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Abstract. We develop a general neural network-based architecture for
the process of mental simulation, initially treated at a somewhat abstract
level. To develop the theory further it is shown how the theory can handle
observational learning as a specific form of mental simulation: simulations
are presented of simple paradigms and results obtained on children un-
dergoing tests on observational learning. Questions of learning and other
aspects are treated in a discussion section.

1 Introduction

Mental simulation has become an area of interest to a number of branches of re-
search: philosophy, psychology, engineering, brain imaging, military studies and
many more. It is of particular relevance in trying to understand how human sub-
jects can empathise with those they meet, and build a .theory of mind. about
these others. There are two distinct branches to these studies of mental simula-
tion. There are general analyses of how such mental simulation can help people
empathise with others, and develop understanding of what decision-making had
occurred, and what range of beliefs it could have been based on [4]. This is to be
regarded as .putting yourself in someone else’s place.. Such an approach has led
to numerous studies of the manner in which beliefs and desires can be involved
in such internal simulations. In particular mental simulation has been recognised
as central in planning, decision-making, hypothesis generation and testing and
in belief revision. On the other hand there has been a flurry of interest asso-
ciated with mirror neurons and the associated brain processes discovered when
people (or monkeys) watch an actor perform some salient action [7]. Initially it
was considered that such mirror neurons were in very specialized areas of the
monkey (and human) cortex. However more recently it has been realised that
a considerable amount (although not all) of those sites active during execution
are also active during observation of the same actions of another [6]. Because of
this more extended view of mirror neurons we will term neurons active in the
paradigms associated with observation of others executing actions as .simulation
neurons.

These two approaches are especially different in terms of the cognitive level of
processing occurring in the brain of the subject: the first (related to an approach
through the “theory of mind”) is at a much higher cognitive level than paradigms
used to observe simulation neurons. However we suggest that the higher level
can be regarded as a more sophisticated version of the lower one. For cognitive
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simulations of the results of actions or of how to achieve certain goals must
depend on internal simulations of these actions based on those goals. The further
mental simulations associated with decisions between various goals or actions
and on beliefs as the bases of such decisions will depend on various long-term
memories and decision processes (such as choosing between various courses of
action or goals) which are beyond the scope of this paper. However they can be
seen only as biases to the mental simulation process itself, so that simulation
can be regarded as the place to start analysis of possible appropriate brain
architectures.

In this paper we therefore begin an attack on possible brain neural networks
involved in mental simulation by starting at the lower level. Thus we consider
how goals, as objects or actions, can be mentally simulated by observation of an
actor achieving the goals; later the actors actions and goals achievements can be
imitated (although the actions may not be exactly as those carried out by the
actor). This analysis thus covers more fully the process of observational learning
and imitation. We then go on to consider how mental simulation as internally
driven could occur with this architecture. This is a further step beyond the ex-
ternally driven process of observational learning, involving as it does internally
created goals and their manipulation leading to reasoning (which should be in-
cluded as a part of mental simulation). However we will not consider reasoning
per se, but only note how it fits into the architecture we are considering.

In the next section a general architecture is presented which we propose as
being at the basis of the low-level mental simulation powers of humans. In the
following section we present a simulation of this architecture for simple tasks
being performed by infants, and relate this to results obtained by colleagues [2].
The paper finishes with a set of conclusions and further work.

2 A General Neural Architecture

We start by extending the architecture used in a simulation of data on ob-
servational learning on infants [3] to the more general case of internal mental
simulation. The former architecture is shown in figure 1; containing the set of
modules:

The extended architecture, shown in figure 2, uses much of this except for the
addition of two specific features:

1) The mental simulation loop of figure 1 is expanded to allow for looping
through a sequence of actions and states as part of the process of “imagining”
the action needed to cause a state to change to another, and the result of the
action on the state to generate the next state ahead in time to function as a goal
so as to generate a further action to achieve it. Such goal generation and action
creation require the use of well-trained forward and inverse models, the training
of which we will not discuss in detail here (but see the discussion).
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Fig. 1. Neural architecture for observational learning and production of actions based
on the learning of affordances

2) The addition of various working memory buffers (possibly with some episodic
or longer term powers) so as to hold the results of these computations of sequences
of states and actions. Such computations will very likely require the bringing to
bear of attention (of both motor and sensory form) so as to enable them to be em-
ployed at various levels. Thus if only imitation of the goal of the observed actions is
required then only the final state of the generated sequence will be needed, whilst
if both final state and sequence of actions is required then either or both of the se-
quences of internally generated actions and states will need to be held in suitable
working memory sites.

We note that the architecture of figure 2 can perform internal simulations to-
tally on its own, provided it has built up a suitable set of memories. It can also be
driven by outside inputs to simulate observed actions of another, so perform in
an observational learning paradigm. Naturally it can also execute a series of ac-
tions with goals set up by the system itself. Thus the architecture can handle all
three of the important processes involved in internal simulation processes: inter-
nal simulation as self-driven “imagining”, internal simulation through observing
another in action and internal simulation as part of action planning before and
during execution.

It was noted in the introduction that mental simulation is basic to a number of
mental activities: planning, decision-making, hypothesis generation and testing
and belief revision. Let us consider in general how the architecture of figure 2
can provide a basis for such mental activities. We begin with planning.

Planning is based on the attempt to find a route through a suitable space
(of concepts or as physical space itself in the case of planning a trip); a final
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Fig. 2. Figure 2 - Extended mental simulation architecture containing internal models
for generating a sequence of actions

goal is given as to where the voyage will end. This can be solved by use of the
IMC alone in figure 2, if such a one has been created. For given the goal and
the present state of the subject, the IMC can generate a (possibly sequence
of) action to achieve the goal. Then the action (sequence), stored in a suitable
working memory, therefore provides the plan.

Decision making requires further modules to be added to the architecture of
figure 2. One of these is a reward map of goals, so that several of them can
be differentiated between by their value. Then any decision module (modelled
as a competitive net, for example) would function by having as input a set of
goals biased by their reward values, and as output the most highly valued of
the goals. A similar mechanism could function to provide a decision between
different actions. In this case mental simulation, using suitable FMs of figure 2,
would allow assessment of the final goals reached by the various possible actions;
choice between these goals by the previous decision mechanism would thus lead
to a choice between the actions.

Hypothesis generation and testing can also be handled by the architecture
of figure 2 with suitable further modules. We denote here a hypothesis as an
assumption conjectured in order to test its empirical or logical implications. The
testing we consider under the heading of mental simulation is purely at a mental
level, but this is important since it could lead to results already contradicted by
experience or which are later discovered to be contradicted by experience.

Consider for example the hypothesis “water is lighter than air”. This would
lead us to predict that water floats in the air or even above it. This is clearly
contrary to experience, so the original hypothesis must be false. But we can also
consider this hypothesis as a counter-factual, and explore its consequences. One
of these is that we would expect the seas to be floating in or above the sky above
us, a situation which we can visualise (although knowing it is not true). This
counterfactual situation can be simulated in the architecture of figure 2 by using
the general (learnt) causal law that “if A is lighter than B then A moves above
B”. To move A above B from its present position of A being below B (when
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A = water, B = air) a suitable IMC would generate the action of moving A
from below to above B. This action would then change the state on a working
memory site as an FM holding A below B, into A being above B on the site.
If we identify imagining the scene of A and B as arising from activity on this
working memory module, then we have the process of testing a hypothesis and
arriving at an imaginary world in which the seas literally do float in or above
the skies.

Thus the process of hypothesis testing may be handled by the architecture
of figure 2. However the process of hypothesis generation is outside the scope
of this paper (involving a number of more complex processes using long-term
memory, salience and possible outside inputs, such as being in a group playing
an .as if. game). The same should be said about belief revision, although it can
partake of the same processes as hypothesis testing in some situations.

Consider an observer of an actor performing some action towards a goal. Is the
observer also undergoing mental simulation as well as observation learning? The
answer is that they are not in an autonomous sense since the observer is being
mentally stimulated from outside, they obviously are simulating in an externally-
driven sense however. Later they can then perform a mental simulation of the
situation they had observed as if they were doing it themselves (thus performing
mental planning). This aspect emphasises the important part played by mem-
ory in the process of autonomous mental simulation, be it short or long-term.
Provided the final goal and a suitable IMC is available to the subject then they
can call on this memory of the goal to generate the required action (or action
sequence) in their minds. Thus the process of observational learning will be very
important to expand the repertoire that can be called on for autonomous men-
tal simulation provided that the suitable FM/IMC pairs are created (trained)
as part of the observational learning process, or are already available to be used
in the new observational learning context.

Before concluding this general discussion, it is important to point out that
sensory attention will also have a role to play: it is unlikely that one can perform
mental simulation without attending to the ongoing processes in one.s mind.
Thus the visual states would be those very likely on a working memory buffer
so be available for report. These visual states will thus have been attended to as
stimulus inputs to be able to attain the working memory sites for use in mental
simulation.

At the same we note that the mental simulation loop itself is very likely at the
heart of the motor attention (or intention) control system. Motor attention has
been studied over a number of years by brain imaging, such as by Rushworth
and colleagues [8], as well as by others. A neural model was proposed for this [9]
but suffered the defect that there was no clear link between the motor attention
and the visual attention control systems except for the feeding of attended visual
input to bias the motor control system. In the architecture of figure 1 we see that
there is much better fusion now (as compared to that in the Taylor-Fragopanagos
model), in that the motor IMC generates what can be termed the motor atten-
tion control signal; that can be used or stored internally in the case of mental
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simulation but also be sent to lower level motor planning systems if execution
is to be performed; that was at the basis of the motor attention model of [9].
Now however we have, in the mental simulation loop of figure 2 a more natural
fusion, since the FM allows for the internal action of this motor attention-based
action signal to modify the visual state of the system. Thus we can regard the
component of the output of the IMC sent to the FM as a corollary discharge
of the main signal (to be sent to the lower level motor system to bias a motor
plan) under execution.

We also need to turn back to the visual attention system as a further site for
mental simulation. If we consider purely spatial rearrangements in one.s mind
of various structures in space, such as moving a ball from the floor up to the
ceiling, this may be done purely by spatial attention. The visual attention goal
to achieve that is clear (the corresponding trajectory in a frontal site such as
the frontal eye fields), and the resulting bias of the visual attention IMC would
thus produce a movement of the focus of attention vertically upwards. This
would have a corollary discharge to achieve this on a suitable buffer working
memory (the visuospatial sketchpad of [1]). The corresponding movement would
then results, using visual attention throughout. This covert attention movement
(with the eyes fixed) breaks the similarity with the motor imagination system
above, since the action sequence corresponding to the imagined action could in
actuality be taken if inhibition to the execution system was cancelled.

3 Model Details

Unless specified otherwise, all dedicated nodes consist of graded neurons, the
membrane potential of which obeys the equation:

C
dV

dt
= gleak(Vleak − V ) + Iinput (1)

Where C is the capacitance of the neuron, gleak its leak conductance, Vleak its
equilibrium potential and I its input current. The output of these graded neurons
follows the form:

Iout =
Ibase

1 + e
V

Vscale

(2)

Here Ibase and Vscale are constants controlling the maximum neuron output and
its scaling. Connections between modules are subject to a time delay of 250ms.

The visual state working memory module consists of dedicated nodes coding
for the possible stages of box opening (Closed box, Part open box (latch closed),
Part open box (latch open), Open box). Initially the Closed box node is primed
by the visual system, later these nodes are activated by the forward model.

The inverse model (IM) takes input from the current visual state and the goal
and uses these to produce an action. Actions are again coded as dedicated nodes
(Pull cover, Unfasten latch, Open box, Remove reward), and weights are chosen
so that the correct action is activated by the combination of appropriate goal
and visual state (we discuss how the IM might be trained later).
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The action working memory buffer holds representations of the actions gen-
erated by the IM so that they can be passed to the FM. These representations
are dedicated nodes with recurrent connections to maintain their activity.

The forward model (FM) takes an action provided by the IM and a description
of the current state and uses these to calculate the next state that would result
from performing the action. In this simple simulation, weights are chosen so that
the correct state is generated by connectivity from the action/state inputs.

The visual working memory holds the next state calculated by the forward
model and represents these states as dedicated nodes (with the same coding as
the current visual state module). If some information about the next state must
be filled in from memory (such as the contents of the box), this is done by the
bidirectional connection to the memory module.

4 Specific Simulations

We apply the architecture of figure 2 to the paradigm mentioned briefly in
(ICANN2008). In this paradigm children open a box which requires several stages
of manipulation. In the simplest example, these stages are:

1) Remove a cover by grasping and pulling.
2) Unfasten a latch.
3) Open the box.
4) Remove a reward from a transparent tube inside the box.

To operate the system in full mental simulation mode, we need to activate
the goal of opening the box and provide the system with the initial visual state
of the closed box. Our inputs to the system are therefore to the goals module
where we prime the goal node corresponding to the desire to open the box and
extract the reward, and the current visual state of the closed box (it would
be possible to perform mental simulation with no external stimulus but then
some other method of providing the desire to simulate would be needed, and
the initial visual state would have to be provided by memory). The goal node
activates a suitable subgoal based on memory (the knowledge that to obtain
a reward, the box must be opened), and together, these provide the necessary
initial conditions to activate the IMC. The mental simulation “loop”. Current
state→IMC→Buffer action WM→FM→Buffer state WM→IMC) then supplies
the rest of the information with assistance from other modules.

5 Simulation Results

We can examine the output from the nodes representing goals, visual states and
actions to look at the time progression of activations. In the first figure we can
see the initial stages of simulation . the goal of opening the box and obtaining
the reward combined with the visual state of the closed box generate the action
of pulling the top of the box, and simulation continues from there:
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Fig. 3. First 2000ms of simulation

In the second figure we see the final states of the simulation:

Fig. 4. Final 2000ms of simulation

Another way to represent the system.s operation is to look at the flow of
activations of components of the mental simulation. In this we can see how the
IMC and FM work through the progression of states needed to simulate the
stages of opening the box.

In the diagram, we can also see that the long term memory fills in information
about the projected visual states to assist the forward model. After the initial
visual state, these later visual states are imagined and held in a buffer visual
working memory so they can be acted on.

6 Discussion

One of the important questions about the model’s operation is how we could
train the inverse and forward models (since in our simulation these are pre-
wired). One possible system for training the IM by observation of another.s
actions is shown here:

The visual input and goals module prime the inputs to the IM. A buffer
working memory holds the visual description of the movements taken by whoever
is performing the demonstration. These are then passed through a classifier
which extracts an action code based on the actions known to the observer. This
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Fig. 5. Flow of activations during model operation showing the process by which the
IM and FMC generate the next state/action from the previous state/action

action code primes one of the actions available to the IM, and associative learn-
ing between the inputs and output form a suitable connection, such that when
presented with the inputs at a later time, the correct action results.
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Fig. 6. Proposed architecture for learning the connectivity of the internal model, by
priming of the correct action output by a teacher module

This question of training the IM is related to the idea of observational learn-
ing, during which performance at motor tasks can be improved by observing
others performing those tasks [5]. The mechanism described above, of allowing
the observed action to prime part of the IM for associative learning provides a
possible mechanism for some parts of observational learning.

We assume that the forward model is based on an existing internal prediction
model based on the physics of the world. It operates based on spatial transfor-
mations to determine what will result from performing a given action. The long
term memory can then fill in needed information to complete the description of
the next visual state.

We can also use the model, particularly the action of the mental simulation
loop, to make predictions for verification. Since we suggest that each stage of
mental simulation involves use of the whole simulation loop, it may be possible
to use event related FMRI to detect activations occurring during these different
stages (for example, by examining the difference in activations between mentally
simulating a two stage task and a three stage task).

7 Conclusions

We have described an architecture for mental simulation based on internal mod-
els and extending our existing neural architecture for observational learning. A
version of the system using graded neurons was used to simulate a simple men-
tal simulation task based on an infant learning paradigm. We also suggested a
method of associative learnin for the inverse model as well as presented some
predictions for experimental verification based on the timings of activations to
be studied using event related FMRI.
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