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ABSTRACT
Epilepsy affects 2-3% of the population. To study the emer-
gence and spread of focally initiated seizures, we used the
4-aminopyridine (4-AP) model, a well-established, reliable,
model of acute focal neocortical seizures. We examined the
activity profiles of individual neurons in layer 2/3 (L2/3) of
the visual cortex during focal seizures induced following in-
tracortical 4-AP injections. Here we characterize the func-
tional network connectivity using graph-theoretical metrics,
such as normalized degree of connectivity, clustering coef-
ficient, and weighted clustering coefficient. To capture the
contribution and influence of a neuron to the connectivity of
the network within a larger region, we introduce the affinity, a
belief-propagation-based metric, that integrates the pairwise
temporal correlation of the firing events of neurons in a sub-
network. Our analysis reveals the structure of the functional
networks after the 4-AP injection, the significant increase of
the temporal correlation of neurons, highlighting the influ-
ence of neurons in the region close to the 4-AP injection. It
comparatively analyzes the findings with other network archi-
tectures, including the functional network of the control (i.e.,
healthy mouse, prior to the injection) as well as graphs with
well-defined structure.

Index Terms— focal neocortical seizures, network anal-
ysis, STTC, temporal correlation, belief propagation

1. INTRODUCTION

Epilepsy affects 2-3% of the population. Brain-injury pa-
tients carry high-risk of epilepsy for decades following in-
jury [1], causing morbidity. Injury causing epilepsy typically
leads to excitation/inhibition imbalance, which drives neural-
circuits into self-perpetuating oscillatory activity-states, feed-
ing the hyper-synchronous epileptic-bursts seen on cortical-
surface EEG [2, 3]. Our understanding of how neurons in-
teract to generate the abnormal network activity patterns that
underlie ictogenesis is limited [4]. Seizures involve the gen-
eration and propagation of hyper-synchronous activity across
cortical-circuits. It is important to understand what changes

in the cortical circuit allow a highly-correlated firing state to
emerge, evolve, and recur after focal-cortical injury. How do
mechanisms that regulate neuronal network activity in-vivo
fail? Interneurons are important in regulating the activity of
pyramidal neurons. In normal mice, we found that sponta-
neous activity patterns obey certain organization rules, e.g.
specific groups of pyramidal neurons get activated-together
and inhibited-together by specific neighboring interneurons
[5]. Neurons within each layer do not fire independently from
each other but rather form computationally meaningful inter-
connected neuronal ensembles [6, 7].

Temporal correlations in neuronal spike trains are key in
characterizing the functional connectivity. We extended the
spike time tiling coefficient (STTC) [8], a metric superior
to commonly used measures, as it accounts for relative time
shifts, local fluctuations, and presence of periods without fir-
ing events, to incorporate the order in temporal correlation of
the firing events between neurons. Two neurons are function-
ally connected (i.e., by an edge in the corresponding graph), if
their firing activity has a statistically significant STTC value
(temporal correlation). The identification of patterns of func-
tional connectivity reflects underlying direct or indirect inter-
action across pairs of neurons.

To characterize the functional connectivity in the context
of the 4-aminopyridine (4-AP) model, a well-established, re-
liable, model of acute focal neocortical seizures, we design
and apply new network metrics appropriate for our objectives:
metrics that can be used in weighted directed networks to re-
veal its structure, capture the influence of neurons on other
neurons and spatial locality of the propagation of the informa-
tion, and adequately treat the heterogeneity in strengths and
asymmetries between neurons. We identify the structure and
the robust components of a network, i.e., subnetworks that
remain the same, and quantify the amount and significance
of changes as a specific network evolves in time (e.g., be-
fore vs. post 4-AP injection), using graph-theoretical metrics,
such as the normalized degree of connectivity (DoC), clus-
tering coefficient (CC), and weighted clustering coefficient
(WCC). The clustering coefficient of a node, defined as the



fraction of a node’s pairs of neighbours that are connected, in-
dicates how tightly connected its neighboring nodes are. The
weighted clustering coefficient has been estimated on the cor-
responding weighted graph, where the weight of an edge is
the STTC value of the corresponding neurons (connected by
that edge). In addition to the aforementioned metrics, which
are “local”, we introduce the affinity, a belief-propagation
(BP) based metric, to capture the contribution or influence
of a neuron considering a wider area around that neuron, its
sub-network (e.g., within a range of 10-hop away neighbor
neurons). The BP, an efficient inference algorithm on prob-
abilistic graphical models, has been successfully applied to
numerous domains, including error-correcting codes, stereo
imaging in computer vision, fraud detection, and malware de-
tection ([9] and references therein). It uses the principle of
“homophily”, i.e., the general assumption that neighbors in-
fluence each other.Here, homophily indicates the membership
to the same neural ensemble. To the best of our knowledge,
this is the first time that a BP metric is used to reveal the
neuronal ensembles and functional connectivity structure, in
general, as well as, specifically, in the context of focal neo-
cortical seizures. Indirectly, here the affinity enables us to
cluster the neurons in an unsupervised manner, by identifying
their membership in a class/subnetwork (e.g., participation in
seizure subnetworks in this context). To highlight specific
features of the functional connectivity in 4-AP, we also com-
pare it with different network architectures (e.g., control, null,
Erdös-Rényi random network, lattice).

This work analyzes datasets obtained from one mouse,
during spontaneous conditions, before the 4-AP injection and
post 4-AP injection. It shows the high temporal correlation
of neurons in the context of post 4-AP and its denser func-
tional network connectivity, compared to other network archi-
tectures and conditions. Moreover, it demonstrates the power
of the weighted affinity to identify neurons that seem to play
an important role in the evolution of the ictogenesis. Section 2
briefly overviews the prior work, while Section 3 presents the
data acquisition and preprocessing. In Section 2, we briefly
overview the related work. Section 4 presents our main meth-
ods and highlights the main results. In, Section 5, we summa-
rize our main conclusions and future work plans.

2. RELATED WORK

Cortical injections of chemoconvulsants are thought to induce
a focus of epileptiform activity from where seizures propa-
gate in the surrounding network [10]. Epileptiform activity
in this surrounding network (often referred to as propagation
area) have been shown to engage cortical neurons in a spatio-
temporal ordered fashion [11], suggesting that neurons that
are physically closer to the injection site get recruited earlier
than neurons located at a larger physical distance. In a follow-
up study [12], the recruitment of neurons at the level of the in-
jection site was compared with the recruitment of neurons in

the propagation area. In such study, the recruitment of large
proportion of neurons in the initiation site appeared to occur
simultaneously (at the temporal resolution of the recordings),
suggesting that the engagement of neurons in the injection site
might not only be determined by their physical distance. Us-
ing wide-field calcium imaging, Rossi et al. [13] have shown
that also brain areas at a larger distance to the initiation site
might get recruited earlier than areas physically closer to it de-
pending on their homotopic connections to the injection site
areas. Whether similar rules govern recruitment in the injec-
tion area as well is to be determined.

To the best of our knowledge, this is the first study that
discusses the functional network connectivity in the context
of 4-AP. In our prior work [14], we have examined the func-
tional network connectivity in absence seizures. Absence
epilepsy interrupts normal cortical processing, producing re-
versible episodes of altered consciousness. During interictal
activity, most neurons are functionally connected with a large
number of neighbors within the FoV, while in seizure epochs,
the connectivity is reduced substantially. The evolution of
ictogenesis in 4-AP differs substantially from the absence
epilepsy. Here, this methodology has been extended using
the weighted clustering coefficient [15] and belief propaga-
tion algorithms [9].

3. DATA ACQUISITION AND PREPROCESSING

Experiment was performed on an adult (>8 weeks old) Thy1-
GaMP6s (C57BL/6J-Tg (Thy1-GCaMP6s) GP4.3Dkim/J)
mouse which expresses the GCaMP6s calcium indicator in
pyramidal neurons [16]. Two-photon calcium imaging was
performed using an in vivo Ultima multiphoton microscope
(Bruker, Madison, WI) equipped with a Ti:Sapphire Insight
pulsed laser (Sprectra Physics, Santa Clara, CA). Calciumm
signals were imaged through a 16x water immersion lens
(Nikon, Tokyo, Japan; 0.8 NA, 3 mm working distance) by
exciting the genetically encoded GCaMP6s at 920 nm. The
field of view (FoV) was scanned in spiral mode at approx-
imately 5 Hz. We imaged layer 2/3 pyramidal neurons at
∼ 150 µm from the pial surface. A 150-200 µl solution of
12.5 µM 4-AP or an equal volume of vehicle (0.9% NaCl)
was injected 1 mm antero-laterally to the imaged FoV at the
level of the primary visual cortex (V1) at the infragranular
layer (∼ 600 µm deep from the pial surface). See Fig. 1.
About 20 min after each injection, the post injection activity
was recorded. Each recording lasts approximately 10 min.
We have three different measurements for the same mouse:
pre-injection (control), then post-vehicle injection, and post-
4-AP injection. Here we report our preliminary analysis for
the control and post 4-AP injection.

Deconvolution and thresholding The raw fluorescence
signal of each neuron recorded through two photon mi-
croscopy is deconvolved using Vogelstein et al. Bayesian
estimation algorithm [17]. The algorithm uses the df/f of



Fig. 1. A. The mouse is headposted rested awake and free
to walk on a treadmill. B. Skull picture showing electrode
implantation and site of planned window to overly visual cor-
tex. C. (Left) Craniotomy window after implantation. Green
frame illustrates the field of view (FOV). (Right) FOV (diam-
eter ∼ 500µm) showing spontaneous activity, scanned by the
spiral scanning method.

the signal, which corresponds to the raw fluorescence signal
minus the baseline of the signal over the baseline, where the
baseline corresponds to the 10th percentile of the raw sig-
nal. The algorithm estimates the most probable spike train
given the calcium concentration signal, assuming a linear de-
pendence of the fluorescence and the calcium concentration,
which decays exponentially to the calcium baseline upon
excitation. It reports a continuous value representing the
probability that a spike occurs at the corresponding frame.
To transform it to eventogram, a threshold based on the noise
intervals of the df/f is employed. Specifically, we form a
Gaussian distribution with mean the 20th percentile of the
neuron’s df/f , using all the values that are less than this 20th

percentile, “mirroring” their values at the right part of the
synthetic distribution. The frames that are less than the mean
plus the two standard deviations of this Gaussian distribution
correspond to the noise intervals of that neuron. We then
threshold the deconvolved signal based on the 99th percentile
of the deconvolved signal values that lie in the noise inter-
vals: a value higher than the threshold corresponds to spike
(1), otherwise to no spike (0).

4. NETWORK ANALYSIS

Temporal correlation STTC quantifies the temporal correla-
tion between spike trains. Specifically, for the estimation of
the STTC between spike trains A and B, it computes the pro-
portion of total recording time which lies within ±∆t of any
spike of the spike trains of A and B, TA and TB , respectively.
Then, it computes the proportion of spikes from A, which lie
within ±∆t of any spike from B (PA). PB is calculated sim-
ilarly. The spike time tiling coefficient can be defined by:

STTC =
1

2

( Pa − Tb
1 − PaTb

+
Pb − Ta
1 − PbTa

)
(1)

The normalization factor (1 - PaTb) ensures that STTC is in
the range of [-1, 1]. The STTC is positive if spikes in train A
are correlated with spikes from train B, and negative if there
is less correlation than expected by chance.

For each pair of neurons (i,j), we estimate its (observed)
STTC value (STTCobs

i,j ) as well as the null which corre-
sponds to the chance level (null). For the estimation of the
null, for each pair (i, j), we circularly shift j by a randomly
selected number (in the range of [1, T ], where T is the length
of the spike train), leading to spike train j′. Next, the STTC
between i and j′ is estimated. We repeat this process 500
times. This corresponds to the null distribution. The mean
STTCnull

i,j and standard deviation σnull
i,j of the control, for

each pair (i, j) are estimated. The neurons (i, j) have a statis-
tical significant temporal correlation (i.e., are connected with
an edge), if their STTC value STTCobs

i,j is above a certain
z-value threshold, α (here 4).

We consider the synchronous firing of two neurons (i.e.,
two neurons exhibit a firing event within the same frame)
as well as the strictly directional with lag approximately 0.2
sec (i.e., the firing of two neurons with lag of exactly one
frame). Note that the strictly directional does not consider
synchronous firing (co-firing within the same frame).
Affinity and Fast Belief Propagation BP combines weak
signals to derive stronger ones, employing the principle of the
“homophily” or influence of a node on its neighbors. Here we
use the Fast Belief Propagation (FaBP) [9], an algorithm that
yields twice speedup, equal or higher accuracy than BP, and
is guaranteed to converge. It has been extended to weighted,
directed networks using weighted non-symmetric adjacency
matrices. The incorporation of STTC values in the form of
edge weights can produce affinity values which capture more
information about the role of the neurons in the network.

Connectivity characterization

Statistically significant temporal correlation in control
and post 4-AP condition. The post 4-AP exhibits signifi-
cant temporal correlations, stronger than the control, for both
the synchronous case as well as the strictly directional with
lag 1 (as shown in Figs 2, left and right, respectively). The
differences of the post 4-AP vs. the control vs. null are
prominent.
Dense functional connectivity in post 4-AP compared to
the control. Compared to control, post 4-AP exhibits denser
functional connectivity, as illustrated with the larger percent-
age of significant edges, clustering coefficient, and affinity
metrics (99.78% vs. 42.20% (lag 0), 89.14% vs. 30.57%
(lag 1)). The temporal correlation persists for strictly direc-
tional STTC with lag of one frame. Post 4-AP manifests
strong functional connectivity, higher than that of the control,
with high normalized degree of connectivity, and weighted
directed clustering coefficients ( Table 1 and Fig. 3).
Prominent differences of the post 4-AP compared to the
other network topologies. The differences in the topology
of the post 4-AP compared to the Erdös-Rényi (ER), Watts-
Strogatz (WS), and null graphs are prominent. ER and WS
graphs are constructed with the same number of nodes (252)
and edges as the 4-AP graph with lag 1 frame; their edge



Fig. 2. STTC values for control and post 4-AP for STTC lag 0
(left) and 1 (right) normalized by the total number of possible
edges for each case: (top) only statistically significant edges;
null has a few edges and is not visible; (bottom) all edges
included.

Table 1. (top) Median normalized DoC & WCC for control
& post 4-AP; (bottom) Affinity for various graphs, equivalent
to the post 4-AP (STTC, lag of 1 frame); KS test used.

Graph DoC WCC
4-AP 0.996 ± 0.084 0.932 ± 0.037
control 0.580 ± 0.305 0.391 ± 0.120

Graph Median affinity (±2.sd) p-value
4-AP 0.2329 ± 0.0449 -
Null 0.1453 ± 0.0051 < 0.001
ER 0.1766 ± 0.0026 < 0.001
WS 0.1609 ± 0.0009 < 0.001
control 0.1563 ± 0.0102 < 0.001

weights were all set to the same value, equal to the mean
STTC value of 4-AP graph. The corresponding statistically
significant null graph was constructed as described before. In
the control, a different number of nodes (350) was recorded.
Table 1 (bottom) presents the median affinities of nodes of the
corresponding graphs. The affinity vector of the 4-AP graph
is statistically significantly different from the corresponding
null, ER, WS graphs and control (p-values for significance of
affinities estimated using the KS test).

The highest values of affinity of neurons in post 4-AP are
identified in the lower half circle of the FoV, close to the area
of the 4-AP injection (as shown in Figures 3(top)). Unlike the
affinity, the weighted directed clustering coefficient here does
not reveal any significant properties in the spatial distribution
of neurons (Fig. 3(bottom)).
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Fig. 3. Weighted directed affinity induces unsupervised clus-
tering of neurons in 4-AP (lag of 1 frame) (top) in contrast to
weighted directed clustering coefficient (bottom).

Comparing affinity to clustering coefficient Unlike in the
case of 4-AP and control graphs without weights, where
their affinity distributions at lag 1 had a small overlap (not
shown here due to space constraints), the weighted affin-
ity distributions of the corresponding graphs, i.e., integrated
with the STTC weights, are well-separated. Moreover, the
weighted affinity reveals an interesting localization property
(Fig. 3(top)). Unlike clustering coefficient, which is a strictly
local metric, the affinity captures the connectivity of a neu-
ron along a larger area (e.g., within a range of 10-hop away
neighbors) catching the more active neural network in the
4-AP condition. The lower part of the FoV is closer the area
of the 4-AP injection.

5. CONCLUSIONS AND FUTURE WORK

This work demonstrated the high temporal correlation of neu-
rons in the context of 4-AP and its denser functional net-
work connectivity, compared to other network architectures
and conditions. Moreover, it highlighted the power of the
weighted affinity to identify neurons that seem to play an im-
portant role in the evolution of the ictogenesis. In contrast to
clustering coefficient and normalized degree, the affinity can
spot neurons that change most during epileptic seizure as ev-
idenced by their proximity to the 4-AP injection site. Our fu-
ture work will examine the time-evolving aspects of the 4-AP
mechanism, and “label-tracking” over time. We plan to exam-
ine whether the EEG signal can reveal information about the
states of other neurons (e.g., interneurons outside of the FoV)
that may play important role in the propagation or in the con-
trol of seizures. The proposed metrics and methodology set a
framework for the identification of the conditions that cause
these seizures and their control: whether there exist special
“gate” neurons that are reliably engaged, potentially orches-
trating certain patterns.
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