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Abstract

We investigate three possible methods of specifying the microstructure of attention feedback: contrast gain, additive and output gain, using

simple single node and 3-layer cortical models composed of graded or spiking neurons. Contrast gain and additive attention are also tested in

a spiking network which is simplified by mean field methods. The simulation task uses two stimuli, probe and reference, presented singly or

together within the neuronal receptive fields whilst attention is directed towards or away from the receptive field. Model neurons are differentially

activated in the different stimuli and attention and equilibrium potentials or average firing rates recorded depending on neuron type are recorded.

We compare results for the different modes of attention and architectures with experimental single cell recordings which show how neuronal

firing rates change in response to attention, with a bias towards neurons that respond more effectively to the attended stimulus, to investigate

which attentional method best fits the experimental data. The simulation results are also mathematically analysed. We conclude that there is most

experimental support for contrast gain, although some additional feedback gain would be possible. We propose a tentative method by which

attention as contrast gain may occur in the primate brain using acetylcholine and nicotinic receptors.

c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Attention is a selective filter by which neural processing

is limited to important information that is pertinent to

current behaviour, by controlling which information passes to

higher cortical levels. There has been considerable interest

in general features of attention since the time of the ancient

Greeks, but with the advent of brain imaging techniques and

advanced single cell recordings the nature of attention has been

increasingly better analysed. In this paper we wish in particular

to consider how to understand various experimental results

arising from single cell measurements in behaving monkeys

so as to explore the more detailed micro-structure of attention,

and thereby to help in building more precise models based on

realistic neural activity and its modulation.

Visual attention has been shown to increase the output

responses of neurons for single inputs, whilst for multiple

inputs the neuronal responses are dependent on the neuron’s
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sensitivity to the individual stimuli, as arises in the well known

‘biased competition’ model of Desimone and Duncan (1995);

recent results (Williford & Maunsell, 2006) are inconclusive

as to whether the response change due to attention is non-

proportional or proportional. However the manner in which

the output response of neurons is increased by attention is

still controversial. Our purpose in this paper is to attempt to

clarify some aspects of this controversy by means of suitable

experimental data and its simulation.

There are essentially three different methods by which

attention can be postulated to act: by additive feedback, by

contrast gain and by output gain. The first of these needs

little further explanation, and has been used by a variety of

modellers to describe how attention acts at the micro-level

(Deco & Rolls, 2005; Grossberg & Raizada, 2000). In contrast

gain the inputs from an attended stimulus to a given cell

under attention control are all boosted by some multiplicative

constant, arising possibly from some higher-level feedback

signal. In output gain the whole output of an attended cell,

from whatever inputs, is boosted by the multiplicative feedback

attention signal. Both have been investigated in particular

psychological paradigms (Carrasco, Ling, & Read, 2004), as

well as considerable modelling of a range of psychological
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Nomenclature

SE selectivity

SI sensory interactivity

Pi normalised average firing rate/potential of node i
due to probe stimulus

Ri normalised average firing rate/potential of node i
due to reference stimulus

Pairi normalised average firing rate/potential of node i
due to probe and reference stimulus

V (t) neuron potential

A decay

I total inhibitory input

B maximum activity

C shunting inhibition value

E total excitatory input

τ time constant

Vs shunting inhibition

Vm maximum potential

Vleak the resting potential

Iexcit is the total excitatory input

IGABA is the total inhibitory input

Si is the NMDA gating variable for pool I
τs is the NMDA time constant

ri is the firing rate for pool I
Φ input–output function

Isyn,i total synaptic input to pool i
JN ,i j represent the effective synaptic coupling from

pool j to pool i mediated by NMDA

JA,i j represent the effective synaptic coupling from

pool j to pool i mediated by AMPA

I0 mean external input current

I1 input current to pool 1

I2 input current to pool 2

Inoise,i noise to pool I
τAMPA AMPA time constant

η is Gaussian white noise

σ 2
noise is the variance of the noise

μi input firing rate to pool I
M BC modulation index

x j output of neuron j
w+

j and w−
j are the excitatory and inhibitory weights

w′
j is the strength of the connection from the kth

higher-order attention control neuron to the i th

node

w j is the connection from the j th lower-order node

to the i th node

wi, j,k sigma–pi weight

attn attention feedback signal

V 1I N input I N from any V 1 feedback input

F(I N , PY56) the feedback from layer 2/3 to PY56

Abbreviations

PYR5/6 pyramidal layer 5/6 node

IN4 inhibitory layer 4 cell

ST4 excitatory stellate layer 4 node

PYR2/3 pyramidal layer 2/3 cell

IN5/6 layer 5/6 inhibitory node

ACh acetylcholine

nAChR nicotinic ACh receptors

NBM nucleus basalis of Meynert

paradigms also being done using contrast gain (Fragopanagos,

Kockelkoren, & Taylor, 2005; Mozer & Sitton, 1998; Taylor &

Rogers, 2002).

Here we investigate which attentional mode best fits

experimental results obtained by Reynolds, Chelazzi, and

Desimone (1999) by investigating simulations based on two

types of neurons: graded and spiking within two different

models of cortical structure: single nodes and 3-layer cortical

models, as well as mean field equations. These results were

originally modelled in (Reynolds et al., 1999) using single

neurons with a set of inputs from attended and unattended

stimuli using contrast gain. The particular results involved

regression curves obtained from careful analysis of an ensemble

of hundreds of single cells in monkey V 2 or V 4, with

considerable success. This analysis was extended in (Taylor &

Rogers, 2002) to provide a more mathematical underpinning,

including a universal approximation formula.

We start the paper with a description of the experimental

paradigm we will study by simulation.

2. The Reynolds et al. results

Reynolds et al. (1999) investigated two assumptions of

‘biased competition’ (1) that there is automatic competition

between populations of neurons activated by multiple stimuli,

and (2) that under attention the competition is biased to neurons

that respond to the attended stimulus. We are particularly

interested in the second experiment reported in Reynolds et al.

(1999) which recorded neurons in V 2 and V 4. For this task two

stimuli were used, termed: probe and reference. Stimuli could

appear at 4 locations, 2 in the receptive field and 2 outside. In

the attend away condition the monkey attended to a location

outside the receptive field whilst in the receptive field the probe

stimulus, or reference stimulus or both stimuli could appear.

In the case where attention was directed towards the receptive

field both probe and reference stimuli were presented within

the receptive field and attention was directed to either the probe

stimulus or reference stimulus. These conditions with attention

directed towards or away from the receptive field leads to the

following 5 different combinations of stimuli:

(1) probe input alone, attention directed away;

(2) reference stimulus alone, attention directed away;

(3) pair (probe and reference inputs), attention directed away

from receptive field;

(4) pair with attention directed to probe stimulus;

(5) pair with attention directed to reference stimulus.

For each input condition each neuron was recorded over 10

trials, and the firing rates averaged. For each neuron the firing
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rates were normalised across the 5 input conditions using

the largest average firing rate. These values are then used to

calculate 2 measures: selectivity (SE) and sensory interactivity

(SI ) for each neuron. These are defined by:

SEi = Pi − Ri (1)

SIi = Pairi − Ri (2)

where Pi indicates the normalised average firing rate for probe

stimulus of neuron i , Ri is the same value for the reference

stimulus of neuron i , and Pairi is the normalised average firing

rate for probe and reference inputs, which can be calculated

for attend away, attend probe and attend reference. The t test

is used with p < 0.05 to detect for which neurons the activity

has changed significantly between the attend away and attend

probe or attend reference cases. Graphs of SE versus SI are

then plotted for:

(1) attend away (probe) where these are the points for which

activity changes significantly between attend away and

attend probe;

(2) attend probe;

(3) attend away (reference) where these are the points for

which activity changes significantly between attend away

and attend reference;

(4) attend reference.

Regression analysis was performed to find the best fit for each

graph for the line:

SI = slopeSE + constant.

For V 2 and V 4 neurons the results were comparable with

the slope being near 0.5 for the different attend away plots,

whilst the attend probe slope was greater than the attend away

slopes, and the attend reference slopes being smaller than the

attend away slopes. The regression constant was near 0 for

all V 2 graphs, whilst there was an increase in V 4 for attend

probe and attend reference as against their respective constant

values for attend away, up to 0.15. The slopes were the same for

cells from the two modules. These results confirm the second

assumption about ‘biased competition’: that under attention

there is a bias of the competition towards neurons that respond

more effectively to the attended stimulus.

In a simulation using 100 simple graded neurons, Reynolds

et al. (1999) showed that similar regression slopes could be

obtained by multiplying the connection strengths from probe

or reference inputs to the neurons by a factor of 5 in the attend

probe or attend reference conditions.

3. Method and architecture

We perform similar simulations as in Reynolds et al. (1999),

but now extended to the range of graded and spiking neurons

for both single neurons and a 3-layer cortical model, where

attention feedback is also modelled as 3 forms, additive, output

gain and contrast gain, and for a system of mean field equations

where attention is modelled as contrast gain and additive.

Fig. 1 indicates the method by which the attentional modes

Fig. 1. The different forms of attention. The output neuron is only necessary for

the output gain simulation. Closed arrow-heads indicate inhibitory connections

and open arrow-heads indicate excitatory weights. Circular and diamond heads

indicate multiplicative affects.

are implemented and the organisation of reference and probe

inputs.

As in Reynolds et al. (1999) the probe and reference inputs

have excitatory and inhibitory efferents to the model neurons.

For contrast gain, attention is implemented by multiplying the

excitatory and inhibitory connections by a factor >1. In the

case of output gain it is the output of the model neurons that

is multiplied by this factor. It can be seen that if the outputs

of the model neurons feedforward to a higher order region that

output gain at the current level would be the same as contrast

gain implementation at the higher level.

For both the graded and spiking cases for single neurons

the architecture of Fig. 1 is used; for the 3-layer cortex graded

case we use the architecture of Grossberg and Raizada (2000)

simplified to remove the lateral connectivities between loop

structures which form the on-centre, off-surround structure of

their simulations. A column or loop is composed of a single

pyramidal layer 5/6 node (PYR5/6), an inhibitory layer 4 cell

(IN4), an excitatory stellate layer 4 node (ST4) and a pyramidal

layer 2/3 cell (PYR2/3). It is known that inputs to cortex enter

at layer 4 and layer 6, hence, for the graded model, probe

and reference inputs (excitatory and inhibitory) are incident

on PYR 5/6 and ST4. In the spiking model we add a layer

5/6 inhibitory node (IN5/6), which means we can remove

the inhibitory inputs for the probe and reference to the layer

4 and 5/6 nodes. In graded and spiking models attention is

implemented at layer 5/6, for contrast gain this involves the

multiplication of the weights from probe and reference to the

layer 5/6 nodes, for additive attention inputs are to the layer

5/6 nodes, and for output gain it is the outputs of the layer 5/6

nodes that are multiplied, hence its outputs to the layer 4 nodes

are stronger in the attend probe or attend reference case. This is

shown in Fig. 2.

3.1. Single node graded case

The single neuron case re-creates the simulation results

(Reynolds et al., 1999). We use 100 model neurons with a

passive decay of 0.2 and an attentional factor of 3, with noise

of ±10%. The activity of a model neuron is described by:

dV

dt
= −AV − V I + (B − V )E (3)
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Fig. 2. Architectures for the 3-layer cortex. Left used for graded model, right used for the spiking model.

where, as in Reynolds et al. (1999) −AV is a passive decay term

with A = 0.2, I is the total inhibitory input (positive value) and

the second term on the right-hand side indicates that the neuron

has a shunting inhibition value of 0, E is the total excitatory

input, and B is the maximum activity (set to 1).

The equilibrium response of this neuron is:

V
lim t→∞

= B E

E + I + A
. (4)

The connection strengths are randomly set with magnitudes in

the range {0, 1}. For all 5 stimulus inputs the stable activation

level for the model neurons are found from Eq. (4), and a noise

term is added of ±10% from an uniform distribution to the

response of the node.

3.2. Three-layer cortex graded case

We use the neuronal definitions from Grossberg and Raizada

(2000), where the potential is defined as:

τ
dV

dt
= −V − (Vi − V )I + (V − Vm)E (5)

where τ is the time constant, Vs is the shunting inhibition value

set to −1, Vm is the maximum activity level set to 1, and E and

I are as before the total synaptic excitatory and inhibitory input,

respectively, where the output of PYR2/3 nodes are defined as:

Out (PYR2/3) = max{activity (PYR2/3) − 0.2, 0} (6)

whilst all other output functions are:

Out (x) = max{activity (x), 0}. (7)

The time constants are 2.5 for ST4 and PYR5/6 nodes, 1.25

for PYR2/3 nodes and 0.1875 for the IN4 nodes. Noise is again

randomly added. We record the outputs of the PYR5/6 nodes

which are given by Eq. (7), and then perform the same analysis

as Reynolds et al. (1999).

3.3. Spiking models

Neuronal potential is defined by the equation:

τ
dV

dt
= (gleak(V − Vleak) + (Vm − V )Iexcit

+ (V − Vshunt)IGABA) + noise (8)

where V (t) is the potential, Vleak is the resting potential

−70 mV, gleak = −2.5 ∗ 10−8, Iexcit is the total excitatory

input, IGABA is the total inhibitory input, Vshunt is the shunting

potential of −80 mV, and Vm is set to 0 mV. The spiking

threshold is set to −52 mV.

Noise is added to the membrane potential of the neurons

which leads to spontaneous firing rates for the single node case

in the range 0–11 Hz, with an average firing rate of 5.5 Hz; for

the 3-layer cortical model noise causes a spontaneous rate of

∼3 Hz for excitatories and 9 Hz for inhibitories. The probe and

reference inputs are each represented by a population of 100

spiking neurons.

3.4. Mean field reduction of the spiking neuron equations

We investigate a mean field reduction of the spiking neuron

equations using the analysis of Wong and Wang (2006) which

is based on the earlier structure of Brunel and Wang (2001).

For the current simulations the architecture is composed of

2 selective pools of excitatory neurons—one preferentially

activated by the probe stimulus and the other preferentially

activated by the reference stimulus—a pool of non-selective

excitatory neurons, and a pool of non-selective inhibitory

nodes. The analysis performed by Wong and Wang (2006)

reduces this structure to 2 selective pools. The mean field

equations are then:

dS1

dt
= − S1

τs
+ (1 − S1)γ r1 (9)

dS2

dt
= − S2

τs
+ (1 − S1)γ r2 (10)
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(a) Attend away (probe)

SI = 0.487SE + 0.108.

(b) Attend probe SI = 0.749SE + 0.143. (c) Attend away (reference)

SI = 0.506SE + 0.0988.

(d) Attend reference

SI = 0.232SE + 0.137.

Fig. 3. Contrast gain in single graded neuron model, as in Reynolds et al. (1999). Attentional modulation is *3.

where Si is the NMDA gating variable for pool i, τs is the time

constant set to 100 ms, γ = 0.641, and ri is the firing rate for

pool i . The firing rates are given by:

r1 = Φ(Isyn,1) (11)

r2 = Φ(Isyn,2) (12)

Isyn,1 = JN ,11S1 − JN ,12S2 + JA,11r1 − JA,12r2

+ I0 + w11 I1 + w12 I2 + Inoise,1 (13)

Isyn,2 = JN ,22S2 − JN ,21S1 + JA,22r2 − JA,21r1

+ I0 + w22 I2 + w21 I1 + Inoise,2 (14)

where Isyn,i is the total synaptic input to pool i , and JN ,i j
represent the effective synaptic coupling from pool j to pool

i mediated by NMDA, similarly JA,i j represent the effective

synaptic coupling mediated by AMPA. The wi j represent the

connection strength from stimulus j to pool i . The values used

are JN ,11 = JN ,22 = 0.1561 nA, JN ,12 = JN ,21 = 0.0264 nA,

JA,11 = JA,22 = 9.9026∗10−4 nA Hz−1, and JA,21 = JA,12 =
6.5177 ∗ 10−5 nA Hz−1. I0 = 0.2346 nA and is the mean

effective external input, which along with a specific noise term

(Inoise ,i ) produces a spontaneous firing rate ∼3 Hz. The noise

term is governed by:

τAMPA
dInoise

dt
= −Inoise + η

√
σ 2

noiseτAMPA (15)

with τAMPA = 2 ms, η is Gaussian white noise, and

σnoise = 0.007 nA, and σ 2
noise is the variance of the noise. The

input–output function Φ is also from Wong and Wang (2006)

adapted from Abbott and Chance (2005):

Φ(Isyn,i ) = 270Isyn,i − 108

1 − exp(−0.1540(270Isyn,i − 108))
. (16)

The two other external inputs (I1 and I2) are defined by:

Ii = 0.2243 ∗ 10−3μi (17)

where μi is a firing rate and for the simulations performed

below takes the value 250 Hz for both stimuli. When testing

contrast gain we multiply the appropriate set of input weights

wi j by some factor that is larger than 1. In the additive case

there is an extra additive input term to the synaptic currents

Eqs. (13) and (14); this attention value also uses Eq. (17) where

μ here is determined experimentally.

4. Results

4.1. Graded single-layer cortex

The connections from probe and reference to the model

neurons are randomly set in the range 0 to 1 from an uniform

distribution.

We show the results for contrast gain attention in Fig. 3,

where the modulatory factor is 3. These results are similar to

that of Reynolds et al. (1999) with the slopes being: 0.749,

0.487, 0.232 and 0.506 for the attend probe, attend away
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(a) Attend away (probe)

SI = 0.514SE + 0.110.

(b) Attend probe SI = 0.700SE + 0.0320. (c) Attend away (reference)

SI = 0.513SE + 0.108.

(d) Attend reference

SI = 0.263SE + 0.0500.

Fig. 4. Additive attention in single graded neuron model, with attention as ±0.6 depending on neurons’ preferences.

(probe), attend reference and attend away (reference) cases,

respectively, albeit for a smaller attentional value. Similar

slopes are found if regression lines are calculated for all

neurons, i.e. when the t test is not used.

For additive and output gain attention we class the model

neurons as probe preferred or reference preferred, where the

former has a total of probe weights greater than the total of

reference weights, and vice versa for the latter.

Then for additive attention in the attend probe case only

the probe preferred model neurons have a positive additive

term inputted to the neuron whilst all other model neurons

had a negative additive term input, similarly for the attend

reference condition only neurons that are reference preferred

were affected by positive additive attention, the other neurons

all had a negative additive term applied. Using an additive

attentional value of 0.2 the results are shown in Fig. 4.

In the case of attention as output gain, we modulate the

output by 2 factors 1 + x if attending to input that is preferred

by neuron, and 1
1+x if another input is preferred by the neuron,

where x > 0. Using a value of 0.3 the results shown in Fig. 5

are found.

Whilst in all cases values for the attentional bias can be

found such that the regression slopes match the experimental

results (Table 1), it is the results for contrast gain that have the

closest match to the experimental results. For output gain and

additive attention there are clear neuronal groupings forming in

the attend probe and attend reference plots; such splits are not

seen in the experimental results (Reynolds et al., 1999).

The neuronal potential equation in Eq. (3) uses a linear

output function for probe and reference as well as the model

neurons; replacing with an output function that is sigmoidal

generates similar distribution of points in the plots and

attentional values can be found that give the required regression

slopes within experimental ranges.

4.2. Graded 3-layer cortex

For the 3-layer cortical model the probe and reference

efferents target PYR5/6 and ST4 nodes; here we consider three

possible forms the efferents can take:

(1) the weights to ST4 and PYR5/6 in a given column are the

same;
(2) the weights to ST4 are close to the weights to PYR5/6 in

the same column (say differ by ±10%);
(3) or both sets of weights are completely random.

In each case connections are initialised in the range {0, 1}.
Where the initialisation is totally random, the nature of the

thresholded output function for PYR2/3 nodes can result in

many PYR2/3 nodes having no output and hence the 3-layer

cortical model reduces for the most part to the single node

model; unsurprisingly similar results for regression lines are

found as for the single node case.
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(a) Attend away (probe)

SI = 0.513SE + 0.105.

(b) Attend probe SI = 0.757SE + 0.0222. (c) Attend away (reference)

SI = 0.513SE + 0.105.

(d) Reference SI = 0.215SE + 0.0375.

Fig. 5. Output gain in single graded neuron model selectively applied of form 1.3 and 0.76. Using the two tailed t test with p < 0.005 leads to all results being

plotted.

Table 1

Regression slopes for contrast gain, additive with specificity, and output gain with specificity using two-tailed t test, and experimental results for V 2 and V 4

Contrast gain Additive Output gain V 2 V 4

Away probe 0.487 0.514 0.513 0.47 0.49

Probe 0.749 0.700 0.757 0.69 0.83

Away reference 0.506 0.513 0.513 0.55 0.6

Reference 0.232 0.263 0.215 0.24 0.21

Both weight initialisations 1 and 2 produce PYR2/3 outputs

in more columns than the random case in at least one of the five

tasks. For each attentional form few differences occur between

the different weight organisations 1 and 2, so here we present

results only using type 2 from above.

Fig. 6 shows the results for contrast gain attention, using

modulation during the attend probe and reference tasks of *2.

The regression slopes fit with the experimental results, though

there are a number of plotted points that lie on the SE = ±1

lines. This is due to the output function and shunting inhibition

value of −1; the combination of which can lead to zero output;

if PYR5/6 have maximum output for probe input alone, and

output of zero for reference stimulus alone (or vice versa) we

generate points that will lie on SE = ±1. This distribution of

points also causes the regression constants to be negative, as

can be seen by inspection of Fig. 6.

Additive attention using a component of magnitude 0.25

and applied differentially as in the single node case produces

the results shown in Fig. 7. Inspecting the results for attend

probe in Fig. 7 it can be seen that there are again two neuronal

groupings; the division in attend reference plot also exists but is

less clear.

The attentional values used in the single neuron case for

differential output gain of 1.5 and 0.76 are not sufficient to

cause the size of changes expected from the experimental

results although the slopes do have the correct direction of

change. The results plotted in Fig. 8 use x = 1 to give

attentional values of 2 and 0.5. Slope changes are still smaller

than required. In both the attend probe and attend reference

conditions there are splits into 2 groups; such a split is not

seen in the experimental results, and if all simulated neurons

are plotted the 2 distinct groupings remain.

As with the previous results for the single neuron model,

we can find values for the three attentional forms such that the

regression slopes lie near the experimental results (summarised

in Table 2). However, additive and output gain both show two
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(a) Away away (probe)

SI = 0.466SE − 0.158.

(b) Attend probe SI = 0.686SE − 0.129. (c) Away attend (reference)

SI = 0.537SE − 0.169.

(d) Attend reference

SI = 0.319SE − 0.118.

Fig. 6. Contrast gain in a 3-layer cortex using shunting inhibition of −1 and a threshold of 0.2 for PYR2/3 output. Weights to ST4 are ±10% of those to PYR56

nodes.

Table 2

Regression slopes for contest gain, additive with specificity, and output gain with specificity using two-tailed t test, and experimental results for V 2 and V 4

Contrast gain Additive Output gain V 2 V 4

Away probe 0.466 0.477 0.480 0.47 0.49

Probe 0.686 0.714 0.702 0.69 0.83

Away reference 0.537 0.534 0.489 0.55 0.6

Reference 0.319 0.290 0.262 0.24 0.21

groupings in each of the attend probe and attend reference

plots.

4.3. Spiking single-layer cortex

As described previously the probe and reference stimuli are

both represented by a population of 100 nodes; this provides

a more even spike train input to the model neurons. Weights

are again randomly set with a particular excitatory or inhibitory

population totalling up to 1.5.
In the contrast gain model an attentional factor of *1.5 gives

the results shown in Fig. 9. The regression slopes all show the

correct trends (attend probe > attend away (probe), and attend

reference < attend away (reference)), although in this case the

regression slope for attend reference is rather lower than the

experimental results. The regression constants are larger than

the experimental results.
For additive attention we add two further neurons, one

active in the attend probe condition with excitatory weights to

the model neurons classed as probe preferred and inhibitory

weights to all other nodes; the second new node is active in the

attend reference case and has excitatory weights to reference

preferred nodes and inhibitory otherwise. These controllers of

additive attention fire at the rate of 15 Hz during their respective

attend conditions. The results are shown in Fig. 10, where

divisions can be seen for the attend probe and attend reference

plots.

The output gain version has x set to 0.2 giving differential

attentional values of 1.2 and 0.833; here we plot the graphs

using t test with p < 0.05 (Fig. 11) and without t test where

all neurons are plotted (Fig. 12). These values give, when all

neurons are plotted, a slightly larger value for the attend probe

case and a slightly smaller value for the attend reference case

than the experimental results, but a smaller value for x of say

0.15 which does not produce enough points when the t test is

used to define a regression line from a sample of 100 neurons

(only 2 points for the attend probe case). The results when all



N.R. Taylor et al. / Neural Networks 19 (2006) 1347–1370 1355

(a) Away probe SI = 0.477SE − 0.139. (b) Probe SI = 0.714SE − 0.0518. (c) Away probe SI = 0.534SE − 0.162.

(d) Reference SI = 0.290SE − 0.0971.

Fig. 7. Additive attention in graded 3-layer model with preference of ±0.25.

neurons are plotted show the correct trends and relationships

but when the t test is used (Fig. 11) the trends are correct for

the regression slopes with: attend probe > attend away (probe)

and attend reference < attend away (reference) but the overall

regression slope relationship has attend reference > attend

probe conflicting with experimental results. From Fig. 12 the

separation into 2 clusters of points can be seen once again

for the attend probe and attend reference cases. The regression

constants show a large increase in the attend probe and attend

reference cases as against the respective attend away regression

constants.

We consider that the attentional affects might be the

combination of two of the attentional modes we are

considering. Since contrast gain has the best distribution of

points along the regression line we combine this with additive

attention which has the better results for the regression constant

values. Reducing the contrast gain affects to *1.2 and reducing

the firing rates of the additive inputs to 7.5 Hz gives the plots

shown in Fig. 13. The additive component could be additive

attention or simply an additive feedback between cortical

regions.

The best fit to the experimental results is the combination

of contrast gain and additive; there are no different groupings

within these plots as seen for the additive attention only case.

Similar affects are seen for output gain though only when

all neurons are plotted. The contrast gain case has the good

regression line slopes without different groupings but has

higher regression constant values than the experimental results;

in the combination model the regression constants are reduced

into the range of the experimental results for V 4. Table 3

summarises the regression slope values for the simulations in

this section.

4.4. Spiking 3-layer cortex

Contrast gain is modelled as previously by multiplying

the reference or probe weights by a factor >1 in the attend

reference and attend probe conditions, respectively. Weights to

PYR5/6 and IN5/6 nodes are multiplied but not those to IN4

and ST4 (see Section 6). Using an attentional factor of 1.8 gives

the results shown in Fig. 14, in all cases it is the firing rates of

PYR5/6 nodes that are recorded. The regression slopes show

the correct trends and have values that fit with the experimental

results but the regression constants are higher than the single-

cell results.

Attention as additive is modelled as previously by testing the

model loops and by responses defining the columns as reference

preferred or probe preferred. The additive term is again applied

differentially as a positive or negative term, using the structure

described for the spiking single node model with the same spike

rate of 15 Hz. For the current architecture all neurons are plotted

when the t test is applied with p < 0.05 and the results are

shown in Fig. 15. The division into 2 distinct groupings in the

attend reference and attend probe cases is again present.
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(a) Attend away (probe)

SI = 0.480SE − 0.147.

(b) Attend probe SI = 0.702SE − 0.0826. (c) Attend away (reference)

SI = 0.489SE − 0.153.

(d) Attend reference

SI = 0.262SE − 0.0590.

Fig. 8. Output gain in graded 3-layer model applied selectively with attention = *2 and *0.5.

Table 3

Regression slopes for attend away (probe and reference), attend probe, and attend reference

Contrast Additive Output Contrast + Additive V 2 V 4

Away (probe) 0.433 0.492 0.310 0.487 0.47 0.49

Probe 0.707 0.836 0.404 0.841 0.69 0.83

Away (ref) 0.526 0.567 0.652 0.556 0.55 0.6

Reference 0.100 0.179 0.464 0.245 0.24 0.21

Output gain attention is applied differentially as previously

using x = 0.5. Figs. 16 and 17 show the results for this form

of attention with and without using the t test, respectively. We

plot the non-t test results since for this model it is difficult to

find an attentional modulation value that produces regression

slopes that are as low as the experimental results.
As in the single node model we consider the combination

of contrast gain and additive attention (Fig. 18). We reduce the

attentional affects to *1.3 for contrast gain and an additive input

of 7.5 Hz.
The combination of contrast gain and additive attention give

the best fit to the experimental results in terms of regression

slopes and distribution of points, though the regression

constants are higher here than for the experimental results. The

results of contrast gain only are similar to the combined but

with higher regression constants, whilst for additive and output

gain we can find regression slopes in the experimental ranges

for which the distribution of points in the plots are different

to the experimental results with different groupings forming

in the attend probe and attend reference conditions. Table 4

summarises the regression slope values.

4.5. Mean-field approach

For the mean field results we use 50 copies of the mean

field equations with the inputs I1 and I2 effected by different

values of weights, which are random in the range {0, 1}. We

test only 2 forms of attention: contrast gain and additive. Two

input architectures are modelled: one has each pool receiving

inputs from only one stimulus; the second has some crossover

between inputs with the non-preferred stimulus having an input

weight to a pool of maximum 10% of the weight value of

the preferred stimulus to the same pool. The latter mimics to

some extent the mixing of pool activations between V 2 and

V 4 in the model of Deco and Rolls (2005). In the model of

Deco and Rolls (2005) the biased competition effects from

additive attention depend not only on the relationship between

the feedforward and feedback weights between V 2 and V 4,
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(a) Attend away (probe)

SI = 0.433SE + 0.189.

(b) Attend probe SI = 0.707SE + 0.331. (c) Attend away (reference)

SI = 0.526SE + 0.220.

(d) Attend reference

SI = 0.100SE + 0.301.

Fig. 9. Spiking single node, attention modelled as contrast gain. Attention = *1.5.

Table 4

Regression slopes for attend away (probe and reference), attend probe, and attend reference

Contrast Additive Output Contrast + Additive V 2 V 4

Away (probe) 0.488 0.531 0.483 0.519 0.47 0.49

Probe 0.741 0.758 0.978 0.760 0.69 0.83

Away (ref) 0.586 0.531 0.567 0.542 0.55 0.6

Reference 0.281 0.385 0.483 0.261 0.24 0.21

but also the effective stimuli firing rates and additive attention

value. The affective stimuli firing rates are, in these simulations,

modified by the input connection strengths, hence we would

need for each combination of probe and reference weights to

find the region of biased competition to set any feedforward and

feedback weights in a multi-layer model. Since we are working

with a single cortical region we used a modified version of Deco

and Rolls (2005) modulation index M BC reduced to either V 2

or V 4, such that:

M BC = 1 −
(∣∣∣ M P−a

a

∣∣∣ +
∣∣∣ M R−b

b

∣∣∣)
2

where for V 2 a = 0.1 and b = 0.08, and for V 4 a = 0.3

and b = 0.25, and P indicates probe preferring pool and R
reference preferring pool, with:

M P = (P firing rate (attend probe) − P firing rate (attend

away))/P firing rate (attend away) and

M R = (R firing rate (attend away) − R firing rate (attend

probe))/R firing rate (attend away)
All firing rates are calculated for the presentation of both

stimuli.
As we do not have a connected V 2 and V 4 M BC was

calculated for different additive attention values. The highest

M BC values we calculated were in the range 0.5–0.6 which

lies within (Deco & Rolls, 2005) the weak biased competition

region. With unit input weight strengths for probe and reference

the peak M BC values was caused by an additive component

of 109 Hz; weaker input weights required smaller additive

components.
The results for the 2 different stimuli weight models using

contrast gain are shown in Figs. 19 and 20, and those for

additive attention are shown in Figs. 21 and 22
The regression slopes for the contrast gain method are close

to the experimental results, whilst those for the additive form

have not altered enough from the attend away regression slopes
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(a) Attend away (probe)

SI = 0.492SE + 0.171.

(b) Attend probe SI = 0.836SE + 0.130. (c) Attend away (reference)

SI = 0.567SE + 0.160.

(d) Attend reference

SI = 0.179SE + 0.0888.

Fig. 10. Additive attention in spiking single node model.

to be in the experimental range. We can find additive values

that give regression slopes close to the experimental results,

but this attention needs to take a value of 120 Hz which is

close to half the maximum input firing rate, and near the 109

Hz calculated earlier when determining the peak M BC values.

In most attend probe or attend reference plots there are some

groupings of points, whether attention is additive or contrast

gain; this suggests that the architecture itself is unsuitable for

investigating the mode of attention in terms of the regression

line results of Reynolds et al. (1999). The regression slopes

for the different attentional feedback forms in the mean-field

approach are shown in Table 5.

4.6. Conclusions on the simulations

We have investigated the action of three different forms of

attention (contrast gain, additive and output gain) in various

single cell and cortical models. The task involves five different

stimuli conditions: presentation of probe alone, presentation of

reference alone, presentation of both with attention directed

away, presentation of stimuli with attention directed towards

probe, and presentation of stimuli with attention directed

towards reference. From the resulting firing rates or equilibrium

potentials depending if the model used spiking neurons or

graded-response neurons we calculated the SE and SI values

as defined in Eqs. (1) and (2) for each neuron. A regression

line analysis was performed finding the best fit for the line

SI = mSE + c, where m is the regression line slope and

c the regression constant. The task and analysis follows that

performed in Reynolds et al. (1999) using single cell recordings

from nodes in V 2 and V 4.

The three methods of attention modelled produced varying

results. The output gain version was generally the poorest; it

being difficult to reliably find modulation factors that gave

regression slopes within the experimental range for the 3-layer

cortical models. Whilst the slopes for the single node models

did fit the experimental results, all results (single and multi-

layer models) had distinct neuronal groupings within the attend

Table 5

Regression slope values for the mean field simulations and single cell experimental results

Contrast gain (Fig. 19) Additive (Fig. 21) Contrast gain (Fig. 20) Additive (Fig. 22) V 2 V 4

Away probe 0.517 0.495 0.500 0.447 0.47 0.49

Probe 0.732 0.608 0.697 0.578 0.69 0.83

Away reference 0.516 0.500 0.492 0.447 0.55 0.6

Reference 0.275 0.360 0.274 0.332 0.24 0.21
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(a) Attend away (probe)

SI = 0.310SE + 0.176.

(b) Attend probe SI = 0.404SE + 0.633. (c) Attend away (reference)

SI = 0.652SE + 0.152.

(d) Attend reference

SI = 0.464SE + 0.572.

Fig. 11. Output gain in single spiking node model. Attention is 1.2 and 0.833 and t test is used.

(a) Attend away SI = 0.517SE + 0.0517. (b) Attend probe SI = 0.808SE + 0.252. (c) Attend reference

SI = 0.218SE + 0.260.

Fig. 12. Output gain in single spiking node model. Attention as above. All neurons plotted.

probe and attend reference plots; such distributions were not

reported for the single-cell experimental recordings (Reynolds

et al., 1999). The regression constant values were, overall,

the most dissimilar to the experimental results showing large

increases from the attend away cases to the attend probe and

attend reference plots.

Where attention was modelled as additive, except in the

mean field results, we could find a suitable additive graded

or spike train input that would generate regression slopes in

the expected range. However in these results the attend probe

and attend reference results show two different distributions

within the plots, each of which have quite different regression

slopes if each population was treated separately; the calculated

regression slope plotted on each graph lies somewhere in

between the regression slope for each population. The additive

form of attention did perform well in the regression constant

values. This to some extent was caused by the differential

application of the additive attention that led to the excitation

of the population that preferred the attended stimulus whilst, at

the same time, inhibiting the population that preferred the other

stimulus. This resulted in a similar increase and decrease either

side of the SI axis, which leads to a small change in the attend
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(a) Attend away (probe)

SI = 0.487SE + 0.0890.

(b) Attend probe SI = 0.841SE + 0.187. (c) Attend away (reference)

SI = 0.556SE + 0.0595.

(d) Attend reference y = 0.245SE + 0.130.

Fig. 13. Using a combination of contrast gain (*1.2) and additive attention (± weights from nodes at 8 Hz) in single node spiking model.

probe and attend reference regression constant values from the

values obtained in the attend conditions.

The contrast gain results gave the best fits to the

experimental regression slope results, where a single form of

attention was used. It was quite easy to find values for the

different models—single and multi-layer, graded and spiking—

that generated good regression slope values. Where the contrast

gain models struggled was in the regression constant values,

which were less than those calculated for the output gain

models, but still had values, in the spiking models, that were too

large, and showed a large increase moving from attend away to

attend probe and attend reference.

The combination of additive attention and contrast gain

produced the best results for the single layer spiking models.

By reducing the modulatory factor of contrast gain and the

additive firing rate we managed to keep the best parts of each

form; the good matching of the slopes by contrast gain and

the good matching of the constants by additive attention but

without generating the splits seen in additive attention alone.

The results though for the spiking 3-layer model with both

attentional forms were not as good.

The mean field results were disappointing for both contrast

gain and additive attention. A modulatory value for the

contrast gain form could be found that fitted the experimental

data for the regression slope values, whilst the regression

constants were again too large. Attention as additive required

a large attentional component to generate regression slopes

comparable to the single-cell results. In all simulations the

distributions in the SE–SI plots showed different populations.

The distinct groupings seen throughout Figs. 19–22 are due to

the architecture which results in the almost total annihilation

of firing in the non-preferred pools for the input of a single

stimulus. Hence, when only the probe is presented the firing

rates of the reference preferred pools is below spontaneous,

whilst probe rates are much greater than spontaneous; the

reverse results when only the reference stimulus is presented,

which then leads to a polarisation into 2 groups when SE
(which is probe – reference) is calculated. The validity of using

the mean field equations to model the experimental results

must also be questioned. The experimental results come from

single-cell recordings of up to 100 neurons whilst each set

of mean field equations represents a ‘collapsed’ population

of nodes (hundreds or even thousands of spiking neurons).

Hence, the range of experimental results is already contained

within the results of a single set of mean field equations. When

we solve 50 mean field equations for different input weights

we are not looking at results comparable to the single-cell

recordings. To investigate the (Deco & Rolls, 2005) model

SE–SI plots we need then to use the full spiking architecture.

The interaction between neurons that prefer the same stimulus

but have different response levels due to varying input strengths

combined with the small region for which feedforward and

feedback connection strengths lead to biased competition from

an additive attention component seem excessively complex.
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(a) Attend away (probe)

SI = 0.488SE + 0.323.

(b) Attend probe SI = 0.741SE + 0.525. (c) Attend away (reference)

SI = 0.586SE + 0.327.

(d) Attend reference

SI = 0.235SE + 0.493.

Fig. 14. 3-layer spiking network, attention as contrast gain *1.8.

(a) Attend away y = 0.531x + 0.367. (b) Attend probe y = 0.758x + 0.251. (c) Attend reference y = 0.385x + 0.276.

Fig. 15. Attention as additive in 3-layer spiking model. The results using the t test and without t test are exactly the same.

Indeed it is not clear for such a structure that feedback and

feedforward weights could be calculated to produce biased

competition from additive attention and which also shows

multiplicative gain.

5. Theoretical analysis of the simulation results

We analyse mathematically here the detailed simulation

results presented in the previous Section 4 in order to gain

a further understanding of the various results. We start by

considering the shunting inhibition neuron, whose equation

is as used in Reynolds et al. (1999). The neuron membrane

potential V satisfies the first-order differential equation:

dV

dt
= −AV + (B − V )E + (C − V )I (18)

where E and I are the excitatory and inhibitory inputs to the

neuron:

E =
∑

j

x jw
+
j (19a)

I =
∑

j

x jw
−
j (19b)
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(a) Attend away (probe)

SI = 0.483SE + 0.246.

(b) Attend probe SI = 0.978SE + 0.494. (c) Attend away (reference)

SI = 0.567SE + 0.263.

(d) Attend reference

SI = 0.483SE + 0.580.

Fig. 16. Output gain attention in spiking 3-layer model, t test used.

(a) Attend away SI = 0.518SE + 0.271. (b) Attend probe SI = 0.824SE + 0.400. (c) Attend reference

SI = 0.387SE + 0.423.

Fig. 17. Output gain attention in 3-layer spiking model, all neurons plotted.

where w+
j and w−

j are the excitatory and inhibitory weights

respectively onto the given neuron from the j th neuron

with input strength x j (so violating Dale’s law, but allowing

for mimicking the effects of inhibitory interneurons). The

temporally stable solution to Eq. (18) is the value:

V (∞) =
(

B E + C I

E + I + A

)
. (20)

The resulting formula for the values of the sensitivity indices

already introduced, SE and SI , are then, using (18) and

(19) and extending the analysis in Taylor and Rogers (2002),

Appendix B

SI = (P + R) − R = B(E1 + E2) + C(I1 + I2)

E1 + E2 + I1 + I2 + A

− B E1 + C I1

E1 + I1 + A
(21a)

SE = P − R = B E2 + C I2

E2 + I2 + A
− B E1 + C I1

E1 + I1 + A
(21b)

where the summations in (19) are reduced to being only over

the probe and reference stimuli, denoted by the indices j = 1

for R and 2 for P .
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(a) Attend away (probe)

SI = 0.519SE + 0.361.

(b) Attend probe SI = 0.760SE + 0.394. (c) Attend away (reference)

SI = 0.542SE + 0.379.

(d) Attend reference

SI = 0.261SE + 0.412.

Fig. 18. Mixture of contrast gain and additive in 3-layer spiking model, t test used.

In Taylor and Rogers (2002) the mean of the formulae

(21), over a set of random choices of the excitatory and

inhibitory weights onto the attended neuron were approximated

by assuming independence of the various factors entering on

the right hand side of Eq. (21). We obtained there the simplified

‘universal’ formula

〈SI 〉 = 〈SE〉
1 + u

+ threshold (22)

where

threshold = A(constant) (23a)

(so being proportional to the excitatory membrane resting

potential, the constant being determined by properties of the

random ensemble of weights), and

u =
〈

X1

X2

〉
=

〈
R

P

〉
(23b)

is the relative attention factor to the reference as compared to

the probe. In the attend away case, u = 1, in the attend probe

case u = 1/5 and in the attend reference case u = 5 (taking the

multiplicative gain contrast from attention to be the value of 5 as

used by Reynolds et al. (1999)). This leads to the slopes of 0.5

(attend away), 0.83 (attend probe), and 0.17 (attend reference).

These are very close to the values determined for the collection

of neurons recorded from V 2 and V 4 in Reynolds et al. (1999).

We now extend the linear regression formula (22) to the case

of a non-zero inhibitory resting membrane potential C in Eq.

(18), leading to the same formula as in (22) but now with the

threshold term modified to be

threshold = A(constant) + C(constant′) (23c)

(where the constant′ in (23c) arises from the various mean

values of the statistical ensemble).

Turning to the details of the simulations of Sections 3 and 4,

we already explained above the results of Fig. 3, which shows

the slope dependence of the regression line for the SI –SE plot

on the position of the focus of attention in the case of a single

graded node. The effects arising in this plot when attention is

additive, as shown in Fig. 4, may be explained from the fact

that such an attention signal is seen as a purely additive shift in

the excitatory component:

E =
∑

j

x jw
+
j + attn (24)

(where the added term ‘attn’ on the right hand side of Eq. (24)

is the additive attention feedback term, assumed excitatory).

On repeating the earlier analysis leading to Eq. (22) we obtain

the same formula, but now with A replaced by (A + attn).

Thus all that changes due to the additive attention feedback

term is that the SE–SI regression line is shifted upwards,

with the threshold increasing by a term proportional to the attn

component; there is no change in slope of the regression SE–SI
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(a) Attend away (probe)

SI = 0.517SE + 0.183.

(b) Attend probe SI = 0.732SE + 0.341. (c) Attend away (reference)

SI = 0.516SE + 0.180.

(d) Attend reference

SI = 0.275SE + 0.335.

Fig. 19. Single layer model, 50 mean field equations using different weight values from the probe to pool 1 and reference input to pool 2, no crossover between

inputs and pools. Contrast gain case where the weights from probe and reference are multiplied by a factor of 1.8 during the appropriate attend condition.

plot. This may differ between the attend away, attend probe and

attend reference cases, leading to different values for the SI -

axis crossing in the three different attend conditions. However

the slope will be very close to 0.5 in all three cases.

We note that the results of Fig. 4 do show differences

of slope between the attend away, attend probe and attend

reference cases, in agreement with experiment. This can be

explained as arising by the selection of neurons by choosing

those which are probe preferred or reference preferred, across

the ensemble of neurons, the two sets being defined by probe

weights > reference weights or vice versa. However we see

that there is almost identity in slope between those components

of the points in Fig. 4 which arise as a linearly-distributed

population. This is the lower left-sided population in Fig. 4(b)

and the left-sided population in Fig. 4(d). A similar feature also

arises in Fig. 10(b) and 10(d) in the spiking one-layer cortex

case, where the linear populations in those two figures again

have the slope of 0.5, with the other points arising, it can be

conjectured, due to the selection process.

A very similar architecture to the 3-layered cortical model

of Grossberg and Raizada (2000) was created for use with

graded neurons, and was shown in Fig. 2. It consists of a

pyramidal neuron in layers 2/3, a pair of inhibitory and stellate

neurons in layer 4, and a pyramidal neuron in layers 5/6 (as

in Grossberg and Raizada (2000)). We consider the effect of

attention modulation on the pyramidal neuron PY56 in the

layers 5/6, which is taking inputs from the lower cortical site

(V 1), from attention feedback, and from feedback from layers

2/3. Then the extension of the stable layer 5/6 neuron potential

V (56), extending Eq. (20) to the 3-layered case, and with

C = 0, is:

V (56) = B(56)E(V 1I N , attn, F(I N , PY56))

A(56) + (E + I )( f n)
(25)

and where E and I , the excitatory and inhibitory inputs to the

PYR56 neuron, depend explicitly and additively on the input

I N from any V 1 feedback input, denoted as V 1 I N in Eq.

(25), the attention feedback signal, denoted attn there, and the

feedback from layer 2/3 to PY56 denoted as F(I N , PY56), we

denote these variables by f n. The latter feedback leads to a

recurrent equation for the value of V (56) from (25). We work in

the parameter region where there is no bifurcation to non-zero

continuing excitation of PYR56, since there is no observation

of such a bifurcation in the temporal data for the V 2 or V 4

neurons, nor did Grossberg and Raizada (2000) appeal to such

a bifurcation effect to fit the temporal data of Reynolds et al.

(1999).

The results of Fig. 6, arising from the architecture, and with

shunting inhibition set at 0, are to be expected to be close to

those of Fig. 3, with attention dependency of the slope of the

SE–SI line as given by the universal 1
1+u (which can also be

deduced by the similarity of (25) to (20)); the shifts of the

crossing of the SI -axis are also explained as in the graded

case. Also the effect of attention in the simulation of Fig. 7
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(a) Attend away (probe)

SI = 0.500SE + 0.218.

(b) Attend probe SI = 0.697SE + 0.378. (c) Attend away (reference)

SI = 0.492SE + 0.211.

(d) Attend reference

SI = 0.274SE + 0.371.

Fig. 20. Contrast gain results with attentional modulation of 1.8. All nodes get inputs from probe and reference stimuli.

mirrors closely that of contrast gain: the inputs only from the

attended input are boosted by attention. However the slopes

are not expected to satisfy the general formulae (22) and (23)

since the contrast gain itself arises only from the larger weights

involved in the relevant set of neurons.

When the inhibitory shunting membrane potential is

changed from 0 (as used in the Reynolds et al. (1999)

simulation) to −1, then the term C in Eqs. (18) and (20) is now

present. For the contrast gain model of attention feedback, the

SI –SE curves in the three different attention conditions will

still have the slopes they did in the case of C = 0, but now the

crossing of the SI axis will be altered by a term proportional to

C , so will be negative. This is precisely what is observed in a

separate simulation (not reported on here) in the 3-layered case;

a similar results arises in the 1-layered case. Let us consider the

case that the attention feedback is additive in the three-layer

case. If we assume that there is no recurrence from the layer

2/3 to layer 5, so that F(I N , PY56) now becomes solely a

function of I N , then we may analyse the solution (25) (with

its additive structure) as in Taylor and Rogers (2002) so as to

lead to a similar linear regression equation for SI against SE
as observed experimentally, but now with slope not completely

independent of the attention feedback signal (as in the one-

layer case). The bias is due to the selection process involved

in choosing neurons with probe weights (for preferred probe)

or reference weights (in the other case) being greater than the

other set of weights. There are now two changes brought about

by attention:

(1) to change the crossing of the regression line on the SI axis;
(2) modification of the regression slopes by the extra

amplification or reduction in taking account of the selection

of weights in the ratio u of Eq. (23b). For the probe

preferred case then the constant u < 1, whilst for the

reference preferred case we will have u > 1, in each case

the degree of amplification or reduction about 1 for the

value of u being expected to depend on the mean weights

assigned to the two populations. Thus we expect, as shown

in Fig. 10 (and 7), that the total slopes will be able to be

adjusted close to the experimental data by the selection

process of the relevant neuron sub-populations.

We have not considered in detail the spiking simulations either

in the 1-layer or 3-layer cases. The two-population structures

of various plots arising from the spiking neuron simulations

were discussed in Section 4; the other aspects of the slopes,

we suggest, are already covered by our analysis in the light

of an expected averaging process turning the spiking neuron

equations into those involving graded neurons.

6. The neurochemistry of attention and its implications for
micro-attention

Of the four primary neuromodulators: acetylcholine (ACh),

norepinephrine/noradrenaline, serotonin and dopamine, the

most important seem to be ACh and noradrenaline. Serotonin’s
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(a) Attend away (probe)

SI = 0.495SE + 0.220.

(b) Attend probe SI = 0.608SE + 0.350. (c) Attend away (reference)

SI = 0.500SE + 0.219.

(d) Attend reference

SI = 0.360SE + 0.382.

Fig. 21. Attention as additive, only positive component of +60 Hz used. No crossover with inputs.

role in visual attention seems to be limited, while dopamine

affects attention (Ye, Xi, Peng, Wang, & Guo, 2004), but in a

manner that is not yet entirely clear. The result of noradrenaline

action is alerting to new stimuli, not the focusing of attention

(Foote, Berridge, Adams, & Pineda, 1991). Whilst ACh has

been shown to have a number of attentional actions—see

(Davidson & Marrocco, 2000; Witte, Davidson, & Marrocco,

1997) for example—it is the most important for the focusing of

attention (Witte et al., 1997). ACh action is mediated by two

receptors: muscarinic and nicotinic. When utilising muscarinic

receptors ACh has a number of affects: alerting (Witte et al.,

1997), orienting (Davidson & Marrocco, 2000), and modulation

of visual attribute processing (Mentis et al., 2001). However, it

is nicotinic ACh receptors (nAChR) that are the most important

for visual attention (Witte et al., 1997).

The question then is: what is the mechanism by which

nAChR allow ACh to focus attention? We have discussed

this elsewhere (IJCNN, 2005), so summarise the arguments

provided there. The source of cortical ACh is the nucleus

basalis of Meynert (NBM), and the spread of axons from

NBM to cortex is in general diffuse (Everitt & Robbins, 1997;

Kimura, 2000; Lucas-Meunier, Fossier, Baux, & Amar, 2003).

Studies of the distribution of ACh varicosities in the cortex

(Turrini et al., 2001; Umbriaco, Watkins, Descarries, Cozzari,

& Hartman, 1994) have shown differing results for the number

of varicosities that are synaptic: 15% in the rat, 45% in the

macaque. Which leads to the conclusion that ACh undergoes

volume distribution and hence is unable to support focusing

of attention on a specific stimulus or goal. The proportion of

synaptic ACh varicosities rises to 67% in humans (Smiley,

Morrell, & Mesulam, 1997) which suggests that a more specific

action of ACh could be a possibility. Indeed many of the

components needed for ACh to act in a focusing manner are

present:

(1) high proportion of synaptic varicosities (this at least is true

in humans (Smiley et al., 1997));
(2) that cortical nicotinic receptors act in an amplificatory

manner (to justify the two multiplicative attention methods

we are modelling) on nearby synaptic weights. At least

for cortical interneurons there is evidence for the effect

of nAChR on nearby synaptic sites (Alkondon, Pereira,

Eisenberg, & Alburquerque, 2000); the amplificatory action

is also supported (Kimura, 2000);
(3) that attention feedback control signals axon boutons arrive

near to the nicotinic receptors on the cortical neurons, this

can occur since the higher level feedback can go to layer 5

which has relatively high densities of synaptic varicosities.

We suggest that focusing of attention can act in a

multiplicative manner via nAChR at layer 5 cortical neurons

due to local coincidence of ACh varicosities and feedback axon

boutons.

There is still open the question of how learning of attention

in feedback style is achieved. We speculated in Taylor,

Hartley, and Taylor (2005) that with this neurochemistry and
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(a) Attend away (probe)

SI = 0.447SE + 0.285.

(b) Attend probe SI = 0.578SE + 0.388. (c) Attend away (reference)

SI = 0.447SE + 0.284.

(d) Attend reference

SI = 0.322SE + 0.409.

Fig. 22. Additive attention component of 60 Hz. All neurons have inputs from probe and reference.

architecture the multiplicative attention model would have the

sigma–pi form:

wi, j,k = w jw
′
k (26)

where w′
k is the strength of the connection from the kth higher-

order attention control neuron to the i th node, and w j is the

connection from the j th lower-order node. The learning of this

product form is expected through the separate learning of the

separate factors in the product term on the right-hand side of

Eq. (25), leading to a learning rule of:

Δwi, j,k = OUTi [OUT jw
′
k + OUTkw j ]. (27)

We have used the sigma–pi form of (26) to explore the more

global effects of attention in Taylor et al. (2005), Taylor,

Panchev, Hartley, Kasderidis, and Taylor (2006), and could

have used such a structure here in the spiking models, rather

than simply multiplying the weight values when attention was

present.
In total, we suggest that the detailed action of ACh supports

the contrast gain microstructure model of attention feedback.

The presence of some additive feedback component is to

be expected as arising from lower-level Hebbian correlation

learning. From an information feedback point of view there

is clearly greater specificity in the sigma–pi feedback, since

greater information is needed to specify the set of three-index

symbols wi, j,k defining the sigma–pi feedback weights than

solely the wi, j, for the additive feedback weights

7. Discussion

We can summarise our results by stating that only the

contrast gain mechanism of attention feedback control can

model closely the regression plots obtained by Reynolds et al.

(1999), showing the best fits to the regression slope values and

distribution of points in the plots. However the architecture

and possibly the equations need to be made more complex to

account for all the regression line data.

7.1. General comments

Two models of attention feedback (output gain and additive

feedback) each lead to clear differences with the Reynolds

et al. (1999) regression plots. In the case of output gain we

cannot reliably replicate the regression slope values across all

models and there exists two populations that form in the attend

probe and attend reference conditions. Similar divisions occur

if output gain is only applied to one population at a time, rather

than our differential application shown here. If an excitatory

additive component only is used we need to use a larger

modulatory factor to obtain results near to the experimental

regression slope values. The addition of an inhibitory pool

is unlikely to help the division since overall our total firing

rates between the attend away and the attend probe and attend

reference results are similar, hence an inhibitory pool would

not change its firing rate significantly and is more likely to

affect the lower spiking pool actually helping to accentuate the
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division. The additive attention model suffers also from two

populations in the attend probe and attend reference plots. In

this the differential application of differential additive attention

(positive to the population preferential to the attended stimulus,

negative to the others) mimics to some extent the effects of

an inhibitory pool. If the additive attention had a spectrum

of response from a strong positive term to a strong negative

term as neurons’ response changes from strongly preferential

to attended stimulus to strongly non-preferential to the attended

stimulus, respectively, then we would expect to see a single

population of points in the attend stimulus plots. Such a

response seems highly specific and difficult to achieve by

learning.

In the light of various claims by other authors we need

however to assess our results. Thus in Grossberg and Raizada

(2000) it is claimed that a three-layered cortical model, with

graded neurons, would satisfactorily simulate the results of

Reynolds et al. (1999). A careful perusal of the paper of

Grossberg and Raizada (2000) shows, however, that there was

no simulation of the detailed regression results of Reynolds

et al. (1999) that have been investigated here. Indeed one of

our reasons to use the 3-layered cortical model of (Grossberg

& Raizada, 2000) was to extend their simulation of the results

of (Reynolds et al., 1999) to the regression analysis. The results

of our investigation, presented above and further commented on

above in this section indicate that the model of (Grossberg &

Raizada, 2000) does not give results fitting the regression data

of (Reynolds et al., 1999). This failure can be put down to a

number of deficits possessed by attention as additive feedback,

especially the lack of stimulus specificity in amplifying the

attended stimulus input to a specific neuron which is itself

receiving attention feedback. Across an ensemble of such

neurons the stimulus specificity is not sharp enough. There is

support for our results from (Hamker, 2004), who only used

graded neurons and a single layered cortex; nor did he consider

additive or output gain forms of attention feedback.

Our results are also supported somewhat by recent

experimental results (Williford & Maunsell, 2006) though they

found whilst contrast gain could describe the results, they

concluded that response gain and activity gain were marginally

better fits. However their experimental paradigm is different to

that used by (Reynolds et al., 1999) which has been used here;

additionally, as they point out, the attentional amplification

was lower for their results than in other studies. Whilst for

our results presented above the noise present for probe and

reference inputs (in the spiking models) is not sufficient to

cause spontaneous firing of these inputs, in simulations where

the probe and reference inputs do fire spontaneously at rates

in the range 0–10 Hz (mean ∼5 Hz) directing attention to

the probe or stimulus does lead to changes in firing rates

of the target neurons (the Model neurons in the single-layer

architecture, and the PYR5/6 nodes in the 3-layer structure)

of up to 3 Hz, though the degree of change is dictated by

the attentional modulation level. Indeed changes in neuronal

responses caused by the effects of attention on noise were found

in the experimental results (Williford & Maunsell, 2006).

A similar lack of sharpness also occurs for additive feedback

attention when analysed for spiking neurons. The situation

is not as clean here, since there are both non-linear as well

as stochastic effects. However we have seen that there are

differences in the spiking case between the various forms of

attention by direct simulation. We have attempted to explore

this further by use of mean field approximations (as in Deco

and Rolls (2005), Brunel and Wang (2001), Wong and Wang

(2006)) although we have not been able to reproduce the

experimental results of Reynolds et al. (1999). Thus we left

this approach aside; it is unclear to us that there would be an

obvious reason why the additive approach would lead to results

similar to the contrast gain case (unless some form of ‘bump’

activity was formed due to lateral connectivity).

The differences seen here between additive and contrast gain

attention feedback in the graded case appear already to arise at

the single neuron level, where a universal formula was obtained

for the regression slope and constant (Taylor & Rogers, 2002).

That for the regression slope was simple for contrast gain, being

the value 1
1+u , where u = 1/5, 1 and 5 for attend reference,

away and to the probe, respectively. This formula was even

simpler for the case of additive feedback, when all the slopes

are identical, independent of attention mode. The extension of

this universal formula to the 3-layered graded case or to the

1- or 3-layered cortex of spiking neurons is more difficult, but

indicates the need for strong non-linearities or stochastic effects

to get round the universal formula which found no effect of

attention on the regression slope in the simplest case.

We can also ask under what conditions one form of attention

feedback at a certain level in a hierarchical system can be

modified to appear as another form as one proceeds up the

hierarchy. Thus the modification of an additive component to

a neural network with Mexican hat type of lateral interaction,

with short range excitation and long-range inhibition, can lead

to output in which the additive component becomes an output

gain effect (Salinas & Abbott, 1997). It has been suggested that

such an effect is at the basis of the gain modulation on neurons

in parietal lobe by eye position. However for there to be such an

effect arising from one layer to the next in either the ventral or

dorsal visual hierarchy would require such a Mexican hat type

of lateral connectivity. The existence of such connectivity has

been proposed by several researchers (Amari, 1989; Ermentrout

& Cowan, 1980) to allow for the creation of ‘bump’ localised

persistent solutions for neural activity in the ‘neural fields’

suggested as approximations to the visual cortical areas such

as V 1, V 2, V 4 etc. However more detailed analyses of the

responses of cortical cells in these areas have cast doubt on

such connectivity and so on the mechanism of turning additive

to output gain attention feedback signals.

There are a number of psychophysical results (Carrasco

et al., 2004) which indicate that there could well be an output

gain component arising at a global level in visual attention.

Thus the problem of how this is to be understood still arises.

Also there is considerable visual feedback from one layer

to a lower one in the visual hierarchy (Lamme, Super,

& Spekreijse, 1998; Salin & Bullier, 1995). Much of this

feedback is expected to be additive, but may not be directly
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involved in attention feedback at all, but only in lower level

visual processing up to semantic level, helping make it more

efficient in its own right (Mumford, 1991a, 1991b). This is

supported when we consider the neuromodulator most involved

in attention, that being acetylcholine.

7.2. Conclusions

We have shown using different forms of neuron (graded

and spiking) and various structures (single neurons and multi-

layer cortical models) and mean field equations that the form

of attention that best fits the SE–SI graphs of Reynolds

et al. (1999) from single-cell recordings is contrast gain;

if we combine forms then a combination of contrast gain

and additive attention give the best fit. A mathematical

analysis confirmed the experimental results. We have also

by investigating the literature suggested a tentative method

by which the multiplicative affects of attention may occur,

by utilising ACh and nicotinic receptors. We note that the

conclusions of a recent modelling study (Sripati & Johnson,

2006) were that attention either worked by altering the neuronal

firing threshold which can be achieved by a constant additive

input, i.e. the additive attention feedback modelled throughout

this paper, or by adaptation of the neuronal conductance

where the number of open channels are modulated by some

neuromodulator, i.e. the multiplicative form used for contrast

gain. Indeed this second method is how we have previously

shown multiplicative attention may act by the dependence of

the number of open channels on the ACh concentration (Taylor

et al., 2005) as a possible method of implementing the

neurochemistry of attention outlined above. In all (Sripati &

Johnson, 2006) investigated 6 possible attentional methods but

did not look at combinations of 2 or more. We note also that

the authors did not consider the data in Reynolds et al. (1999)

at all; so the results are somewhat complementary.

More work on contrast gain attention is required since we

cannot replicate the regression constant values of the single

cell recordings reliably; with the 3-layer spiking cortical model,

especially, having regression constant values that were too

large, though the results for the single neuron spiking case were

within the experimental range. The next stage is to investigate

the effects and model of attention in a multiple region model,

as in Deco and Rolls (2005).
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