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a b s t r a c t

Cognition is a complex and wide-ranging field of study. We suggest a possible approach to modelling

reasoning as a particular aspect of cognition involving the use of forward and inverse internal models to

allow the effect of actions on the world to be considered. The field of animal reasoning provides an

excellent source of manageable problems. We describe one of these, the two-sticks paradigm, in detail

and construct a model of how the reasoning process involved in solving this paradigm might operate.

Results from this simulation are presented, and we discuss important features of the model, in

particular the use of spatially invariant goal representations and fast movements of reward.

& 2008 Elsevier B.V. All rights reserved.

1. Introduction

Understanding the mechanisms underlying human cognition is
an extremely complex problem, constructing models of this
cognition even more difficult. One possible way to approach the
construction of cognitive machines is to examine cognitive
processes in animals, where simpler paradigms exist compared
to human cognition.

1.1. Defining cognition

Typical definitions of cognition are:

That operation of the mind by which one becomes aware of
objects of thought or perception; it includes all aspects of
perceiving, thinking, and remembering.

Mental functions such as the ability to think, reason, and
remember.

High level functions carried out by the human brain, including
comprehension and use of speech, visual perception and
construction, calculation ability, attention (information pro-
cessing), memory, and executive functions such as planning,
problem-solving, and self-monitoring.

All of these definitions indicate that cognition is complex. We
wish to concentrate here on reasoning, and planning as advanced
components of cognition; we leave out speech as not to be

discussed at any deep level, nor consciousness/awareness. We
should note here, however, that consciousness has been proposed
as a feature arising out of working memory (WM) activations
marshalled by attention, for example as through the CODAM
approach [14].

Various approaches have been developed for reasoning and
planning. Among them we single out three that have recently
proved important:

(a) Symbolic, using logical inference embedded in linguistic/
symbolic structures.

(b) Probabilistic, using cognition as defined as probabilistic
inference.

(c) Connectionist, with numerous discussions of how inference
can be obtained from low-level neural network structures.

We will discuss here only the third of the above approaches
since it fits in most naturally to the neural systems relevant to the
consideration of animal cognition, more specifically animal
reasoning. Cues on higher cognition from brain-based systems
possessed by animals could be important in helping us better
understand how such feats are achieved in humans.

1.2. Components of modelling cognition

The most important components of our approach to cognition
will be based on (1) forward models, to be used as a basis of
encoding the causality of the world; (2) WM modules, for
imagining future events when combined with forward models
(this process is termed ‘‘prospection’’ in [5]), (3) attention control,
enabling the selection of only one of numerous distracters in
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lower level cortices to be evaluated or transformed to enable
certain goals to be attained. These components have already been
included in the CODAM model [13], although we must be careful
to differentiate between a state estimator and a forward model.
Here we need to do so: a state estimator is one that estimates the
state of the plant being controlled at a given time, whereas a
forward model makes a prediction of a future state of the plant.
Such a prediction can arise from building a state estimator not for
the state now but for that 1 s (or whenever, after recurrent
running of the predictor) ahead. This would therefore require an
efference copy of the control signal to update the state estimate to
that for the next time step.

That such forward models occur in the brain in the parallel
case of the motor control system has been demonstrated
experimentally by numerous authors. For example in [1] it has
been shown how adaptation to novel force fields by humans is
only explicable in terms of both an inverse controller and a
learnable forward model. More recent work has proposed
methods by which such forward models can be used in planning
(where motor action is inhibited during the running of the
forward model) or in developing a model of the actions of another
person [9]. Such planning has been analysed in those references
and numerous other publications for motor control and actions,
but not for more general thinking, especially including reasoning.
Nor has the increasingly extensive literature on imagining motor
actions been appealed to: it is important to incorporate how
motor actions are imagined as taking place on imagined objects,
so as to reason as to what will be optimally rewarded possible
actions.

The schemata of the PFC are intrinsically forward models of
sensory/response sequences: starting at the initial state of the
sequence, the further ones will be generated sequentially, using if
necessary further buffer capacity to become aware of the various
states of the sequence, or the final one. Thinking through the
consequences of an action on a stimulus could thus be achieved in
that way, by running through a given schemata from an initial
state. Planning would require some final goal state being active,
and comparisonwith the various states in a sequence generated in
the above manner made to check if the goal was yet reached. In
the process all response patterns would be inhibited from making
any real actions (as observed in over-activity of striatum when
imagining motor actions). Various strategies for good planning
(such as back-tracking, etc.) would need to be used; however,
these appear only to be second order features of the basic
architecture, so will be presently neglected. This overall archi-
tecture provides, then, a principled approach to reasoning and
planning in neural systems (and it is suggested the approach in
the brain). We add finally that the forward models provided by the
ACTION-network style of the PFC may be an extension of more
time-limited forward models in parietal cortex, as proposed in
terms of parietal deficits.

It has to be recognised that there is presently some controversy
over the level of cognitive powers possessed by animals [2]. It is in
particular as to the ‘‘understanding’’ of a particular tool relevant to
a reasoning task that is at especially at issue. Numerous animals
(such as macaques) when challenged, in what looks like a
reasoning task, by making the task more difficult, tend to fail
the harder task. This was so in the ‘‘trapping tube’’ task: a hole is
placed on the underside of a transparent tube, and the animal has
to push a reward inside the tube out of one end and avoid the
trapping hole. This can be done by a macaque if the hole is at
the centre, but it was found difficult if the hole was off-centre.
This implied that the macaque was very likely using some simple
rule to gain the reward (such as ‘‘push a stick into the end of the
tube farthest away from the reward’’); the more difficult off-
centre hole task needed a more complex rule. The difficulty is thus

that animals may appear to be using rationality in solving tasks
but may only be appealing to simple associatively based rules, so
not possess any real and flexible understanding of the task and the
tool use needed to solve it.

1.3. Animal reasoning foundations and Betty the crow

While human cognition is exceedingly complex, we can
consider the somewhat simpler problems involved in animal
cognition. That an animal reasons, as opposed to solving problems
purely by trial and error, is supported by the fact that they have
been observed remaining still while assumedly internal processes
are going on in their brains as they view apparatus in the
environment involved with their obtaining a food reward. A
sudden sophisticated move is then made by the animal so that it
gains its goal (usually food). There can be a period before an action
is made when an animal can be interpreted as ‘‘sizeing up’’ the
situation set by some difficult task, such as a squirrel pausing and
looking in detail at the environment when it is trying to obtain
nuts from a nut dispenser placed inaccessibly high above the
ground at the top of a long pole that the squirrel ultimately
assesses is unassailable. It then turns away.

It is possible that such a stationary animal is thinking of other
things than how to get the food goal. But it would appear to have
poor survival value to sit and think of one’s income tax if one is
very hungry and can see food, but not immediately obtain the
visible food reward. Nor would it have much survival value to rush
around, using energy, in random or near-random efforts to get the
food. Periods of inactivity are thus, we suggest, not spent in day-
dreaming or thinking of unrelated topics by the animal but are of
interest for further probing as to possible ongoing brain processes
relevant to the animal achieving its task: obtain the food. Even in
a more complex animal such as a human being, functional brain
imaging, for example, is crucially based on the fact that humans
are indeed thinking about relevant strategies for solving the tasks
set them by the experimenter rather than subjects letting their
minds wander into areas completely irrelevant to the task.

One of the clearest demonstrations of animal reasoning is that
of Betty the New Caledonian crow (who lived in Oxford: [16]). She
was able to extract her lunch-basket from a vertical transparent
tube when the apparatus was presented to her. She was always
presented with both a straight piece of wire and a bent one.
According to report [16] she always picked up in her beak the bent
wire. Such a choice very likely had a genetic basis, since she and
all other New Caledonian crows come from a forest environment
in which bent sticks are prevalent, and young naive (cage-reared)
crows, who had never had any prior experience or coaching in
stick use, were noted to prefer bent sticks to straight ones.

2. An architecture for reasoning

A general form of a reasoning system (extending [9]) is given in
Fig. 1: This shows the visual input (from parietal lobe) proceeding
to an inverse model controller (IMC) to generate a suitable action
to achieve the desired (goal) from the visual state arising from the
visual input. There is a corollary discharge of the IMC motor
control signal (whose main output will generate motor responses
in motor cortex/cerebellum/spinal cord) fed to a forward model,
and so allow a prediction to be made of the next sensory (visual)
input. This process can be speeded up by use of prefrontal
chunking of sequences of actions (such as from the initial position
of the bent stick at the top of the tube to its touching the handle of
the food bucket at the bottom of the tube).

There is no attention control system present in the system of
Fig. 1, so leaving the system vulnerable to distracters. This can be
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remedied by including a CODAM form of attention control, as
shown in Fig. 2.

The extension from Fig. 1 to 2 is by the addition of two further
modules. One of these is a motor attention IMC module, applying
an attention signal to the motor .plant. (consisting of the IMC for
motor responses, supposedly sited in motor CX, Cb, BG, etc.) to
pick out the desired action signal; this motor attention IMC is
known present in the left angular gyrus [10,11]. It uses as input the
goal position and the actual visual input from the WM (visual)
module in the visual CODAM system. Thus only the attended
visual state is used to guide the motor attention IMC, and is fed
back from it to update it.

The other extra module is a set of CODAM-like modules for
visual attention, consisting of a visual attention IMC, a WM
(visual), a WM (corollary discharge) and an error monitor; this
latter is different from the explicit monitor in Fig. 2 imported from
Fig. 1, which is purely for training the sensory FM and the motor
attention IMC. Thus we have a full CODAM-type model for visual
processing (so as to avoid visual distracters by the full use of
attention, and for which there is experimental evidence for each
component) whilst we have taken only a ballistic attention model
for motor attention (although there may also be the CODAM-type
extensions, these only complicate an already complicated figure).

We note that the goal module in Figs. 1 and 2 have been taken
as that of the final sensory state to be achieved by the movement.
This is different from suggestions in [15], for example, where
actual motor actions were taken to be represented in prefrontal
goal modules. However, there is considerable simplification
achieved by considering prefrontal goal states only as desired
states of external stimuli, such as objects or components of the
body. This choice is consistent with the usage of goal states
considered in motor planning in [9] and in motor control in [3],
who define the goal as a particular desired state of a given
external stimulus. This is also consistent with more general

remarks on goals in motor control as corresponding to effector
final states [17]. There is also direct experimental evidence of this
assumption [7]. Thus goal states in general are not specific actions
themselves, but are in the sensory domain. They generate the
requisite actions by use of the control apparatus (motor attention
IMC and lower level motor IMC). This is also consistent with
coding in the highest areas of PFC which are sensory in content, as
compared to motor codes in the lower non-primary motor areas
(PMC, SMA, and related areas).

The crucial mode of action of the visual FM is to accept input
from the motor attention planner and from the attended visual
output of the WM (visual) site, possibly accompanied by the lower
level codes for object and feature maps if necessary (these also
arise from the CODAM-type visual module in Fig. 2). These two
sets of inputs provide an update of the visual activation by the FM,
as a new sensory state arrived at by the action input to the FM.
The new sensory state then can lead, in combination with the
desired state goal in the goal module, to an action produced by the
motor IMC that will cause the new visual state to be transformed
to the desired goal state if the specific action is taken. The
resulting motor action is then, in the reasoning mode, not taken in
actuality but is fed back to the FM (visual), to be either used for
further updating of the FM (as in continued planning or imagining
of a sequence of visual stimuli) or (in the acting mode) to provide
a specific external motor action by updating the IMC (motor
attention). Also, in the reasoning mode there is associated
inhibition of the lower level motor apparatus when the overall
motor attention IMC and the visual FM are used in reasoning
(imaging sequences of actions on sequences of visual stimuli).

From several lines of evidence the visual FM of Fig. 2 may be
regarded as a point of contact between the two CODAM networks,
one for motor attention and the other for visual attention, that
have been proposed in [15,12]. It has been suggested as being in
the posterior parietal lobe and/or cerebellum [3].
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Sensory goals Inverse motor
controller (IMC)

Visual input

Error monitorForward model (FM)

Modified IMC/FM parameters

Fig. 1. Basic architecture for reasoning. This is a standard motor reasoning system, where the input to the inverse model controller (IMC) in the recurrent mode is solely that

arising from the FM from a previous step, with no input being used from the visual input module. The output (the dashed arrow) of the error monitor (which compares

visual input to that predicted by the FM) can be used to train the FM and IMC. The output from the IMC is sent not only to the FM (as an efference copy) but mainly to the

motor system (motor cortex, cerebellum, basal ganglia, spinal chord) to move the muscles, and thence cause action on the stimulus generating the visual input.

Sensory goals IMC/plant for 
motor response Visual input

Error monitor
Forward model (FM)

Modified IMC/FM parameters

Motor attention IMC

IMC + WM CODAM
system for vision

Fig. 2. Attention-controlled forward/inverse model Paris for reasoning. Note that the visual input to the forward model is assumed to be under the control of the attended

visual output, as from the visual working memory (WM), and the FM feeds back to update the WM, as occurs in mental imagery involving transformations of imagined

objects. The goals module has been labelled .visual., to emphasise that it involves the final visual states of objects to be manipulated. See text for further explanation.
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We will now consider in more detail another animal reasoning
paradigm—the ‘‘two-sticks’’ paradigm.

3. The two-sticks paradigm—constructing a model
of simple cognition

This is a paradigm employed by experimenters working with
chimpanzees [8]. The task: involves two sorts of sticks: S1 (short)
and S2 (long), one of each being present on a given trial. A
chimpanzee in the experiment wants to reach the food, but this is
further away than can be reached by use of the stick S1 alone. The
food can be reached by using S2, but S2 can only be reached by
use of S1 (since the chimpanzee is sequestered in a cage). We can
see a cartoon of the paradigm in Fig. 3.

The paradigm is interesting because, although it can be solved
by a trial and error method involving attempting to take every
reachable object and use it on every other object until the reward
is reached, this does not seem to happen in practice. Instead, the
chimpanzees can take the necessary reasoning steps to deduce
that it is necessary to take S1, use S1 to reach S2 then use S2 to
reach the reward, then carry out these actions, without extensive
trial and error.

We can consider a possible sequence of mental steps that a
reasoner might take to solve the problem.

(I) Try to reach the button directly. This is: ‘‘NOGO’’, leading to
further search.

(II) See the stick S1, and try virtually to pick it up and use it.
Again this leads to lack of success (since it is not long enough
to reach the button), leading to further search.

(III) The stick S2 is observed, and if it were picked up virtually, it
is found that S2 would be able to reach the button. Then S2
becomes rewarded as a subgoal (with a new but temporary
value map entry for S2).

(IV) With S2 as a subgoal, use S1 virtually to reach S2, which is
achieved; S1 now becomes a subgoal (the most temporarily
rewarded of all the goals).

(V) Proceed with actual actions and so obtain S1 first, then drag
S2 to the reasoner by use of S1, and thence the food reward is
obtained by use of S2 on the button.

3.1. Simulation modules

We can consider what modules might be necessary for a model
of the reasoning process involved in the two-sticks paradigm,
extending our earlier consideration of cognition.

Drives: These should consist of the basic drives that cause the
system to attempt actions. In the present paradigm’s case the sole
basic drive is hunger, to be satisfied by pressing the button on a
suitably distant wall, that will cause a food reward to be given
(the association between the button and the food reward having
forming previously at some point).

Goal list: This is composed of the goals which are available to
the system (independent of the available actions within the
simulated world). In our approach goals are represented by
stimuli. For this paradigm there are three goals: button/S1/S2,
representing attempting to press the button, or grasp the
sticks.

Vision: The vision system provides the simulation with
information about the current state of the world and the reasoner
within it. This allows an IMC to calculate movements necessary
to achieve selected goals, or to return ‘‘NOGO’’ if they are not
achievable.

Motor IMC: The IMC components allow the simulation to
determine whether goals are achievable or not, given the current
state of the world. They also allow the use of ‘‘virtual’’ actions,
whereby the results of actions currently physically impossible
can be considered. These can then modify internal parameters
that determine what actions are and are not possible. For
example, the IMC associated with stick S2 allows consideration
of what actions could be performed while stick S2 is grasped even
if the stick is not currently physically reachable. We discuss these
‘‘spatially invariant’’ representations of objects in further detail
later.
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Fig. 3. Cartoon of the two-sticks paradigm.

Fig. 4. Details of the simple model for cognitive reasoning in the two-sticks

paradigm. The drives module primes the goals (which have a competitive

interaction such that only one can be active at the same time). Goal activations

prime the IMC modules, which determine whether actions are possible, and affect

goals and rewards appropriately. Vision keeps the current state of the world

updated.
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Rewards: Reward values can be attached to all of the goals
available to the system. These reward values can be modified by
the results of the mental simulation, and this modification allows
the correct actions to be executed to solve the paradigm.

Forward models: We have not included these explicitly in the
architecture of Fig. 4. We consider that each IMC has an associated
FM which is easier to train than the IMC, since the FM has an
immediately generated error as a comparison of the predicted
next state (after an action) and the actual state as determined by
sensors. This error can be used to train both the FM and IMC; it
may arise most powerfully from the cerebellum but may also
involve a dopamine component in learning. The forward models
are needed if extrapolation through a sequence of states and
actions is needed in a reasoning process. The processes in the two-
sticks paradigm are simple enough to assume that no forward
extrapolation is needed, since the actions are assumed taken in
one ballistic movement to attempt to touch the button or to grasp
a stick.

We can see these components together in the model,
illustrated in Fig. 4. There is a goals module, coding for the three
stimuli of button, sticks S1 and S2 (to press the button, pick up the
stick S1, and pick up the stick S2, respectively). There are three
IMC modules, the first (denoted IMC) being for pushing the button
by the gripper, the second is for grasping stick S1 (and denoted by
IMC0, with consequent alteration of the length of the gripper in
IMC to correspond to carrying stick S1), and the third (denoted

IMC00) is for performing a similar action with stick S2 (and
consequent change of parameters used in the gripper IMC). There
is also a reward module in which there is modifiable steady
activity corresponding to the current reward value of either the
button B or the sticks S1 and S2 (all the observable objects in the
environment).

Given these defined goals, we might then expect the flow of
reasoning described earlier to occur in terms of the model
components as in Fig. 5.

At each stage of the simulation, the system is presented
with a range of possible actions and must choose an action to
perform. The IMC and FM (the latter not shown in Fig. 2) allow
the system both to mentally simulate these actions (with no
external actions) or alternatively to instantiate the actions
(the former by inhibition of any output from the IMC, the latter
when this input is allowed to activate the effectors by switching
off the inhibition).

3.2. Simulation mechanics

Parameters are given in Table A1.
Goal nodes are modelled as simple graded cells with the

equation:

C
dV

dt
¼ gleakðV � V leakÞ þ I, (1)

ARTICLE IN PRESS

Fig. 5. Suggested reasoning sequence of goal usages, showing the order in which goals are attempted, and the ‘‘virtual’’ actions that modify system parameters to allow the

chain of reasoning to be carried through.
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where I is the neuron’s input current. Their output is sigmoidal in
the form

1

1þ expð�V=VscaleÞ
. (2)

They are mutually interconnected with inhibitory connections
of weights �0.8. Each goal node is driven by an object node from
the visual system (with constant current outputs), with weights
varying from 0.8 to 1.2. The drives module provides additional
input to the goals (being connected to each goal with weights
from 0 to 0.4). The competition between goal nodes then selects a
goal, and when the activity passes a threshold Tgoal, activates an
IMC module.

The IMC modules each raise their activity to ActIMC-NOGO, when
performing a calculation that results in a NOGO signal, and
ActIMC-GO when the result is a GO signal. Activity decays
exponentially for 0.1 s, then returns to zero. If an IMC returns a
NOGO signal, it provides a negative feedback signal of magnitude
INOGO to the goals module for a time equal to tfeedback, if it returns a
GO signal, it provides a negative feedback signal IGO until the
simulation ends. Whenever a GO signal is produced, the IMC
activates the corresponding reward node as described below (each
IMC connects to the corresponding reward node).

Reward nodes raise their activity to a value of Actrwd when a
successful transfer of reward occurs, and their activity decays
such that

dA

dt
¼ �kAA, (3)

where A is the activation level of the reward node. Reward node
activations essentially provide the ‘‘readout’’ of the system’s
results, if an instantiated system (such as a robot) were used,
these rewards would drive movement to complete the task. It is
likely that the real brain has a more complex operation than
simply carrying out tasks in order of reward, such that the
modified reward values would affect goal sites in the brain (such
as dorsolateral prefrontal cortex or parietal lobe), as part of a more
complicated system for generating action schema. However, in this
very simple case, the list of reward values serves as the output.

3.3. Simulation results—goals, IMCs, rewards

The simulation performs as we expect from our sugge-
sted reasoning flow. After an initial attempt to press the
button, a NOGO result is obtained. After this, but with the
hunger drive still activating motor activity, S1 is attempted
to be gripped, which having been achieved still fails to
allow the button to be reached. After S2 is attempted, however,
the button is now reachable. This causes S2 to be rewarded,
and moves the goal backward to achieving S2. This requires
S1 to be gripped, so once that is obtained, S1 is rewarded
and the simulation has correctly rewarded all of the potential
goals and hold their relative activities with rðS1Þ4rðS2Þ4r

ðbuttonÞ.
We can see the temporal flow of the goal activations in Fig. 6,

showing the competition between goals, and how inhibition
allows a suitable sequence of goal activations to occur. We can
also see the corresponding IMC activations in Fig. 7 and the
reward values in Fig. 8. Of particular note is that the final relative
valuations of the rewards allows the problem to be solved
(we assume that as each action was physically performed, as
prompted by the rewards, these rewards would be extinguished
in turn).

3.4. Further consideration of the model—importance of modules

and parameters

To aid in understanding the function of the model, we can
consider the importance of the various modules by imagining
what functionality would be lost by their removal.

The drives module provides the impetus for the system
to attempt tasks. Without its presence there would be no
actions carried out, since no goals would be primed. The
goals module is critical to the simulation’s operation since it
provides the list of possible actions, the system could not
operate in its absence. The rewards module is the system’s
output—removing it would not interfere with the process of
reasoning, but would not allow any actions based on that
reasoning to be taken.
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The model IMCs allow the system to determine whether goals
are achievable given the current state. Without the module, it
would be impossible to determine which goals were achievable,
and thus to reason the correct goal order.

We can also consider the effects of altering the model
parameters. The speed of neural response of the goal neurons is
controlled by their leak currents and time constants. Altering

these changes the rate at which goals become activated,
potentially allowing goals to be more or less rapidly considered.
The speed of operation of the IMCs controls how quickly the
system is able to consider actions, and their consequences.
Altering the reward decay parameters controls the period for
which the model output is usable—this is linked to the timescale
of reward usage in the brain.
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4. Discussion

The results show that the model successfully reproduces the
suggested sequence of goal activations in Fig. 5, and produces the
correct relative reward values necessary to complete the paradigm
successfully. We can also consider some key features of the model
that enable it to simulate the reasoning process of the two-sticks
paradigm.

4.1. Spatial versus spatially invariant goals

When reasoning, we need to be able to consider the
consequences of actions we cannot currently perform. We can
imagine manipulation of an object that is currently out of reach in
some way, and use this to solve problems. For example, when
realising that we need to fetch a set of keys from another room to
obtain a goal beyond a locked door, we can imagine unlocking the
door without currently possessing the keys.

In our system this is possible through the use of both spatial
and non-spatial goal representations. The non-spatial version
allows virtual manipulation of the goal objects without the
requirement of possessing the object physically, while spatial
goals come into play when considering how to achieve the goal
itself, or even achieving them virtually by making what would be
physically impossible movements such as flying up to the ceiling.
Some form of spatially invariant representations are clearly
necessary to be able to perform complex reasoning tasks without
having to move through a time-consuming process whereby
objects must be held before their uses can be considered.

4.2. Movement of reward

In any system whereby intermediate goals must be used to
reach an ultimate goal, some mechanism must exist to make the
reasoner perform the intermediate goals. We suggest that rapid
movement of reward can do this, by attaching these rewards to the
subgoals which then gives reason to perform them. Without this
movement of reward, some other mechanism must fulfil the same
function—otherwise, the original maximally rewarded task (such
as pushing the button, in our example paradigm) would be
continually attempted, neglecting all subtasks. It is possible that
the brain can do this in some other way; however, rewarding these
intermediate actions provides a relatively simple mechanism.

4.3. Comparison to existing models

There is some theoretical literature on reasoning in animal
reasoning, for example various collected writings in the book of
Hurley and Nudds [6], and various reviews of animal reasoning
[2]. However, there are few direct simulation models of reasoning
processes in animals, models of reasoning tend to be aimed at
artificial reasoning systems.

An additional comparison that may be made is to models of
learning automata. These are systems with a set of possible
actions and probabilities of generating those actions. Feedback
from the environment modifies the action probabilities based on
teaching data from the environment. These systems bear some
similarity to the reasoning model; however, the model’s primary
method of operation is that of attaching reward values to certain
actions based on internal calculations which is somewhat
different from permanent variation in probabilities of action
generation. Additionally the model is focussed on providing
biologically inspired mechanisms to solve the problems of
reasoning rather than a permanent learning system.

Thus there are the differences of our model to that of learning
automata:

(a) The latter generally have no separate reward or stimulus-
value module.

(b) Nor have they such reward modules used so as to modify goal
activities and change goals.

(c) Nor do they involve dynamics described by the biologically
based neurons present in the modules, as displayed in Eqs. (1)
and (2).

(d) Nor do they possess the faculty of attention, such as described
in the general architecture of Section 2, neither of a sensory
nor a motor form (as discussed there). However, there are
definitions of automata, such as ‘‘a self-operating machine’’
which cover any autonomous system, and so cover the general
model we are presenting. Certainly such definitions do not
relate to the more specific biological bases of the models we
are seeking.

4.4. Model predictions

We have shown how our model solves the reasoning problem
presented in [8], we can consider what predictions are made by
the model. Particular predictions relate to the already discussed
issues of spatial and spatially invariant goals, and movement of
reward.

We suggest movement of reward as a mechanism to assist
subgoal completion. Recent experiments in distractor devaluation
during an attentional blink paradigm [4] have shown that a lasting
reduction in value can be attached to certain stimuli (pictures of
faces in the paradigm). It may be possible to construct reasoning
tasks that could then be used to measure the value attached to
components of the task. This would provide an indication as to
whether the process of reward movement has lasting effects on
the perception of value.

It may also be possible to examine this hypothesis experimen-
tally by observing neurotransmitters and neuromodulators known
to be related to reward (such as dopamine) within the brain
during reasoning (as in orbito-frontal cortex or amygdala), or by
seeing how agonists/antagonists to these neurochemicals affect
reasoning.

If reasoning does use both spatial and spatially invariant goals,
it is possible that these different types of goal representation
might be encoded in different parts of the brain. If so, imaging
studies might be able to reveal the use of different representations
at different times during the process of reasoning which would
provide insight into the temporal flow of reasoning.

5. Conclusions

We have suggested some principles of modelling cognition,
and key mental components, particularly the use of forward and
inverse models, goals and rewards. Implementing these in a
simple neural architecture allows us to demonstrate a possible
solution to the two-sticks paradigm from animal reasoning. The
model makes particular use of two interesting features—fast
movement of reward between goals and the use of both spatial
and spatially invariant representations.

Some of these suggested mechanisms may be experimentally
testable. Rewards may very well be neurochemical in nature and
so administering neuromodulators that relate to possible reward
neurochemicals could affect performance in reasoning paradigms.
If spatial and spatially invariant representations are separate they
may be encoded in different parts of the brain (dorsal and ventral
areas for example), and specific imaging studies might be able to
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reveal these differences. Additionally, behavioural experiments
that carefully examine the balance of trial and error, pure
reasoning and a mixture of the two might help to reveal both
whether the model is accurate, and the limits of internal
reasoning capability (Would a three-sticks paradigm be solvable
for example?).

This work provides a basic framework for modelling simple
cognition—the use of coupled forward and inverse internal
models allows predictions about actions on the state of the
reasoner and the world to be made, and these predictions are
critical for solving problems through internal reasoning rather
than trial and error. Development of fuller cognitive machines will
require additional understanding of the operation of these
internal models, goal representations and rewards, and there is
much of interest to be learned here.

Appendix A. Model parameters

Parameters are given in Table A1.
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Table A1
Values of constants

Variable name Value units

V leak �70 mV

C 25 nF

gleak 0.025 mS
ActIMC-NOGO 1 n/a

ActIMC-GO 1.5 n/a

Actrwd 1 n/a

kA 10 n/a

IGO �50 nA

INOGO �20 nA

tfeedback 75 ms
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