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Abstract

The field of neuroscience is experiencing rapid growth in the complexity and quantity of the recorded neural activity
allowing us unprecedented access to its dynamics in different brain areas. One of the major goals of neuroscience is
to find interpretable descriptions of what the brain represents and computes by trying to explain complex phenomena
in simple terms. Considering this task from the perspective of dimensionality reduction provides an entry point into
principled mathematical techniques allowing us to discover these representations directly from experimental data, a
key step to developing rich yet comprehensible models for brain function. In this work, we employ two real-world
binary datasets describing the spontaneous neuronal activity of two laboratory mice over time, and we aim to their
efficient low-dimensional representation. We develop an innovative, robust to noise, dictionary learning algorithm for
the identification of patterns with synchronous activity and we also extend it to identify patterns within larger time
windows. The results on the classification accuracy for the discrimination between the clean and the adversarial-noisy
activation patterns obtained by an SVM classifier highlight the efficacy of the proposed scheme, and the visualization of
the dictionary’s distribution demonstrates the multifarious information that we obtain from it.

Keywords: Dictionary Learning, Supervised Machine Learning, biological neural networks.

1. Introduction

The advances of imaging and monitoring technologies,
such as in vivo 2-photon calcium imaging at the meso-
scopic regime as well as the massive increases in compu-
tational power and algorithmic development have enabled5

advanced multivariate analyses of neural population activ-
ity, recorded either sequentially or simultaneously.

More specifically, high resolution optical imaging meth-
ods have recently revealed the dynamic patterns of neural
activity across the layers of the primary visual cortex (V1),10

making it possible to apply network analysis methods to
this important question: Neuronal groups that fire in syn-
chrony may be more efficient at relaying shared informa-
tion and are more likely to belong to networks of neurons
subserving the same function.15

We have preliminarily investigated this question using
2-photon imaging to monitor the spontaneous population
bursts of activity in pyramidal cells and interneurons of
L2/3 in mouse V1. We found that the sizes of spontaneous
population bursts and the degree of connectivity of the20

?Fully documented templates are available in the elsarticle pack-
age on CTAN.

neurons in specific fields of view (FOVs) formed scale-free
distributions, suggestive of a hierarchical small-world net
architecture [1].

The existence of such groups of ”linked” units inevitably
shapes the profile of spontaneous events observed in V125

networks [2, 3, 4]. Thus, the analysis of the spontaneous
activity patterns provides an opportunity for identifying
groups of neurons that fire with increased levels of syn-
chrony (have significant ”functional connectivity” between
each other).30

Many recent studies have adopted dimensionality re-
duction to analyze these populations and to find features
that are not apparent at the level of individual neurons.
Dimensionality reduction methods produce low-dimensional
representations of high-dimensional data preserving or high-35

lighting features of interest. Such methods are typically
applied in settings in which the measured variables co-
vary according to a smaller number of explanatory vari-
ables. These methods discover and extract these explana-
tory variables from the high-dimensional data according40

to an objective that is specific to each method. Typically,
any data variance not captured by the explanatory vari-
ables is considered to be noise. Dimensionality reduction
algorithms have achieved great success in modelling com-
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plex signals, from images [5] to wireless sensor network45

data [6] and biological neural networks [7].
We specifically adopt dictionary learning methods, which

provide a parsimonious description of statistical features
of interest via the produced dictionary, discarding at the
same time some aspects of the data as noise. Dictionaries50

are used in various domains such as face recognition [8, 9]
and facial expression recognition [10], object tracking [11]
etc., as they are a natural approach for performing ex-
ploratory data analysis as well as visualization of the data.
Moreover, given the fact that the produced dictionary is55

the new space of reduced dimensionality, the computa-
tional complexity of its management is much smaller com-
paratively to the initial, raw data. We also combine dic-
tionary learning methods with supervised machine learn-
ing techniques, which enables us to discriminate the clean60

from the adversarial-noisy activation patterns, which are
the examples that come out when we add artificial noise to
clean data. The proposed methodology could be applied
to understand cortical circuit function and malfunction in
a number of neurological disorders.65

More specifically, in order to capture the synchronicity
patterns among neurons, we propose the Adversarial Dic-
tionary Learning Algorithm (ADL). We also extend this
to the Relaxed Adversarial Dictionary Learning Algorithm
(RADL), which captures activation patterns within bigger70

time window intervals. We employed two real-world bi-
nary datasets that depict the neuronal activity of a 9-day
old and a 36-day old C57BL/6 laboratory mouse. Data
was collected using two-photon calcium imaging in the
V1, L2/3 area of the neocortex of the animals. Fig. 175

illustrates the format of our data, where each column rep-
resents an example-activation pattern that consists of 0s
that are the non-firing events while 1s represent the firing
events. The main aspects that will be addressed in this
work are the following:80

• Identification of synchronous activity, which refers to
a time window of one time bin (W = 1) generated
by ensembles of neurons. For example Neurons 2, 4
and 6 (yellow boxes) in Fig. 1 fire simultaneously.

• Identification of temporal correlation of the firing of85

neurons within a time window W > 1. For example
Neurons 4 and 5 (green boxes) in Fig. 1 are not
activated simultaneously but within a time window
interval W = 2.

• Discrimination between clean and adversarial-noisy90

activation patterns

The contributions of this work are summarized as fol-
lows:

• Acquisition of an interpretable dictionary, i.e. the
dictionary elements are essentially part of the input95

data and the dictionary construction is not a result of
a mathematical transformation, as opposed to other
methods, such as K-SVD [12] or PCA [13].

Figure 1: Temporal patterns: Synchronous (W = 1) and within
larger time windows W > 1.

• The dictionary by its construction keeps out pat-
terns, which could be a result of noise. This noise re-100

sults mainly from calcium fluctuations independent
of spiking activity and other sources of imaging noise.

• In contrast to other methods that require a choice
of dimensionality K (e.g. the size of the dictio-
nary), here the dictionary size is not a parameter105

that has to be determined by the user, or be esti-
mated (e.g. based on the choice of arbitrary cutoff
values or cross-validation methods [14]).

• Detection of statistically significant synchronous and
within a lag temporal patterns of activity, which110

can be distinguished from shuffled data (i.e. the
adversarial-noisy examples) whose temporal corre-
lations are destroyed.

The remainder of the paper is organized as follows: In
Section II, we discuss related work on the analysis of neu-115

ronal activity in terms of dimensionality reduction. In Sec-
tion III we describe and analyze the proposed approaches.
Evaluation methodology and experimental results are pre-
sented in Section IV, while conclusions are drawn in Sec-
tion V.120

2. Related Work

Cell ensembles (or synonymously cell assemblies or cor-
tical patterns-motifs) were originally proposed by Hebb
[15] as subsets of synchronously firing neurons to explain
brain activity underlying complex behaviors. Multiple stud-125

ies show evidence of neuronal ensembles and functional
subnetworks [1, 16].

Especially in the past two decades where it became
possible to record large neuronal populations concurrently
[17, 18, 19], methods such as K-SVD [7], Principal Compo-130

nent Analysis (PCA) [20], Independent Component Anal-
ysis (ICA) [21] and Non Negative Matrix Factorization
(NMF) [22] have been applied to identify neurons repeat-
edly firing at the same time to find statistically significant
ensembles and answer questions about their existence.135

The dictionary learning algorithm K-SVD [12], has been
used for capturing the behavior of neuronal responses into
a small number of representative prototypical signals (i.e.
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into the dictionary) and the output dictionary was eval-
uated with real-world data for its generalization capac-140

ity as well as for its sensitivity with respect to noise [7].
Its most severe constraint is that the output dictionary is
real-numbered, and when the data consist of binary mea-
surements it is difficult to get insights about the temporal
correlations.145

PCA, which has been used for the detection of cell
ensembles[23], computes the first Ne principal components
of the spike matrix and considers those to be the ensem-
bles. Its most severe limitations are that two different
ensemble patterns can be merged into a single component150

and that negative values with no physical meaning are
possible in the components.

ICA decomposes a multivariate signal into additive sub-
components assuming that these are non-Gaussian and
statistically independent from each other [21]. When used155

to learn ensembles it overcomes some of the problems of
PCA-based methods: Individual neuron-ensemble mem-
bership can be recovered easily and neurons belonging to
multiple ensembles are also correctly identified [24]. Again
negative values are possible in the identified patterns lead-160

ing to interpretation problems. Santos et al. [24] recom-
mend this method for synchronous patterns but temporal
correlations with lags or other structures such as synfire
chains (synchronous firing chains) cannot be identified by
this model.165

Diego and Hamprecht [22] use non-negative matrix fac-
torization techniques for the decomposition of binned spike
matrix, in order to identify a hierarchical structure of mo-
tifs. Again no temporal structure is taken into account
and only neurons with synchronous firing activity are con-170

sidered.
Some common drawbacks that most of the aforemen-

tioned approaches have are summarized as follows:

• The number of the neural patterns (i.e. the dimen-
sionality of the new reduced space) needs to be pre-175

defined.

• The produced dictionaries are real-valued, which means
that in many cases they have no physical meaning.

• Analyses with more complex motifs are missed.

Towards these directions, our approach differs from the re-180

lated bibliography in the way that was described in Section
I, where we summarized the contributions of this work,
which surpass the weaknesses of the aforementioned meth-
ods. Eventually, given the fact that we use real-world mea-
surements, emphasis is given to the development of robust185

algorithms.

3. Proposed Dictionary Learning Framework

In this section we present the two proposed dictionary
learning methods:

• Adversarial Dictionary Learning Algorithm (ADL)190

identifies the synchronicity patterns, i.e. patterns
where the neurons fire within the same time bin.

• Relaxed Adversarial Dictionary Learning Algorithm
(RADL) is the extension of ADL, which gives the
potential to detect firing activity within a temporal195

window of length that is determined by the user.

We also employ a supervised machine learning framework
in order to access the learning capacity of the dictionaries
that are produced by the two methods as well as their
robustness to adversarial noise.200

3.1. Adversarial Dictionary Learning Algorithm

The ADL algorithm aims to identify synchronous ac-
tivation patterns (i.e. patterns whose neurons fire within
the same time bin) that exist in the input data and out-
puts them to a dictionary, which is the new dimensionality205

reduced space. ADL is an iterative algorithm, which in
every iteration selects randomly an example (i.e. an acti-
vation pattern) from the data and examines if it will be
included in the dictionary or not. Every iteration consists
of two stages. In the first stage, the algorithm examines210

the contribution of the selected example in the representa-
tion of the input data, which are the clean examples, and
in the second stage it examines the contribution of the ex-
ample in the representation of noisy data (i.e. data that
we have artificially added noise). When these two stages215

are completed, they are combined in order to determine
if the input example will be included in the dictionary or
not.

Given a training set Yclean ∈ BM×N , where B is the
binary set consisting of the values 0 and 1, M is the number220

of neurons and N the number of clean examples (yj)
N
j=1,

where each one represents an activation pattern (i.e. the
activity of all the neurons within one time bin as shown
in Fig. 1), we aim to construct a dictionary D ∈ BM×K ,
which at the end of the algorithm will have K dictionary225

elements that capture the activity among those neurons.
Zero columns and those with only one 1-entry (firing of
only one neuron within one time bin) have been removed
from the training set Yclean, as we are interested only in
synchronicity patterns (i.e. when two or more neurons fire230

simultaneously within the same time bin).
ADL constructs the dictionary D incrementally, as in

every iteration of the algorithm one example yi of the set
Yclean is examined as to whether it will be included in the
dictionary or not. The algorithm iterates N times (i.e. for
each one of the examples yj that are in the set Yclean)
and stops when all of them are examined. Apart from the
dictionary D that the algorithm will output, it also uses
an auxiliary dictionary D′, which in every iteration of the
algorithm has all the elements of D as well as an extra
example yi, which at the current iteration is the example
that is examined whether it will be included in the dictio-
nary D or not. Namely, if at the iteration i, D ∈ BM×k
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then D′ ∈ BM×(k+1). D is initialized randomly with an
example yj of the set Yclean and at the first iteration of the
algorithm when the first yi is to be examined, dictionaries
D and D′ have the following form:

D = yj and D′ = [D,yi] = [yj ,yi] (1)

At the first stage of the algorithm, in order to vali-
date and decide if the example yi should be included in
the dictionary or not, we also use a set of clean validation
examples Vclean ∈ BM×(N−1), which consists of all the
examples of set Yclean, except the current example yi un-
der consideration, namely Vclean =

{
(yj)

N−1
j=1 , j 6= i

}
. Ac-

cording to the sparse representation framework, given the
dictionaries D and D′, where only D′ as it was mentioned
before includes the example yi, we search respectively for
the coefficient matrices X ∈ Rk×N and X′ ∈ R(k+1)×N .
An approach to this problem is the minimization of the
following l0 norm problems:

min
X
||Vclean −DX||22, subject to ||xj ||0 ≤ T0 (2)

min
X′
||Vclean −D′X′||22, subject to ||x′j ||0 ≤ T0 (3)

where ||xj ||0 and ||x′j ||0 are the l0 pseudo-norms, which
correspond to the number of non-zero elements for every
column j of sparse coefficient matrices X and X′, respec-
tively. The sparsity level T0 denotes the maximal number235

of non-zero elements for every column j of sparse coeffi-
cient matrices X and X′, namely each column can have
at most T0 elements. These minimization problems are
solved using the OMP Algorithm [25].

Based on the equations (2) and (3), we examine whether240

DX or D′X′, which represent the sets Vclean reconstructed

and V′clean reconstructed respectively, better approaches the
validation set of examples Vclean. So, the question that is
under discussion is if the example yi, which is included in
D′, helps for the better representation of the set Vclean.245

The metric employed to answer this question is:

Eclean = {RMSE(Vclean,Vclean reconstructed)} (4)

E′clean = {RMSE(Vclean,V
′
clean reconstructed)} (5)

where RMSE is the root mean squared error. If the rep-
resentation error E′clean is smaller than Eclean, namely
if

E′clean < Eclean (6)

this means that the example yi, which was only included
in D′ had indeed an effective result in the representation
of the validation set Vclean.

We will keep up with the description of the second250

stage, which is the innovative part of our algorithm and
justifies the characterism adversarial that we have given
to it. The idea behind this stage of the algorithm is par-
tially inspired from adversarial learning methods [26, 27].

Adversarial training is the process of explicitly training a255

model on adversarial examples, in order increase its ro-
bustness to noisy inputs. Thus, we create an adversarial
learning environment by using clean and adversarial-noisy
activation patterns aiming to construct a dictionary that
will be robust to the measurement noise (i.e. calcium fluc-260

tuations) as well as to identifying firing events emerging
by chance. The second stage of the algorithm combined
with the first stage will determine if the example yi will
be ultimately added in dictionary D.

More specifically, in order to include the example yi265

in dictionary D, besides its good contribution to the rep-
resentation of the validation set Vclean, it should be si-
multaneously a non-helpful factor for the representation
of an adversarial noisy signal. This aims to the creation
of a dictionary that will be robust to noise. In order to270

achieve this, we create a set of adversarial-noisy examples
Ynoisy ∈ BM×N by circularly shuffling the spike train of
each neuron of the initial set Yclean by a random number,
different for each neuron. Fig. 2 depicts a simple exam-
ple with five neurons spiking at various time bins showing275

how the adversarial-noisy signal is created and how the re-
moval of zero columns and those where only one neuron is
active (filtering) is performed for both the initial and the
noisy signal. Firstly, in order to create the noisy signal,
we perform circular shifting to each neuron of the initial280

signal independently. For example, the spike train of the
first neuron is circularly shifted by 2 positions-time units.
Accordingly, the spike train of the second neuron is circu-
larly shifted by 5 positions-time units etc. From both the
initial and the noisy signal, the zero columns as well as285

these with a single active neuron are removed (filtering).
The advantages of this type of noise over other techniques
such as the random flipping of the events is that it pre-
serves the spike distribution of each neuron (firing rate),
while it destroys the synchronicity patterns between indi-290

vidual neurons making this type of noise extremely real-
istic. We also create a validation set of noisy examples
Vnoisy ∈ BM×(N−1), which consists of all the examples
included in set Ynoisy except from a random one that is
removed so that Vclean and Vnoisy have the same number295

of examples. If yi does not aid in the representation of a
noisy signal, then the representation error of Vnoisy will
increase when example yi is introduced.

To access the degree to which the example yi con-
tributes to the representation of the Vnoisy set, the fol-
lowing minimization problems are solved using again the
OMP Algorithm:

min
Xnoisy

||Vnoisy −DXnoisy||22, s.t. ||xj,noisy||0 ≤ T0

(7)

min
X′

noisy

||Vnoisy −D′X′noisy||22, s.t. ||x′j,noisy||0 ≤ T0

(8)

Using the same metric as that in Equations (6), we get the
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Figure 2: Creation of noisy dataset with circular shift and removal
of zero columns and those where only one neuron is active from the
initial and the noisy signal (filtering).

following representation errors:

Enoisy = {RMSE(Vnoisy,Vnoisy reconstructed)} (9)

E′noisy = {RMSE(Vnoisy,V
′
noisy reconstructed)} (10)

This time E′noisy should be greater than Enoisy, namely

E′noisy > Enoisy (11)

This would suggest that the example yi included in
dictionary D′ does not contribute to the good represen-300

tation of the noisy set of examples Vnoisy resulting to a
bigger error with its presence in the dictionary D′. That
would be exactly the prerequisite for its inclusion in the
dictionary D, if we took into account only the second part
of our algorithm. Note that the dictionary D consists of305

examples only from the set Yclean. The set Vnoisy, which
results from the set Ynoisy is used by the algorithm dur-
ing the training procedure only in order to determine the
appropriateness of the example yi in the dictionary D.

Eventually, in order to be determined by the system if
the example yi will be included in dictionary D, inequali-
ties (6) and (11) are combined in the following way:

E′clean
E′noisy + ε

<
Eclean

Enoisy + ε
(12)

310

where ε is a very small positive quantity so as zero denom-
inators are avoided.

If inequality (12) holds, then yi will be also added in
dictionary D. Dictionaries D and D′ would then tem-
porarily be exactly the same, until the next iteration, where
another example yi would be added in dictionary D′, in
order to be examined as to whether it should be eventually
included in dictionary D or not. Otherwise, if

E′clean
E′noisy + ε

≥ Eclean

Enoisy + ε
(13)

then yi is removed from dictionary D′ and it is obviously
never included in dictionary D. The algorithm keeps up
with selecting randomly the next example yi and iterates315

until all of the examples are examined and a desirable dic-
tionary D is formed. The procedure that we have de-
scribed so far is depicted in steps 1-5 of Fig. 3. In step
1 a random example yi is selected and the representation
errors Eclean, E′clean, Enoisy and E′noisy of stages one and320

two of the algorithm are computed. Fig. 3 is a snapshot of
our algorithm at some iteration j, as D and D′ are initial-
ized with the example y4, and the example y2 was already
examined and included in dictionary D, while some other
examples may have also been examined but were not in-325

cluded in D. So, at the jth iteration another example yi

(in blue color) is examined as to whether it will be included
in D or not. Step 2 of Fig. 3 is the combination of stages
one and two of our algorithm, i.e. it is the step, where the
inclusion of the example yi in dictionary D is determined.330

In step 3, after we have finished with the example yi we
keep up by selecting randomly the next example yi+1 and
the steps 1-2 are repeated again for this example too. Step
4 repeats the steps 1-3 for all the examples that are left
and at step 5 we obtain the dictionary D.335

In order to report the final dictionary D, the steps
1-5 of Fig. 3 are repeated 4 times-epochs in exactly the
same mode that was described previously (we use 4 epochs
because as shown and discussed later in Fig. 14, after the
third epoch the performance of the algorithm is stabilized).340

In every epoch of the algorithm the examples in set Yclean

are randomly selected and examined as to whether they
will be included in the dictionary or not. Moreover, from
the second epoch onward the dictionaries D and D′ are not
initialized with one random example as in the first epoch.345

Instead, the algorithm initializes both dictionaries D and
D′ with the dictionary D that was formed in step 5 of the
previous epoch, which is essentially used as a baseline for
the construction of the next dictionaries.

The reason for introducing the idea of epochs in our al-350

gorithm is that in every epoch new examples can be added,
which in previous epochs were kept out of the dictionary,
because at the time they were selected and examined some
other examples with which they could make a good com-
bination were not examined yet, and as a result at that355

epoch they remained out of the dictionary. Moreover, the
use of epochs is a way to examine that the randomness
with which the examples are selected, will not change sig-
nificantly the structure of the dictionary D in every single
epoch. Namely, the examples of set Yclean that are not360

included in the dictionary each epoch, only a part of them
will be included in the dictionaries of the next epochs and
thus, the dictionary formed in the first epoch will have
almost the same elements with the dictionary that will
be formed in the last epoch (i.e. the 4th epoch). After365

the completion of these 4 epochs the algorithm terminates
and as shown in Fig. 3 we report our final dictionary
D. We emphasize once more that the dictionary size does
not have to be predefined by the user and the algorithm
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Figure 3: Proposed approach: ADL selects all the appropriate examples of set Yclean (steps 1-5) and obtains a dictionary D. This procedure
(steps 1-5) is repeated 4 times and in every epoch dictionaries D and D′ are initialized with the dictionary obtained in the previous epoch.
After the 4 epochs we report the final D.

decides itself for the number of the dictionary elements-370

patterns that are sufficient for the effective representation
of the data.

3.2. Relaxed Adversarial Dictionary Learning Algorithm

In this section we describe the RADL algorithm, which
is the extension of the ADL algorithm that was described375

in the previous part. In addition to the synchronous activ-
ity (i.e. firing activity within the same time bin), RADL
can identify temporal patterns within bigger time window
intervals and outputs them to a dictionary.

In order to achieve this we define a time-window pa-380

rameter W , which determines the number of time bins that
we will use, in order to search for patterns with some tem-
poral correlation within that interval. Thus, if we define
the length of the time-window to be L time bins, we add
the content of every L columns-time bins in an overlapping385

mode. Namely, we sum up the columns y1 + y2 + ...+ yL,
y2+y3+ ...+yL+1, y3+y4+ ...+yL+2 etc. We also normal-
ize all the values that come out from this summation by
dividing with the length of the time-window (i.e. by L), so
that the values are normalized in the scale {0 1}. The pro-390

cedure and the idea behind this approach, i.e. the reason
why the summing of the columns gives us the possibility
to identify temporal patterns within bigger time window

intervals is explained with the following example, which
is also depicted in Fig. 4. If we define the time window395

for example to be W = 2 time bins, we add the content
of every 2 columns-time bins in an overlapping mode as
shown in Fig. 4. Namely, we sum up the columns y1 + y2,
y2 +y3, y3 +y4 etc. and the values that come out from this
summation are 0, 1 and 2 (highlighted in blue). The first400

column of the matrix after the summations indicates that
neurons 1, 2 and 3 have some temporal correlation, which
is indeed true, as neurons 1, 2 and 3 in the initial signal
are activated in consecutive time bins. More specifically,
neuron 1 is activated exactly one time bin before neurons405

2 and 3, while 2 and 3 are synchronous in the same time
bin. In this mode we check temporal correlations among
other neurons too. Then, at the normalization step, all
values are normalized in the scale {0 1} by dividing with
W so that the and thus, values 0, 0.5, and 1 for W = 2410

time bins represent:

• 0: Neuron did not fire at all within W = 2 time bins

• 0.5: Neuron fired in one of the two time bins

• 1: Neuron fired consecutively at each time bin

Then, at the filtering step, zero columns and those with415

only one non-zero entry are removed. The same procedure
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as it is depicted in Fig. 4 is obviously repeated for the
noisy signal too. The summing of the columns in the ini-

Figure 4: Searching for patterns with temporal correlation within
a time window W = 2. We sum the signal every 2 columns in an
overlapping mode (step 1), we normalize the values (step 2) and we
remove zero columns and those where only one neuron is active (step
3), for both initial and noisy signal.

tial signal results to a signal that has less zero columns and
columns where only one neuron is active. We can also ob-420

serve this in Fig. 4, where the initial signal included three
zero columns and one column where only the first neuron
was active, while after the summing of the columns the
signal remained with only one zero column. Thus, during
the filtering procedure the amount of columns that are re-425

moved is much smaller than before (i.e. when we applied
the ADL algorithm and there was no column summing),
which results to a training set Yclean with more exam-
ples. Thus, as we increase the time window, the number
of columns that have to be removed during the filtering is430

much smaller, which results to an increase in the number
of the examples of each set as shown in Table 1. The in-
crease in the number of the training examples brought also
an increase in the size of the dictionary, which RADL out-
puts and in order to compress it, apart from the training435

set Yclean, the validation set Vclean and the correspond-
ing noisy sets Ynoisy and Vnoisy, we also use during the
training procedure a testing set T1 ∈ FM×S of S clean
and adversarial-noisy examples, where F is the set of nor-
malized values in scale {0 1}. T1 is independent from the440

testing set T2 ∈ FM×Q, where Q is the number of clean

and adversarial-noisy examples that will be used in the
final step of the algorithm, in order to obtain the final
performance of our model.

For the compression of the dictionaries that are pro-445

duced in every epoch, we use only the clean examples of
the set T1 (the noisy examples of set T1 are used only
after the compression with the clean examples, in order to
evaluate the performance of our algorithm in every single
epoch). More specifically, in order to compress the dictio-450

nary formed in each epoch we remove all the dictionary
elements that are not used significantly in the representa-
tion of the clean testing examples of the set T1. So, after
the formation of each dictionary D (step 5 in Fig. 3), and
before we use it in the next epoch, we examine how much455

each dictionary element contributes in the representation
of the clean examples of set T1. The contribution of each
dictionary element is measured in the following way: Given
the dictionary D that is formed in the current epoch, we
obtain the Coefficient Matrix X, whose columns refer to460

the clean testing examples of set T1 described above. For
every row-vector i of the Coefficient Matrix X, namely for
every xi that refers to the specific column-vector dictio-
nary element di, we calculate its l2-norm. Then, we sum
all the elements of the row-vector xi and if the summation465

is smaller or equal with the l2-norm, then we remove the
element di from the dictionary. The intuition behind this
technique is that we remove all dictionary elements that
are used negatively for the representation of most of the
examples (i.e. when row-vector xi has many negative val-470

ues). Eventually, in the last epoch of the algorithm (i.e.
the 4th epoch) we obtain the final dictionary D, which is
used with the testing set T2 that we have available for the
testing procedure, in order to evaluate the performance of
our model-algorithm.475

So, what essentially changes from the ADL algorithm
is the input data that we give to the system, where ev-
ery column-time bin in the new data represents patterns
that have a temporal correlation within W time bins. Ob-
viously, this information but in a compressed format is480

also encoded in the dictionary, providing an insight into
temporal correlations. Additionally, during the training
procedure of the RADL algorithm, we compress the dic-
tionary of each epoch by removing the dictionary elements
that have small contribution in the representation of the485

clean examples in T1.

3.3. Evaluation of the dictionary quality

In order to evaluate the quality of the output dictionaries
in terms of learning capacity and robustness to noise, we
employ a supervised machine learning framework by train-490

ing an SVM-classifier with the clean and noisy raw data
as well as with the reconstructed ones (i.e. the output of
DX). We aim to examine the extent to which the clas-
sifier can discriminate the clean from the noisy activation
patterns, and whether its training with the reconstructed495

data results to a better classification performance, rather
than we use the raw data. Thus, classification performance
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is the quantitative metric offering an insight as to extent
that the generated dictionary has captured the underlying
structure of the data.500

4. Performance Analysis

4.1. Dataset Collection

To evalute the merits of the proposed modeling ap-
proach, we employed two real-world datasets that were
collected using two-photon calcium imaging in the neocor-505

tex of a 9-day old mouse and a 36-day old one (C57BL/6).
The first dataset of the 9-day old mouse includes 183 neu-
rons of the layer 2/3 of the V1, and neurons were imaged
using calcium indicator OGB-1 (imaging depth 130 mi-
crons from pia). The dataset of the 36-day old mouse510

includes 126 neurons of the layer 2/3 of the V1 area. Ad-
ditionaly, for the 9-day old mouse 29 minutes of sponta-
neous activity were recorded, comprised of 11970 frames,
each of 0.1451 seconds duration, while for the older one
the total movie length was 30 minutes comprised of 11972515

frames, each of 0.15 seconds duration. The raw fluores-
cence movie was motion-corrected to remove slow xy-plane
drift. After motion correction, we used ImageJ software
[28] to draw the ROIs of cells around cell body centers,
staying 1-2 pixels from the margin of a cell in the case of520

the 9-day old mouse, in order to avoid contamination with
neuropil signals and 1-2 pixels for the 36-day old mouse.
We then averaged the signals of cell ROI pixels and con-
verted them to dF/F [29]. To determine the onsets of
spontaneous calcium responses, the dF/F timecourse for525

each cell was thresholded, using the noise portion of the
data, to 3 standard deviations above noise. To make a bi-
nary eventogram of the responses, for each cell the frames
containing the onsets for this particular cell were assigned
the value 1, and all other frames were assigned the value530

0. The resulting binary eventogram of all cells was used
in subsequent analysis.

4.2. Proposed Approach ADL vs K-SVD

In this section we compare K-SVD, which is an es-
tablished dictionary learning algorithm with our proposed535

method ADL for the case of one time bin window inter-
val (W = 1). More specifically, we examine which of the
two trained dictionaries produced from these two methods
is more robust to adversarial noise. In order to quan-
tify this information, we examine the extent to which each540

trained dictionary can contribute to the discrimination of
the clean from the adversarial-noisy activation patterns.
Through this analysis the impact of the following param-
eters is also explored:

• Dictionary size, denoted DS, which is the number545

of elements considered in the dictionary. While in
K-SVD, DS must be defined by the user, in our
method, it is automatically inferred.

• Sparsity level, i.e., the maximal number of dictio-
nary elements that are used for representation of the550

examples.

We also present some more qualitative results of the dic-
tionary that are produced from our proposed method.

4.2.1. Parameter Setup

After the completion of the filtering that is described555

in Fig. 2, we select 50% of the examples of the clean
filtered signal, namely 1138 examples, which will be used
by K-SVD for the training of the dictionary. Regarding our
proposed method, in order to train the dictionary we select
the same 50% examples from the clean filtered signal, as560

well as 50% of the examples from the noisy filtered signal.
Subsequently, the other half of the clean and noisy filtered
signal sets will serve as the testing set for each one of the
two methods. Namely, they will be used for the training
and testing of an SVM-classifier with gaussian kernel and565

scale σ = 0.01. The classifier is trained and tested with
the:

(i) Raw clean and noisy data

(ii) Reconstructed clean and noisy data, which are bi-
narized by considering all values greater than 0.5 as570

activations (1s), while the rest as zeros.

The number of the testing examples in set T2 as well as
the number of the training examples in set Y, where Y
consists of the clean examples Yclean and the adversarial-
noisy examples Ynoisy for the case of one time bin window575

interval (W = 1) are depicted in Table 1. Note that all sets
described in Table 1 (Y, T1 and T2) include the number
of the clean and the adversarial-noisy examples (i.e. half of
the size of each set described in Table 1 refers to the clean
examples and the other half refers to the adversarial-noisy580

examples).
Fig. 5 shows the distribution of the original clean (5

(a)) and of the noisy signal (5 (b)), as it results from the
circular shifting procedure. The distributions refer to the
activity of the 9-day old mouse before the process of the585

filtering. Namely, in both figures axis x indicates the size
of co-firing neurons (i.e. the number of neurons that co-
activate within one time bin) and the log-scaled axis y
indicates the number of these patterns that exist in the
data. We observe that for the noisy signal, circular shift-590

ing has caused a reduction in zero columns-patterns and
a simultaneous increase in doublets (i.e. patterns where 2
neurons co-activate within a time bin) as well as in pat-
terns where one neuron is active within a time bin. Finally,
more complex patterns with more than seven neurons fir-595

ing simultaneously are completely destroyed.

4.2.2. Evaluation Results

Fig. 7 illustrates the performance of the SVM-classifier
regarding the discrimination between the clean and the
noisy signals for the 9-day old mouse, as a function of the600

sparsity level when the classifier is trained and tested with
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Size W = 1 W = 2 W = 3 W = 4

Training Set (Y ) 2276 2964 3648 4156
Testing Set (T1) - 1866 2270 2578
Testing Set (T2) 2324 2744 3336 3770

Table 1: Sizes of the Sets Y , T1 and T2 for all Ws

(a) (b)

Figure 5: (a) Clean signal distribution (b) Noisy signal distribution

the raw data, the reconstructed data produced by our pro-
posed method ADL and the reconstructed data produced
by the K-SVD algorithm. Each point in the errorbar plots
corresponds to the mean accuracy of four runs and in ev-605

ery run the examples in the training set are given with a
different sequence in terms of the columns (i.e the second
column of the training set in the first run may be the fifth
column of the training set in the second run). Thus, the
K-SVD algorithm is initialized with a different dictionary610

in every run, as the columns are presented with a different
sequence. Regarding our algorithm, the different sequence
in the columns of the training set in every run, results to
the selection and as a consequence to the examination of
the examples with a different sequence as to whether they615

will be included in the dictionary D or not. The testing
set remains the same in all runs. The vertical error bar
demonstrates the standard deviation of these for four runs
(i.e. how the accuracy of each run differs from the mean
accuracy of the four runs). More specifically, as it is il-620

lustrated in each subfigure of Fig. 7, we give as input to
the K-SVD algorithm a different dictionary size, and we
evaluate the performance of the algorithm compared to
our proposed method. Fig. 6 depicts the corresponding
dictionary sizes that are produced from our method for625

the case of one time bin window interval (W = 1). More
specifically, for every sparsity level (S.L.), Fig. 6 demon-
strates the size of the final dictionary D that is obtained
from the 4th epoch for each one of the 4 runs.

630

We observe in Fig. 7 that when the classifier is trained
and tested with the raw data, the accuracy that it achieves
is almost 51%. This percentage is quite low and indicates
the difficulty of the problem that we are supposed to solve.
By using the reconstructed data that are produced by the635

K-SVD algorithm we observe that the classifier achieves

Figure 6: Size of the final dictionary D for every run and Sparsity
Level (S.L).

a better performance with an accuracy of 56% for dic-
tionary size equal to 150 elements and for sparsity level
equal to 2. In all of the subfigures we observe that as
the sparsity level increases, the accuracy of the classifier640

decreases, which can be attributed to overfitting of the sys-
tem. Moreover, the three different dictionary sizes, which
were tried as input to the K-SVD algorithm do not af-
fect significantly the performance of the classifier. When
we use the reconstructed data that are produced from our645

method and as depicted in Fig. 7, the classifier achieves
better performance results compared to the performance
of the K-SVD algorithm. More specifically, we obtain an
accuracy of 62% for sparsity level 3 and mean dictionary
size (of the 4 runs) equal to 418. We observe that for650

values of sparsity level greater than 3 the performance de-
teriorates due to overfitting. Nevertheless, our proposed
method gives better performance results for every value of
sparsity level. The superiority in the results that are ob-
tained from our method can be put down to the dictionary655

construction. Namely, as it was described in our proposed
method if the candidate dictionary element contributes to
the better representation of the noisy activation patterns
rather than the clean ones, it is kept out of the dictionary.

As it is already stated, our algorithm executes 4 runs,660

where in every run the examples of the training set are
selected and consequently examined with a different se-
quence as to whether they will be included in the dictio-
nary or not. These 4 runs are executed in order to ex-
amine the sensitivity of our algorithm with respect to the665

different sequence that the examples are selected. More
specifically, we want to examine if the neurons’ firing ac-
tivity captured by the dictionaries of each run is similar
or it presents intense variations. To that end, we demon-
strate Fig. 8, which depicts the variation in the number670

of firing events that neurons have across the 4 dictionar-
ies formed in each run, under the consideration of W = 1
and sparsity level equal to 2. We observe that for most of
the neurons (almost 50 neurons) the maximum variation
across dictionaries is only 2 firing events, while only one675

neuron has a variation of 8 firing events. Thus, we end
up with 4 dictionaries that have almost the same number
of firing events for each neuron, indicating the robustness
of our algorithms with respect to the different sequence in
the selection of the examples.680

Unlike K-SVD, which produces real-numbered dictio-
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Figure 7: Classification performance when the classifier is trained with the raw data, the reconstructed data produced by our method ADL
and the reconstructed data produced by the K-SVD.

Figure 8: Neurons grouped in the same bin have the same variation
in the number of firing events across the 4 dictionaries formed in
every run (W = 1, Sparsity Level=2).

naries with no physical meaning for our application, our
proposed method ADL produces dictionaries that provides
us with quantitative as well as qualitative information, giv-
ing us an insight about the synchronicity patterns existing685

in the data. So, Fig. 9 demonstrates the distribution of

Figure 9: Distribution of the two dictionaries (W=1, Sparsity
Level=3).

two dictionaries (we used the dictionaries that were pro-
duced from the 4th run of our algorithm, for sparsity level
equal to 3) that refer to the spontaneous neuronal activ-
ity of a 9-day old and a 36-day old mouse. Namely, axis690

x indicates the size of the co-firing neurons that exist in
the dictionary, i.e. the number of neurons that co-activate
within one time bin, such as doublets (when 2 neurons co-
activate within one time bin) or triplets (when 3 neurons
co-activate within one time bin), etc and axis y indicates695

the number of these patterns (doublets etc.) that exist
in the dictionary. In the original dataset that refers to
the 9-day old mouse, firing events occupy the 0.487% of
the dataset, while for the 36-day old mouse firing activity
occupies only the 0.364% of the dataset. These percent-700

ages show the sparseness of our datasets and by extension
indicate the low frequency of the neurons’ firing activity
for both laboratory animals. Moreover, these percentages
reveal that the 9-day old mouse has a more intense firing
activity, which can be attributed to its young age. All705

this information is depicted in the distribution of the two
trained dictionaries as we observe that the number of the
various synchronicity patterns for the 9-day old mouse is
greater than the number of patterns for the 36-day old
mouse. Additionally, the dictionary that refers to the ac-710

tivity of the 9-day old mouse includes more complex pat-
terns with more than six neurons firing simultaneously,
while for the 36-day old mouse such patterns tend to be
zero. Eventually, the size of each dictionary also reveals
information about the data that we summarize. Namely,715

the dictionary that refers to the activity of the 9-day old
mouse has a size of 411 elements as depicted in Fig. 6,
while the dictionary that refers to the older mouse has a
size of 51 dictionary elements, which correctly verifies that
it fires less.720

4.3. RADL

This section demonstrates the analysis for temporal
correlation patterns within larger time window intervals
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(W > 1). The analysis assesses the impact of the follow-
ing parameters:725

• Time window interval, denoted W , from which we
can extract information about temporal correlations.

• Sparsity level, i.e., the maximal number of dictionary
elements that are used for representation.

4.3.1. Parameter Setup730

After the completion of the procedure that is described
in Fig. 4 we select 40% of the examples of the clean filtered
signal, as well as 40% of the examples of the noisy filtered
signal for the set Y, which will be used for the training
of the dictionary. Then, we select 25% of the examples of735

the clean filtered signal for the set T1, which will be used
for the compression of the dictionaries that are produced
in every epoch as well as 25% of the examples of the noisy
filtered signal in order to evaluate the performance of our
algorithm at every epoch of each run. Eventually, the740

other 35% of the clean and noisy filtered examples will be
used by the set T2 and will serve as the testing set, whose
half of the examples will be used for the training of an
SVM-classifier with gaussian kernel and scale σ = 0.01 and
the other half will be used for the testing of the classifier.745

The number of the training examples in set Y, as well
as the number of the testing examples in sets T1 and T2

for all the time window intervals are depicted in Table
1. As it was also stated in the parameter setup section
of ADL, all sets described in Table 1 (Y, T1 and T2)750

include the number of the clean and the adversarial-noisy
examples (i.e. half of the size of each set described in Table
1 refers to the clean examples and the other half refers to
the adversarial-noisy examples). The classifier is trained
and tested with the:755

(i) Raw clean and noisy data

(ii) Reconstructed clean and noisy data whose values are
processed as we describe in the following example

As it was described in section III, for the cases of time760

window intervals, where W > 1, activation patterns are
not represented by the values 0 and 1 due to the summing
of the columns and the normalization step. For example
in the case of W = 3, if one neuron has not fired at all
within 3 consecutive time bins, we get a 0-event. If it has765

fired once, we obtain the normalized value of 1
3 , which are

the most prevalent values with the 0 value. Additionally,
if the neuron has fired twice, we obtain the value 2

3 and
if it has fired consecutively in all of the 3 time bins, we
obtain a 1-event, which is not very common due to the770

refractory period. Because of the fact that we deal with
a reconstruction problem, reconstructed values other than
those described before may appear. Thus, without loss of
generality we make the simplification, which is depicted in
Fig. 10. Namely, for W = 3 all values which are smaller775

than 1
6 are turned into zero. Values in space

[
1
6 ,

1
2

)
are

turned into 1
3 and values in space

[
1
2 ,

5
6

)
are turned into

2
3 . Any other value is turned into 1. Accordingly, we work
for any time window W .

Figure 10: Processing the values of the reconstructed events.

4.3.2. Evaluation Results780

Fig. 11 illustrates the performance of the SVM-classifier
regarding the discrimination between the clean and the
noisy signals for the 9-day old mouse, as a function of the
sparsity level when the classifier is trained and tested with
the raw data and the reconstructed data produced by our785

method, i.e. the RADL algorithm. Each point in the er-
rorbar plots corresponds to the mean performance of the
four runs of the algorithm, where in every run the exam-
ples in the training set are selected and examined with a
different sequence as to whether they will be included in790

the dictionary D or not. The vertical error bar demon-
strates the standard deviation of these four runs. More
specifically, as it is illustrated in Fig. 11, each subfigure
refers to the performance of the classifier for different time
window intervals. When the classifier is trained and tested795

with the raw data, the highest accuracy that it achieves,
taking into account all the time windows is 51%, which is a
quite low percentage. When we use the reconstructed data
that are produced from our proposed method, we observe
that as we increase the time window interval, we obtain800

a better classification performance. More specifically, for
sparsity level equal to 5 and for time windows W = 3 and
W = 4 we obtain the highest accuracy performance equal
to 65%. Moreover, as opposed to W = 1, we notice that
for time window intervals W > 1, when the sparsity level is805

increased, the classification performance is increased too.
The summing of the columns that we apply to the initial
signal data (Fig. 4) for time windows W > 1 results to
the replacement of zero columns and columns where only
one neuron is activated, with columns where two or more810

neurons co-activate. As a result, during the filtering pro-
cedure the number of columns that are removed is much
smaller compared to the removal of columns in the case
of time window W = 1. Thus, as it is also depicted in
Table 1 the number of examples-activation patterns are815

increased, which results to an increase in the size of the
trained dictionaries too, as it is also depicted in Fig. 12.
As a result, there is also an increase in the complexity
of the patterns that appear in the data and by extension
in the dictionaries for the cases of W > 1. Thus, by in-820

creasing the sparsity level, we increase the generalization
capacity of our algorithm by allowing it to use more dic-
tionary elements in order to represent the data. On the

11



2 3 4 5

Sparsity Level

0.5

0.6

0.7

0.8
A

cc
ur

ac
y

Raw Data-W=1
Raw Data-W=2
Reconstructed Data-W=1
Reconstructed Data-W=2

(a) W=1,W=2

2 3 4 5

Sparsity Level

0.5

0.6

0.7

0.8

A
cc

ur
ac

y

Raw Data-W=3
Raw Data-W=4
Reconstructed Data-W=3
Reconstructed Data-W=4

(b) W=3,W=4

Figure 11: Classification performance when the classifier is trained
with the raw data and the reconstructed data produced by RADL
with respect to different time window intervals.

Figure 12: Size of the final dictionary D for every run and Sparsity
Level (S.L)

contrary, for the case of W = 1, the dictionary consists of
representative patterns, thus increasing the sparsity level825

leads to worse performance due to overfitting, as shown in
Fig. 11.

Fig. 14 illustrates the classification performance that
is obtained in every epoch of the algorithm for all the runs
and for sparsity level equal to value 3. We observe that830

for all the cases of time windows the classification perfor-

mance is either improved or it remains the same in every
epoch of the algorithm. Thus, as it is depicted in Fig.
14 the dictionary that is obtained in the 4th epoch of each
run, ensures the best possible accuracy performance for the835

specific run compared to the dictionaries that are formed
in the previous epochs.

Figure 13: Distribution of the two dictionaries (W=3, Sparsity
Level=3).

Fig. 13 demonstrates the distribution of the two dictio-
naries (we used the dictionaries that were produced from
the 4th run of our algorithm) that refer to the sponta-840

neous neuronal activity of the 9-day old and the 36-day
old mouse under the consideration of W = 3 and spar-
sity level equal to 3. The figure demonstrates the number
of various patterns (doublets, triplets etc.) firing within
a temporal window of 3 time bins that exist in each dic-845

tionary. As in the case of W = 1, we observe that the
number of the various synchronicity patterns for the 9-day
old mouse is greater than the number of the patterns for
the 36-day old mouse. Additionally, the dictionary that
refers to the activity of the 9-day old mouse includes more850

complex patterns with more than 20 neurons having a tem-
poral correlation within 3 time bins, while such patterns
appear in much smaller numbers for the 36-day old mouse.
Finally, the size of each dictionary also reveals information
about the data that we summarize. The dictionary that855

refers to the activity of the 9-day old mouse has greater
size than the dictionary that refers to the activity of the
36-day old mouse, which correctly indicates and verifies
that it fires less.

5. Conclusions and Future Work860

The world around us, complex as it is, is relatively
low-dimensional: the familiar visual scenes made up of
textures, faces, buildings, and other objects are highly
structured. As it is commonly believed that the devel-
oped brain contains an internal model of the environment865

that it expresses through its structure and activity, it is
expected that this model should be similarly highly struc-
tured, and that the dimensionality reduction characteriz-
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Figure 14: Classification performance with respect to the epochs of the algorithm for each run (Sparsity Level=3).

ing the brain’s activity might be related to intrinsic prop-
erties of sensory stimuli and motor output.870

In this work we employed dictionary learning methods
that were applied on real-world data that refer to the spon-
taneous neuronal activity of a 9-day old and a 36-day old
mouse over time. We used the reconstructed signals that
were produced by those methods, in order to train and test875

an SVM-Classifier for the discrimination of the true from
the noisy activation patterns. In this work we developed
an adversarial dictionary learning framework that is ro-
bust to noise and as a consequence it can discriminate the
clean from the noisy activation patterns, which in contrast880

to state-of-the-art K-SVD, produces an interpretable dic-
tionary. Moreover, when the classifier is trained with the
reconstructed signals of our proposed method, we obtain
a better classification performance. We also extended the
idea to a more relaxed approach, the RADL algorithm,885

which produces a dictionary that captures patterns within
bigger time window intervals and is not restricted to the
synchronous activity of neurons within the same time bin.
Experimental results demonstrate that increasing the ac-
tivation patterns time window, has a positive effect on the890

classification performance.
Future work will focus on the extension of our algo-

rithm with graph signal processing methods, which could
provide insights related to the temporal dynamics of the
network as well as its functional network activities. We895

also plan to explore the potential of the proposed method
in characterizing normal brain organizations as well as al-
terations due to various brain-disorders, such as schizophre-
nia, autism, and Alzheimer’s disease.
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