through normalization482

((Heeger, 1992); Carandini and Heeger, 2012). Instead, peak amplitudes and peak-to-peak amplitudes483

were significantly larger in high than in low contrast for all laminar domains (Figure 5.C-D), despite484

the fact that STAs were scaled by the standard deviation of their respective stimulus ensembles. An485

even stronger case against invariance can be made with the qualitative contrast-induced changes in a486

considerable portion of our sample, that fundamentally altered the temporal filtering profile (Figure487

4.B-C) and the response function (Figure 6.C).488

Contrast adaptation manifests in various aspects of neural function and operates over multiple time-489

scales (reviewed in (Wark et al., 2007)). In correspondence with previous studies (Ozhawa et al, 1982;490

Ozhawa et al, 1985; Baccus and Meister, 2002; (Sharpee et al., 2006); Ghodrati et al, 2019) we found that491
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contrast induced rapid changes in the STAs. This was despite the fact that the firing rate could reach492

steady state comparably fast, within few seconds or several seconds after contrast transition (Figure 2.E).493

However, we found that most contrast-dependent changes in the effective stimulus response function had494

a homogeneously faster time course than the firing rate, or did not consistently follow the slow dynamics495

of the firing rate adaptation (Figure 9). It should be noted, though, that the inconsistency might have496

resulted from lower signal-to-noise ratio due to fewer spikes in the case of 6-second bins. One of our497

most remarkable findings was the staggering presence of cells that adapted to low contrast by decaying498

from a higher activity and to high contrast by recovering to a higher steady state after a transient499

initial drop. Although this is the reverse pattern of what was previously observed (Smirnakis et al,500

1997; Baccus and Meister, 2002; Liu and Gollisch, 2015), recovery in high contrast has been reported501

in previous work (Albrecht and Hamilton, 1984) but was less prevalent in the population than what we502

show here. Moreover, the high-contrast steady state of these neurons in Albrecht and Hamilton (1984)503

was still higher than in low contrast, whereas the same sample in our study had mostly comparable or504

lower activity at steady state in high compared to low contrast. Furthermore, with the exception of505

granular cells, we found recovery to be significantly slower than decay regardless of contrast level, which506

could imply that they are driven by different processes.507

A mechanistic understanding of contrast-dependent encoding in V1 is still missing in the literature.508

A first step towards that would be to identify how encoding descriptions might differ across the V1509

cortical layers. We found such differences in the firing rate adaptation and the steady-state effective510

stimulus response functions but not for the STAs. Past work on temporal filtering was similarly unable511

to detect laminar differences in temporal frequency tuning but contrary to our investigation, they also512

found the granular population exhibited more lowpass filtering and shorter integration times than in513

other layers (Hawken et al, 1996). While laminar and cell-type differences in response functions were514

not found in previous studies (Ozhawa et al 1985; (Cavanaugh et al., 2002)), we uncovered differences515

that could potentially group our cell sample into functionally distinct categories. Supragranular cells516

could form the first category as they adapt to contrast changes by changing their contrast operating517

range through significant adjustments both in the response slope and the effective threshold (Figure518

7.A-B). The second category could consist of granular and infragranular cells together as their contrast519

adaptation combines changes both in the operating range as well as the response range (Figure 7.A,520

7.C). The laminar distribution of the two major modes of firing rate adaptation which were equally521

28



present in granular and infragranular but strikingly imbalanced in supragranular layers (Figure 2.B)522

provides additional support to this division.523

What could be the mechanism that endows different properties to cells from different layers in V1?524

Anatomical studies (reviewed in Callaway, 1998) have shown that granular and infragranular layers525

to a smaller extent, receive direct magnocellular inputs from the lateral geniculate nucleus whereas526

supragranular do not. But there is also a functional account for the properties that we observed, and527

that is related to surround modulation. Given that the stimulation was uniform and full-field, cell528

responses were a product of interaction between the classical receptive field and the extraclassical one529

or the surround. These two have been proposed to operate with separate mechanisms where the relative530

influence of each is determined by a gain parameter (Cavanaugh and Bair, 2002). When the surround531

gain is higher, the cell’s response is suppressed. Surround stimulation has been demonstrated to evoke532

greater suppression when the stimulus in the receptive field is of high contrast and to be potentially533

facilitatory in low contrast (Sceniak et al, 1999; Cavanaugh and Bair, 2002). Furthermore, surround534

suppression is stronger in supragranular layers compared to infragranular and granular layers (reviewed535

in (Angelucci et al., 2017)). Considering all the aforementioned, it is reasonable to suggest that cells536

which decreased their firing rate in high contrast and were massively present in the supragranular layers,537

did so due to surround modulation effects.538
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