
 
 

 

 

I. INTRODUCTION 

 

Abstract—Computational modeling of natural systems can 
be used for interdisciplinary applications, such as the 
configuration of robotic systems or the validation of biological 
ones. Up to date there has been a little progress on suggesting a 
framework for automating the process of creating a 
computational model for biological processes. Instead 
researchers focus on the implementations of systems that are 
intended to replicate a tight set of biological behaviors. Such 
framework should be able to construct any system based on the 
appropriate level of abstraction chosen by the designer, as well 
as be able to enforce the appropriate biological consistency 
without compromising on performance or scalability of the 
generated models. In this paper we propose a framework that 
can automate the construction of computational models using 
genetic algorithms and demonstrate how this framework can 
construct a model of the parieto-frontal and premotor regions 
involved in grasping.   

DVANCES in imaging and recording techniques have 
given a great impetus in understanding how the brain of 

primate species functions. Modeling of these findings has 
enabled roboticists to design robust systems that mimic 
biological organisms by replicating one or more of the 
behaviors they exhibit. As a consequence, a vast number of 
models that capture anatomical (e.g. artificial muscles [1]), 
neural (e.g. neuron response properties during monkey 
imitation [2]) and functional properties (e.g. the wing 
transmission in insects [3]) of biological systems have been 
developed. Due to the strong coupling of robotics and 
biological species, computational modeling of 
neuroscientific findings can help towards gaining an in-
depth understanding of how artificial and biological systems 
operate, as well as provide a good tool for exploiting the 
capacities and adaptability of the artificial [4] and natural 
systems.  

Computational models range from ones that are built in 
order to capture the exact anatomical and functional 
properties of a biological system (e.g. [5]) to more behavior 
based models (e.g. [6]) that replicate a biological system by 
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focusing on its functional roles. The large diversity that 
exists in the field has raised several discussions on the 
appropriate resolution scale that should be used when 
designing a model. Some argue over simplification [7] while 
others favor complexity [8]. Webb [4] suggests that there 
must be a clear analogy to the information we choose to 
integrate in our model and the accuracy of the biological 
representation that is to be modeled, in order to produce 
something effective from an engineering and biological 
perspective. Without a doubt, a computational model should 
portray all the constraints and assumptions of a hypothesis, 
for it to act as a sufficient platform from which valid 
conclusions can be drawn. Up to date there have been some 
very important attempts to formalize how the transition from 
a biological to a computational system should be made. 
Arbib [9] suggests that a biological model can be viewed as 
a schema based architecture with schemas attributed over 
different regions and roles in the brain. Rosenschein [10] 
formulated how behavioral controllers can be derived from 
the description of knowledge and goals of an agent, while 
Beer [11] stressed the importance of environmental 
interaction in the design of the agent systems. In this paper 
we propose a framework for constructing computational 
models out of functional specifications defined on three 
levels of abstraction, (i) neural, (ii) neural network and (iii) 
system. As a consequence, different properties of a 
biological model can be encapsulated appropriately, 
according to the level of detail their designer wishes to 
impose. More importantly, due to the way we choose to 
automate the process of construction and design, the 
specifications of a system can be directly derived from 
neuroscientific findings of a biological organism.   
 If the computational model is viewed as a parametrical 
system then optimization techniques such as evolutionary 
methods can provide a good platform for automating the 
process of their construction [12, 13]. In previous works we 
have illustrated how genetic algorithms can be used for 
creating a computational model of reaching [14] and 
grasping [2] in the context of observational learning in 
macaques [15]. In principle GAs can train any Network 
using only a general evaluation criterion for a specific 
behavior, as opposed to Supervised learning, where the 
explicit definition of the function to be learned needs to be 
specified. In addition it has been shown that GAs are able to 
deal with large and complex parameter spaces [16] and in 
many cases proven more optimal than traditional supervised 
methods (see [17] for comparisons). Nonetheless, there are 
several decisions that need to be made when designing a 
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problem using genetic algorithms, including how the 
encoding of the model will be accomplished [18] or how to 
formulate the problem in order to keep its parametric 
dimension low. All these, if not confronted appropriately, 
could result in poor performance or scalability constraints in 
the design of a model [19]. 
 In the following sections we propose a computational 
model building framework based on genetic algorithms by 
optimizing different neural networks to perform various 
behaviors. Section II outlines the model building framework 
focusing on how the neural networks of the model are 
configured based on the tasks they participate. Section III 
describes how the framework can automate the process of 
constructing a computational model of parieto-frontal and 
premotor regions to grasping. Section IV discusses 
implications of the model building framework in the context 
of computational modeling. The paper is concluded in 
section VI. 

II. MODELING FRAMEWORK 
Our model building framework employs genetic 

algorithms as an optimization tool, to fine tune a group of 
biologically inspired neural networks. The construction of 
the model is carried out in 9 steps based on the specifications 
provided by the user, at three levels, (i) neural, (ii) neural 
network and (iii) system. 

The steps that progress from the user specification of the 
biological model to the construction of the computational 
model are shown in fig 1. At initiation (step 1) the user 
inputs the number of brain regions that the computational 
model will include, the types of neuron models that will be 
used to encapsulate the regions and the allowed connectivity 
among those regions. This allows the framework to generate 
the initial structures of CRNs (see section IIA), as 
populations of neurons arranged in network layers (step 2).  

 

 
Fig 1.  The model building steps that are carried out by our framework. The 
first column shows the user specifications, the second column shows the 
structures that are generated by the framework, while the third column 
shows the outputs produced by the framework. 
 

Using the task descriptors (see section IIC) that are 
defined by the user (step 3) and the data structures generated 

during step 2, the framework assigns component roles (see 
section IIA) to each neuron in the Neural Networks and 
generates a net of interconnected CRNs. (step 4). The 
correlation parameters that the user provides (step 5) along 
with the tasks that were defined during step 3 are used to 
create the task association tree (see section IIC) (step 6) 
upon which the task genetic populations are based (step 7). 
The chromosomes encoding the populations generated 
during step 7 are used to evolve the networks produced 
during step 4 (step 8), and construct the final model (step 9).   

In the following section we describe how the framework 
accomplishes all of these steps, by focusing on issues 
regarding the modeling of each brain region, the encoding of 
the model and the definition of the task descriptors and 
association tree. 

A. Computational Region Network 
In our framework, each brain region is modelled using a 
distinct neural network, referred to as Computational Region 
Network (CRN). Each CRN is composed of three 
components: (i) clusters of interconnected neurons, (ii) input 
layers and (iii) sole neurons. All three components use the 
neuron model described in section III.  

Clusters contain groups of neurons that can be either 
inhibitory or excitatory, depending on the type of their 
connections. Excitatory clusters ensure that the appropriate 
levels of excitation will be maintained across neurons within 
a CRN, while inhibitory ones prevent the saturation (i.e. 
constant firing) of individual neurons. Sole neurons do not 
belong to a specific cluster, and can be either excitatory or 
inhibitory. The input layers within a CRN accept neuron 
signals from other networks and propagate it towards 
clusters and sole neurons within the CRN (fig 2). 

Different CRNs are densely connected by forming 
connections from the components of one population towards 
the components of another. Within a CRN, connections are 
sparsely formed between (i) different sole neurons (ii) 
clusters towards sole neurons and (iii) input layers towards 
clusters and sole neurons. The weights of these connections 
are updated according to the correlation based rule of Spike 
Time Dependent Synaptic Plasticity (STDP) [20]. STDP, as 
opposed to traditional Hebbian synaptic plasticity rules, 
ensures that correlated input activity between neurons will 
give rise to increased variability in the post-synaptic 
responses [21] and that non-casual relationships between 
neurons will not be enforced [22].  
 

 
Fig 2.  A Computational Region Network (square group of neurons) used 
for modelling a brain region in the biological model. It consists of 
excitatory (top left neuron group), inhibitory (bottom right), input (right 
column and top row) and sole (marked in black) neurons. 



 
 

 

 
The structure of a CRN has been purposely subdivided into 

three components in order to promote the assessment of the 
dynamics and emergent properties in the final working 
model (see later the Discussion section). These components 
are not evaluated equally by the genetic algorithm. The 
fitness functions that describe a specific response property 
for the neurons of a CRN are evaluated using the sole neuron 
group. In contrast, the fitness functions that describe a 
general property for the area, e.g. average activation, are 
assessed at both the clusters of neurons and the sole neurons. 

B.  Model Encoding 
The partitioning of a neural network to three distinct 

component types (clusters, inputs and sole neurons) helps at 
reducing the size of the encoding string for each CRN 
drastically. In addition it allows the encoding of the network 
to be more detailed for components that are required to 
encapsulate biological properties (sole neurons), and less 
thorough for components that are used to regulate processes 
within the CRN (clusters of neurons). The explicit definition 
of a distinct binary string for each CRN component helps at 
exploiting the closely correlated non-linear interactions 
within a CRN without interruptions during crossover 
operations [18]. Each neuron is encoded using three different 
parameters, the threshold value (θ), the resistor capacitance 
(R) and the membrane potential time constant (τm). All these 
are described in eqs (1-3) of section III. 

Within each cluster, all neurons are treated uniformly. 
Therefore for the encoding of the cluster components, our 
modeling framework, instead of including explicitly each 
neuron’s properties in the chromosome string, encodes the 
parameters of a Gaussian distribution (mean and standard 
deviation), for each physiological parameter of the cluster 
(θ, R, τm

 
Fig 3.  The decoding from the cluster chromosome string to a Gaussian 
distribution, which in turn is used to sample different initialization 
properties for each neuron in the cluster. The chromosome string (left) is 
used to encode three different Gaussian distributions for each of the 
physiological parameters of the neurons in the cluster. These distributions 
are then used to initialize all neurons within the cluster. 
 

Due to this cluster encoding scheme only three parameters 
are encoded for each ensemble of neurons. This helps to 
reduce the size of the encoding string from 3*n (3 
parameters for the n neurons in the cluster) to a constant 
number. An additional bit is used to encode the excitation 
status of a cluster (excitatory or inhibitory).  

). This distribution is then used to sample values for 
each of the properties of the neurons in the cluster (fig 3).  

 

The sole neuron components of a CRN are used to 
encapsulate the functional properties of a brain region we 

wish to model in more detail within the CRN (e.g. region 
exhibiting selectivity on a particular stimulus, or correlate 
different neuronal firings). For this reason each of the three 
physiological parameters of a sole neuron is encoded 
explicitly (i.e. using a separate string) within the 
chromosome representation.  

Input layers of a CRN are used to establish connections 
between different regions. Recent studies have shown that 
suppressing the Neural Network inputs in intermediate 
layers can help towards identifying potential representations 
that exist in the inputs. To ensure that the diversity of these 
representations will be appropriately depicted in the input 
neurons’ firings of the CRN, our model encodes all three 
neuron parameters within the chromosome string, as in the 
case of sole neurons.  

In addition to the physiological parameters of the neurons 
our modeling framework also encodes prospectus 
connectivity among components of CRNs. Two types of 
inter-connectivity (i.e. connections between different CRNs) 
and three types of intra-connectivity (connections within the 
same CRN) are allowed. The permitted connections that are 
formed between different CRNs are created among (i) 
clusters towards sole neurons and (ii) sole neurons towards 
sole neurons. To ensure that the resulting model will be 
biologically consistent, each CRN contains a vector of the 
regions it is allowed to connect to. Among components of 
the same CRN connections are formed between (i) input 
layers to sole neurons and clusters (ii) clusters towards sole 
neurons and (iii) sole neurons towards sole neurons. Each 
prospectus connection is encoded by the algorithm as (i) the 
percent of neurons that are to be connected among the 
different components (ii) the degree of excitation (i.e. 
percent of excitatory connections) that is to be created and 
(iii) an additional bit that describes whether a connection 
will be formed between the two components. In the case of 
the input components of the CRN the framework also 
includes the weight of each connection in the encoding of 
the chromosome string. This enables genetic evolution to 
exploit in greater detail the transmission between CRNs, and 
ensures that the appropriate representations that exist in the 
inputs will be communicated appropriately. 

C. Task Encoding 
Our framework builds and configures the networks of the 

computational model by optimizing their performance on 
different combination of tasks. Tasks define the desired 
behavior that should be exhibited by one or a combination of 
CRNs. A task can range from the execution of a behavior by 
the whole computational model to enforcing neurons within 
a CRN to acquire a specific firing pattern. The definition of 
a task includes the CRNs that it will use, the components 
(inputs, sole or clusters) of these CRNs that are allowed to 
be evolved, whether additions of new components (neurons 
or clusters) are allowed by the algorithm as well as the 
functional descriptions of the task (i.e. a function describing 
the desired behavior for each of these components). 

 



 
 

 

 
Fig 4.  The assignment of different tasks on every CRN component of a 
computational model. In this example tasks 3 and 4 are concerned with 
specific neuron groups of the same CRN. Only the second task involves the 
connectivity of all regions in the model, while the remaining ones include 
only a subset of the CRNs (gray circled networks). Tasks are defined by 
specifying the neurons that will be evolved, the CRN that includes those 
neurons and its underlying connectivity, the CRN components that belong 
to the task network and any additional constraints that should be considered 
by the algorithm. 
 

Each task is assigned its own population of chromosomes 
and is evolved individually from others. This allows the 
parallelization of the model building framework, a very 
important property when it comes to computationally 
intensive operations. At the initialization of the framework 
each task population (i.e. population of chromosomes that 
are used to evolve the networks of the model in order to 
perform a specific task) defines the components of the CRNs 
that it will evolve and if required, integrates additional 
clusters or sole neurons to the networks (fig 4). Because of 
this formulation, the framework is able to identify the 
neurons of a CRN that are included in every task, and evolve 
them independently of other non-related neurons. As a result 
new tasks can be added on demand without affecting the 
already evolved components of the network.  

Tasks are associated with other tasks according to a 
correlation parameter. This parameter indicates the degree of 
involvement of neurons from other tasks in the current 
population of chromosomes. The framework uses this 
parameter in order to decide the percent of inbound 
connections from other tasks that will be attempted by the 
algorithm during evolution. All these are wrapped in an 
association tree (see the example in fig 7), which defines the 
order of evolution of the tasks during the construction of the 
model, and the extent to which a task can employ the already 
evolved neuronal structure of a different task for its own 
purposes. Tasks that are independent from others are placed 
in the top of the tree, and are evolved in the initial stages. 
Tasks that are highly correlated to others (i.e. they depend 
on inbound connections from other tasks) are evolved in the 
final stages of the evolutionary procedure. After the 
evolution of each task, a resampling operation takes place by 

the algorithm in order to select those individuals that 
performed satisfyingly on the task. These sampled 
chromosomes are used as initialization parameters for the 
individuals of the next task population in queue.  

III. COMPUTATIONAL MODEL OF GRASP RELATED REGIONS 
In the following section we outline the details of a grasp 

model that involves parieto-frontal and premotor regions (IT, 
V6a, AIP, F2, F5). Furthermore we show how the 
construction of this model can be automated by our 
framework. 

A. Biological Inspiration 
Recent neurobiological experiments in Macaques have 

revealed that there are visual and motion responsive neurons 
distributed in several parieto-frontal regions that are 
involved in the execution of grasp movements.  

In a recent study [23] the Anterior Intraparietal area (AIP) 
has been found to have 77% of visually responsive neurons, 
that were activated during an object fixation task. These 
neurons exhibited selectivity to the features of the objects 
that were presented. This selectivity is attributed to the 
connections of AIP with the inferotemporal cortex [24] in 
the ventral stream, which encodes the intrinsic object 
properties (i) concavity and convexity of an object [25] (ii) 
shape (20% of the neurons) and color (6% of the neurons) 
[26]. Moreover, neurons in the anterior Intraparietal were 
classified into three types (i) visuo-motor neurons (ii) visual 
dominant neurons and (iii) motor neurons. Visual dominant 
neurons link towards area F5 and are attributed the visual 
affordances that are employed by the motor system.  

Region F2 has been found to have a somatotopic 
organization (i.e. specific neuron clusters are assigned to 
specific body parts) with approximately 16% of its neurons 
being visually responsive. In addition it has been identified 
as a low excitable region with large percent of neurons being 
responsive to pro-prioception and tactile stimulus [27]. The 
distal forelimb field of the F2 contains 3 classes of neurons 
(i) purely motor (ii) visually modulated and (iii) visuo-motor 
neurons [28]. The purely motor class has been found to be 
selective for the type of prehension that was executed at any 
moment. The second class was modulated by the visual 
feedback of the object being grasped while the visuo-motor 
class discharged during both object fixation and grasping 
execution. Area F2 receives connections from region V6A 
[29], which encodes among other properties stimulus 
orientation, and narrowly from AIP [30]. 
 

 
Fig 5. The connectivity of the corresponding regions included in our model. 



 
 

 

 
The ventral pre-motor area F5 of the premotor cortex 

plays an important role in the control of grasping [31]. It 
contains neurons that are correlated to specific goal-related 
distal motor acts. In addition, F5 contains another class of 
neurons selective to the presentation of objects. In general 
the AIP-F5 circuit is attributed the visuomotor 
transformation for grasping.  

In the following section we describe the specifications 
that are provided to our model building framework in order 
to construct the model shown in fig 5, focusing on issues 
such as neuron models, input encoding, task definition, 
experiment setup and the definition of neuronal functional 
roles. 

B. Neuron Models 
To reproduce the cortical functions of the primate brain, it 

is important to take into consideration the (i) distributiveness 
of the brain structures and the (ii) non-linearity of the 
response of the computational units. In our simulations we 
have adopted the standard form of the formal Leaky 
Integrate and Fire (LIF) neuron model [32]. The internal 
dynamics of each neuron are described by a differential 
equation (1) that models the fluctuations of the membrane 
potential  variable (u) due to the driving current (I) passing 
through the neuron:  

 

𝜏𝜏𝑚𝑚
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −𝑢𝑢(𝑡𝑡) + 𝑅𝑅𝑅𝑅(𝑡𝑡)   (1) 

 
where R and τm are the resistor and membrane potential time 
constants. In LIF models, spikes are characterized by their 
firing time  𝑡𝑡(𝑓𝑓), which is the moment that the potential 
crosses a threshold value (θ): 

 

𝑡𝑡(𝑓𝑓):𝑢𝑢�𝑡𝑡(𝑓𝑓)� = 𝜗𝜗   𝑎𝑎𝑎𝑎𝑎𝑎    �
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

�
 
 

𝑡𝑡 = 𝑡𝑡(𝑓𝑓)
> 0   (2) 

 
After the emission of a spike, the membrane potential is 

reset to a constant value 𝑢𝑢𝑟𝑟 < 𝜗𝜗.  
 

lim
𝑡𝑡→𝑡𝑡(𝑓𝑓);𝑡𝑡>𝑡𝑡(𝑓𝑓)

𝑢𝑢(𝑡𝑡) = 𝑢𝑢𝑟𝑟    (3) 

 
Equations 1, 2, 3 describe the model used for the neurons 

in the cluster, sole and input components of a CRN.  
A second population is used for modelling neurons that 

are selective to specific values of a parameter. These 
neurons are initialized to respond maximally to a specific 
value of an environment variable (the tuning value), and 
reduce the spike emissions proportionally to its 
permutations. The membrane potential fluctuations for this 
second class of neurons are described by eq. 4. 

 

𝑝𝑝 = 𝑝𝑝𝑟𝑟 ∗ 𝑒𝑒
−0.5∗(𝑎𝑎−𝑘𝑘)

𝜎𝜎
2

   (4) 
 

The membrane potential (p) of these tuning neurons is set 
to an exponential function of the tuning value k. The width 
of the tuning curve is set by the tuning sigma variable (σ). 
Spike emission occurs when the membrane potential of the 
neuron, exceeds the threshold value (pr

C. Computational model of the parieto-frontal and 
premotor regions to grasping 

). The actual variable 
that the neuron encodes is set in the (a) parameter.  The 
encoded variable is then described in the model using a 
population of neurons tuned to different values (using 
variations of the a parameter). A population of these tuning 
neurons was used for encoding different environment and 
object properties of the model into neural code. 

Based on the data discussed in section IIIA we have used 
our framework to construct a computational model of the 
parieto-frontal and premotor regions (IT, V6a, AIP, F2, F5) 
that are involved in grasping by focusing on the specific 
visual, motor and visuo-motor dominant neurons that exist in 
these regions (fig 5). For our experiments we have used the 
Webots simulation platform, a commercial physics simulator 
that includes a realistic embodiment of the Hoap2 robot. 

 
Input encoding 
For our experiments we employ three different objects 

(sphere, box, and ring) with distinctive contours (fig 6). All 
of these objects have been shown to stimulate the visual 
responsive neurons in regions F5 and AIP and initiate 
different grasp behaviors through the AIP-F5 circuit (see 
section IIIA). 

 

 
Fig. 6:  The depiction of the three objects used in the model. From left: 
Ring, box and sphere. 
 

These objects are processed using the MATLAB 
simulation software, to calculate various intrinsic properties 
((i) convexity (ii) concavity (iii) perimeter (iv) orientation (v) 
holes) that are used as object identifiers in our computational 
model. To identify the edges of each object we use the 
derivative of a Gaussian filter to detect local maxima in the 
gradients of its image [33].  

 
Table 1: List of the intrinsic object properties for each object 

 Ring Box Sphere 
Perimeter  1.2 1.5 1.3 
Edges  0 8 0 
Corners  0 6 0 
Convexity 0.5 0.9 0.2 
Concavity 0.1 0.5 0.2 
Orientation 0 10 5 
Holes 1 0 0 
 

To detect the corners of the objects we employ the Harris-
Stephens operator [34]. The results are illustrated in table 1. 



 
 

 

The CRN encapsulating area IT is used to encode the 
properties of holes, perimeter, edges and corners using the 
tuning neuron class described in section IIIB. Two different 
classes of neurons were pre-coded, each having a tuning 
curve that was selective to a specific range for each of these 
properties. The CRN used for area V6a was used to encode 
the parameters of convexity and concavity. 

 
Task functional descriptions 
Our model encodes two types of functions, at a neural and 

a system level. At the neural level we model the selectivity 
exhibited by various neuron classes in three different regions 
of the model (F2, F5, AIP) for different types of properties, 
according to eq. 5. 

 

𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝑥𝑥) = ��3 − �
∑ 𝑖𝑖𝑛𝑛𝑛𝑛=1..3

𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚
��  (5)

𝑁𝑁

 

 
Equation 5 calculates an index of the selectivity of a 

neuron in a CRN, for a particular property, i.e. measures the 
extent to which the cell discharge of a neuron (in) deviates in 
relation to the maximum (imax

At the system level, the model is evolved to perform three 
different grasp behaviors, according to the object it is 
presented during each cycle. Each grasp is evaluated using 
eq. 6 to determine where the correct fingers of the agent 
made contact with the object. This system level task 

descriptor is summarized on Table 2. The properties of each 
task descriptor are summarized on section IIC. 

 
Table 2. Task descriptor for the execution of grasp.  

). In practice, we have used the 
selectivity index (proposed in [35] to resolve the direction 
tuning of particular neurons) with k=3, i.e. our three objects. 
Therefore the function provides a quantitative measure of 
the degree to which neurons in a region are tuned to a 
particular object (ring, sphere or box). 

At a system level the model is evaluated based on its 
ability to initiate and execute correctly the appropriate type 
of grasp, based on the object it is presented. To evaluate this 
function we assess the extent to which the appropriate 
fingers of the agent (according to the correct type of grasp 
on each trial) make contact with the object. This is shown in 
the following equation. 

𝑓𝑓𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = �𝑡𝑡𝑐𝑐
𝑇𝑇

 (6) 

where 𝑡𝑡𝑐𝑐  are the sensor values of the fingers of the robot that 
are required to be used in order to form the grasp type that is 
executed during each cycle. T is the overall time of an 
execution trial. As a result, eq. 6 outputs values proportional 
to the time that the robot grasped the object using the 
appropriate fingers. 
 

Task Definition 
In order to translate the biological system description of 

section IIIA to a set of task descriptors we need to identify 
the evolving neurons that will be associated with each task, 
correlations among different tasks and whether additions of 
new components (clusters or sole neurons) will be  allowed 
for a specific task.  

 
Execution of appropriate grasp 

CRN F5, AIP, F2 
Task group IT, V6a, AIP, F2, F5 
Additions No 
Constraints None 
Fitness Eq. 6 
Task index 1 
 

For the Anterior Intraparietal region we defined three 
different types of tasks, each involving the configuration of 
of the four classes of neurons it contains (Table 3). Since 
neuron classes in this region are selective to either visual or 
prehension types we have also included the CRNs modeling 
the IT in the task network. 

 
Table 3. The task descriptors for region AIP. Three tasks are shown 

involving configuring the visuo-motor, visual dominant and motor neuron 
classes that exist in the region. 

 
Visuo-Motor Visual 

Dominant Motor 

CRN AIP AIP AIP 
Task group V6a, IT V6a, IT V6a, IT 
Additions Yes Yes Yes 
Constraints None None None 
Fitness Eq. 5 Eq. 5 Eq. 5 
Task index 2 3 4 
 

For region F2, we defined three supplementary tasks in 
order to encapsulate the response properties of the neurons 
that exist in the region.  In addition we have included a 
constraint for the CRN to enforce low-excitable threshold 
potentials in its neurons (using a decrease in the fitness of 
each chromosome, proportional to the thresholds of the 
neurons). The final descriptors for the tasks involved in this 
region are shown in Table 4. 

 
Table 4. Task descriptors for region F2. Three tasks were defined for 
each of the corresponding neurons classes of the visual and motor 

responsive neurons that exist in the region. 

 
Visuo-
Motor 

Visual 
Dominant Motor 

CRN F2 F2 F2 
Task group IT, V6a, AIP IT, V6a, AIP IT, V6a, AIP 
Additions Yes Yes Yes 

Constraints Low-excitable 
threshold 

Low-excitable 
threshold 

Low-excitable 
threshold 

Fitness Eq. 5 Eq. 5 Eq. 5 
Task index 5 6 7 
 
Finally in our computational equivalent of region F5 we 
have modeled two classes of neurons. The first class was 
selective to specific types of grasps, while the second class 
of neurons involved the selectivity on object presentation. 
Table 5 summarizes the task descriptors for the region. 

 



 
 

 

Table 5. Task descriptors for region F5. Two tasks were defined for each 
of the corresponding neurons classes of the visual and grasp responsive 

neurons that exist in the region. 

 
Grasp selectivity Object selectivity 

CRN F5 F5 
Task group IT, V6a, AIP, F2 IT, V6a, AIP, F2 
Additions Yes Yes 
Constraints None None 
Fitness Eq. 5 Eq. 5 
Task index 8 9 
 

Task associations 
The final step of the descriptions passed in our framework 

involved the definition of the correlations among different 
tasks. Since neurons in the F5 region encode directly the 
selectivity to object features from the visual processing 
regions (IT, V6a) the tasks involved in configuring those 
visually selective neurons were highly correlated (using a 
parameter of 30%) to the visually selective neuron tasks of 
regions F2 and AIP. This helped the algorithm to seek with a 
higher probability inter-connectivity patterns when 
configuring the F5 region in the AIP and F2 visual 
responsive neurons, where neuron selectivity was more 
transparent.  

Tasks that refer to the same CRN were correlated using a 
parameter of 10% (in order to promote connections among 
different component types of the same CRN). Finally the 
grasp system task was correlated to all region tasks using a 
correlation parameter of 20%. The final task association tree 
is shown in fig. 7. 

 

 
Fig. 7. The task association tree for the three regions in our computational 
model. Tasks are marked with an ID number, which is their index in tables 
2-5. In the graph correlated tasks are connected with an arrow, and marked 
with their correlation parameter. 

D. Results 
We used 9 different populations of chromosomes, one for 

each of the 9 tasks that were described in the previous 
section. When each evolutionary procedure exceeded a 
threshold of 90% fitness, the framework proceeded to the 
next population of chromosomes, by sampling 80% of the 
evolved individuals. At the final model, all networks 
acquired the desired classes of neurons. The CRN 
encapsulating the F5 region acquired both classes of neurons 
described in section IIIA (30% of the sole neurons were 
selective to the grasp types and 20% of the sole neurons 

were selective to the object vision). The F2 CRN acquired 
all three classes of neurons. Visual-dominant neurons 
required 20% of the whole population, motor neurons 30% 
of the population and visuo-motor neurons an approximate 
10% of the population. Finally neurons in the AIP CRN 
acquired all three classes, with 20% of the neurons being 
visually modulated, 10% of the neurons motor modulated 
and 30% visuo-motor neurons. 

IV. DISCUSSION 

A. Computational Region Network 
The architecture of a CRN was designed to promote the 

consistency between the simulated and biological data 
according to the level of abstraction chosen for the model. 
For this reason, CRNs were structured from three 
components, clusters (neuronal ensembles), input layers and 
sole neurons. The clusters had three important roles: (i) to 
capture the broad-spectrum dynamics of the elements of the 
biological organism that are not modeled directly in the 
computational system, (ii) to regulate the average firing rates 
of the network and, (iii) to prevent saturation of the sole 
neurons. The last two roles are the result of the common 
excitation status that has been imposed to clusters. For the 
first role, consider for example the structural organization of 
the primary motor cortex. It consists of a large number of 
neurons that respond in different ways depending on 
different stimuli. To model accurately this region one should 
include a proper model for each neuron that exists in the 
primary motor cortex of the Macaque, and even then the 
modeling would be insufficient to explain accurately the 
functional role of the region [36]. The structure of a CRN, 
which corresponds to a functional module in the biological 
system, confronts this complexity by including clusters of 
homogeneous neurons (e.g. possessing the same 
physiological and excitation properties) which are 
modulated in common strategies (e.g. a change in excitation 
applies to all neurons in the cluster) by the genetic 
algorithm. Since the latter optimizes the model by grounding 
its functional modules on a behavior the response of the 
clusters will be altered appropriately to fit the task at hand. 
Thus, clusters at the optimal population are bound to capture 
at a certain extent different elements of the region’s 
functional roles, since they are also modified by the GA to 
suite the response of the biological equivalent area. 

The role of the sole neurons of the network is to 
encapsulate the specific operating role we wish to assign to a 
CRN. This inherent subdivision helps to study the dynamics 
of the model more thoroughly since there is an obvious 
separation in the elements of a CRN to the ones that fit a 
specific functional role (sole neurons), neuron ensembles 
(clusters) and the region’s input (input layers). 

B. Model building framework 
Due to their loose requirements in specifications, GAs can 
act as a sufficient framework for automating the construction 
of computational modes. In such framework, networks 



 
 

 

representing different brain regions can be built out of 
functional specifications of the systems they wish to 
describe. The validity and detail of a model in this case is 
dependent on the assumptions and justifications the 
researcher makes for the biological system. According to 
Webb [4] this often becomes a problem of appropriately 
describing a system based on the constraints imposed by the 
environmental characteristics. This poses an additional 
problem of describing the terrain and embodiment 
characteristics in addition to the biological observations. 
Even though our framework does not include any real-world 
specifications of how these features can be accurately 
described in the framework of the model, the task 
specification framework can integrate these features 
incrementally, using appropriate tasks for each feature.  

V. CONCLUSION 
We have illustrated how with the use of GAs 

computational models of biological systems can be 
constructed, and applied the technique on a model of 
parieto-frontal and premotor regions for grasping. In the 
future we plan to extend our framework to include 
descriptions of the constraints and specifications commonly 
found in natural systems, directly in the evolutionary 
operators. In addition we plan to test the framework in 
different natural systems, and introduce mechanisms for 
evaluation directly in the GA. 
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