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Abstract-The control of the hand in primate species is
characterized by a high dimensionality, due to the large
number of joints in the fingers. In this study we present how its
manipulation can be simplified without compromising its
usage, through a constraint methodology that is inspired from
recent neurobiological findings. We further develop a
computational model, consisting of several brain areas related
to hand control, using a co-evolutionary architecture. Due to its
neurobiological basis the methodology gives rise to a number of
emergent properties that have been shown to occur in primate
species during reach-to-grasp tasks.

I. INTRODUCTION

n biologically inspired robotic motion control, reaching-
to-grasp tasks are considered quite interesting, due to the

diverge roles of the collaborating brain regions that are
involved in their execution, as well as the high
dimensionality that is imposed by the large number of joints
in the articulator. Since the variety of tasks that we perform
using our hands, is characterized by different levels of detail,
controlling such complex apparatus in an exhaustive
manner, i.e. explicitly move each joint individually, seems
rather redundant. Recent studies in neurobiology indicate
that our brain has evolved to resolve the ambiguity of each
task, and initiate different levels of control for the hand,
which are in turn processed on interdisciplinary brain
regions. Apart from the traditional motor related neurons in
the primary motor cortex, these studies indicate the
contribution of supplementary brain areas, such as the
Somatosensory (SI, SII) and Spinal Cord (Sp), to motor
control. More importantly, they indicate the manipulation of
the hand as being the product of different resolution levels,
each partially contributing to the final motion.

Most of the interrelated research in the field has focused
on directly solving the problem, using Hebbian learning
rules on architectures of Neural Networks, and relying on
the pre-tuning of the dividing linkages to resolve the
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complexity of the problem. The complication of the hand
was either confronted implicitly by custom Neural
Networks, or explicitly through constraint models that were
designed for specific tasks. Here we present a biologically
inspired computational model that is based on experimental
studies indicating the hand being controlled on different
resolution levels during action execution. These
simplifications are imposed by several brain areas in the
form of kinetic coordination patterns, on a peripheral, i.e.
global force control level, as well as local, i.e. fine-tuning,
perspective. Our approach contrasts previous endeavors in
the field, since it deals with the problem implicitly through
the defining roles of the brain. The strength of our model is
evident in numerous control strategies that are evolved
during various experiments, which present a strong
resemblance with the ones employed by nature.

Among the most noticeable computational models in the
field, is the FARS architecture [1] which replicated the roles
of several brain areas, by pre-tuning cell activations to
perform reaching tasks, without assuming any specific hand-
model. Oztop and Arbib [2] later endowed that architecture
with the computational counterparts of the pre-motor (PM)
and primary motor cortex (M1) to study imitation of
grasping. The large degree of variability of the joints was
confronted through an empirical constraint model that would
simplify the control of the articulator, using task-related
parameters such as the distance of the fingers to the object,
or the disparity axis between the hand and the object. More
recently other projects employed Hebbian Neural Networks
to create a model that could benefit from self-observation [3]
or from watching a human [4] in order to develop an
adequate controller for imitation of grasping. Most of these
studies employ the concept of mirror neurons [5], which
indicates overlapping activations in the F5m area of the pre-
motor cortex during execution and observation of primates.
Due to the mirror neuron hypothesis, the main functioning of
the control task in these models was either focused directly
on the F5m region, or neighboring areas, leaving any
remaining parts to carry out sensory processing tasks. More
recently, brain imaging methods such as C-Deoxyglucose,
that provide a greater resolution on the internal activations of
the motor control related brain regions, indicate that these
overlapping execution/observation activations occur over a
wider spectrum [6] of cortical areas. These findings indicate
the importance of additional brain regions that collaborate
and contribute to the control of the hand, among which the
Somatosensory cortex. Even though this study is not mainly
concerned with imitation, the underlying areas that are being
activated during the execution of a behavior resemble at a
great extent the ones being active during imitation. Further
neurobiological studies [7] have reported that the processing
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of the hand control occurs in diverge levels and resolutions,
and is distributed among several areas in the brain. Another
characteristic of hand control is that even though grasping
tasks are commonly complex in nature, most of their motion
can be described by a small number of standard postures.
Masson [8], using Principal Component Analysis on
recorded trajectories of Macaque monkeys while performing
a grasp task, illustrated that the complete motion of a power
grab can be reproduced adequately using only a few standard
postures (named eigenpostures).

It is rather obvious that a constraint model for the
simplification of the hand is necessary, but it should be
coupled with the ability to initiate solitary finger motion
(a.k.a. single-digit control). In Macaque monkeys it has been
shown that the reduced ability to individuate the motion of
single fingers, has resulted in performing an abridged variety
of grasps [9].

Thus, a key issue that rises is to impose such constraints
on the synergies of the hand in a way that will complement
and extend its applications and usability, rather than bound
them. In addition, the constraint model that will be used
should be general enough to cover the great variety of tasks
that are performed using the hand. A good example of
constraints is the Hand-state hypothesis [2] a simplification
model for the hand, that was based on the virtual fingers
theory [10]. The main intuition behind this is that fingers
consist as physical entities and are characterized by their
contact surfaces. Hand state was then brought as an
extension to this concept, and suggested that the grip
controller should process task specific parameters, instead of
explicitly controlling all joint parts of the hand. Even though
this approach seems promising when dealing with the high
complexity imposed by the joints, the method is based on
empirical observations derived from the specific grasp tasks
under study. In addition, their constraint model is decoupled
from the computational model, leaving any processing solely
on the outputs of the underlying Neural Networks, while the
hand model is fed externally any control commands.

II. BIOLOGICALLY INSPIRED GRASPING

Our approach to grasping is based solely on
neurobiological experiments, revealing what types of
simplifications are employed by primate species in order to
control their palm and fingers. More importantly, we do not
make any compromises on the structure of the hand, but
rather focus on defining roles for various brain regions in
order to control different combinations of joints at different
resolution levels. This is mainly derived from evidence,
showing that such constraints do exist in primate species,
and are imposed through the functioning of particular brain
regions. More specifically, recent evidence indicate that the
27-DoF of joints existent in the hand are controlled both in a
global level, i.e. a universal, common to all joints, force
navigates the fingers to complete the assignment intended,
and in a local level, where fine-tuning initiatives, on

individual fingers, are taken to increase the performance on
a particular task [7]. In addition, it has been shown that the
pre-shaping of the posture occurs long before the fingers
come in contact with the object, still while the hand reaches
towards the objective position, where fingers gradually take
a formation to approximate the object contour [11]. Variance
of the grasp tasks is then attained by acting forces explicitly
on specific fingers, after touching the object. These
coordination patterns have been shown to hold more than
90% of the discrepancy in grasping tasks [8], while the
remaining 10% is handled through individual motion,
custom to the specifics of the action being performed. The
same study also reports, that a small number of these
coordination patterns is adequate for reproducing a complete
grasp motion, which also seem to be organized along a
gradient from lower to higher finger movement
individuation. Therefore the higher principal components
reported in the analysis of [8], encapsulate the coordination
patterns that pre-shape the hand to an approximation of the
object contour, while the remaining perform fine
adjustments on the hand shape.

III. A MODEL FOR GRASPING

As mentioned during the introduction, our approach does
not impose any sort of constraints to the articulator itself, but
rather on the way it is controlled. Our proposed model
therefore, in accordance to biology, is concerned with
providing an underlying control framework for the forces
that are applied on the joints of the fingers of our robot, on
two different resolution levels, at a global level, to perform
an initial shaping of the hand, and on local level, in order to
fine-tune the posture, as illustrated by Fig. 1. More
specifically each junction between fingers in our model is
controlled by four force inputs, two that control each joint
individually and two that control all joints, through a global
force. Two neurons refer to each joint, and are assigned the
roles of controlling the flexor and extensor muscles as
suggested by neurobiological studies (the flexor is
responsible for the positive force applied between two body
part junctions, while the extensor refers to the negative one.
The sum of the flexor and extensor corresponds to the final
force that is applied to the joint). The two remaining neurons
impose a general force level that is applicable on all body
parts, using also this flexor/extensor intuition. The degree to
which each neuron affects the final motion of the
corresponding joint is also set as an open parameter, scaling
the final outcome, between global and local force levels.
Ideally this parameter should be fine-tuned to converge to an
appropriate compromise between the two levels of
resolution, in accordance to the requirements of the task in
hand. Therefore, for tasks that require explicit control of
individual joints the global assigning parameter should be
set to a low value, in order to emit the effect of the general
force during motion, and maximize individual finger
movement. The remaining parts of the hand, corresponding
to the main arm joints (elbow and shoulder), are assigned
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only one pair of neurons per joint and thus are not affected
by the global force parameter.
In our simulations, the hand is controlled by a computational
model that replicates the operation of several cortical regions
known to be active during primate hand control. In these
experiments we have replicated the role of the F4 and F5

Fig. 1. The two control levels for the hand. Global force applies to all joints
in the fingers, while local is specific to one joint. The degree of influence

scales appropriately each level of control, and sends the final force
command to the controller of the robot’s hand.

areas of the pre-motor cortex, and the primary motor cortex
(M1). Each brain area is assigned a different role (using a
fitness function), in accordance to its biological counterpart.
The complete representation of the computational model is
illustrated in Fig. 2. The inputs to our system consist of the
recurrent sensory signals emitted by the touch sensors in the
fingers of our simulated robot, as well as the distance of the
index finger from the object, which we calculated
empirically, based on the space between the object and the
hand (using the software of the simulator). We note here that
the model does not process any shape specific parameters,
such as the diameter of each item to be grasped, but instead
approximates the appropriate posture based on an ad-hoc
interaction with each object, through the perceived sensory
indications from the fingers.

In our implementation, the F5 pre-motor cortex is evolved
based on the ability of the fingers to form an appropriate
posture in respect to the object present on the scene
(evaluated by measuring the type and amount of contact
made). In addition, the F4 region is evolved to optimize the
performance of the joints that refer to the upper parts of the
hand (two joints for the shoulder, one joint for the elbow)
and thus corresponds to the reaching counterpart of the task.

Up till now, there was a strong ambiguity on the explicit
role of the primary motor cortex to motor control. Most
computational related studies have defined this area as a
predecessor of the spinal cord, assigned the task to activate
the motor neurons (e.g. [2, 12]). Our computational
counterpart for the primary motor cortex is based on

neurobiological evidence [7] that denote its functionality as
globally acting on the final commands based on the overall
performance of the robot in the task.

All underlying processing occurs in the computational
model, which encapsulates the brain of our robot, while the
outputs are filtered externally using the following equation:

�� � �����	�
 � �	��
 � �����	
 � ��	�
� �����

where �� refers to the ith joint of the hand, ��� is the local
force level that controls the effect of the confined control
inputs �	�
� �	�� to the task, while ��is the extent to which
the global force level inputs, ��	
� ��	�, influence motion,
and are common to all joints. An important aspect of eq. 1 is
that it does not define any relation between the global ��
and local ��� force levels. Even though the computational
model could be assigning both of these variables
individually, we believe it is a good practice to define a
relation between them, in order to optimize the processing
requirements of the task. In its most general form, this
relation would have the following form:

�� � ����
� ���
The most obvious definition for f would be to embody a

percentage type function. Therefore, assuming that the
outputs of the neurons range from 0 to 1 (sigmoid units):

���� � � � �� ���

More elaborate tasks however could benefit from f using an
inverse log function, therefore obliging complexity to
remain low during the initial levels of control where the
details of the task are usually unknown, and increasing
gradually with time. A common function that encapsulates
such gradual increase is the inverse log function:

���� � ����
���� ���

An example where eq. 4 could provide a better output for
the model is in a combined reaching and grasping task,
where the grip is not in contact with the object during most
of the time.

It is evident from the above, that the only constraints that
are imposed to the model are of kinematic nature, i.e. kinetic
coordination patterns, and not on the articulator itself. The
strength of such model is that it facilitates both detailed and
general motion control, relying on the underlying cognitive
model to resolve the degree to which higher, and thus more
complex (and detailed), or lower resolution is required. In
addition, the constraint methodology works in cooperation
with the computational model, by allowing modifications on
the scaling parameter between the two control levels, instead
of acting on a top level. Later in this paper, we demonstrate
how our model is able to resolve the level of difficulty of
each task, and innately assign a global force level scale
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factor that matches its ambiguity, using solely the feedback
from the Somatosensory.

IV. CO-EVOLUTIONARY MODEL

It is evident from the description above, that our proposed
methodology for grasping does not make any assumptions
on the underlying cognitive model that should be used. This
grants the methodology with generality, as it is possible to
be combined with any implementation of a computational
model. In a previous work [13], we demonstrated how a co-
evolutionary framework [14] is able to tune the
interconnectivity of several Neural Networks to perform
reaching tasks. In this study, we extend this model to include
our grasping prototype in the architecture, and evaluate the
overall performance in grasping related experiments.
In addition to our previous work, we also specify each
Neural Network in our model with a defining role to the
control process. The intuition behind our co-evolutionary
modelling approach is that several co-evolving populations
of Neural Networks are used to optimize a diverse range of
brain regions which are assigned different fitness functions,
while the architecture as a whole is attempting to accomplish
a specific task. Each Neural Network in the architecture
corresponds to a specific brain area, and is evolved based on
a fitness function that encapsulates the computational
specifics of its biological equivalent. For more details on the
implementation of the co-evolutionary brain modelling
approach, the interest reader is referred to [14].

V. EXPERIMENTS

We employed the Webots simulation platform, a
commercial 3D physics package that included an accurate
replication of the Fujitsu Hoap2 robot. To perform the
experiments, we extended the simulator, to three fingers,
thumb-middle-index, each consisting of two 2DoF joints, for
each of the lower and upper finger parts, attached to a wrist
of 3DoF. The control of the articulator depended on the
outputs of the co-evolutionary architecture, consisting of
five interconnected levels of Neural Networks, with
membrane potential neurons. Each level was explicitly
assigned a fitness function that corresponded to its biological
counterpart, and awarded the evolved individuals that
performed adequately on trial tasks. The final network
included 21 sigmoid outputs that acted as input to the
constraint model. The complete representation of our system
is shown in Fig. 2.

The level corresponding to the F4 area of the pre-motor
cortex was assigned the role of evaluating the performance
of reaching tasks. The fitness function that was used to
evaluate the region is the following:

���� !"## � �
$%&

� �'�

where $%& is the distance between the thumb and the object.
Therefore, the ���� !"## function evaluated the degree to
which a specific motor initiative resulted in the palm
advancing towards the object. This assumption is in
accordance to neurobiological studies that indicate F4 to be
associated with motor controls that result in reaching of the
whole hand towards the object.

The area that encapsulated the F5 pre-motor cortex
inputted only the sensory information that was recurrently
fed from the Somatosensory cortex (i.e. the touch sensors in
the fingers of our robot). Based on the definition of a power
grab, the fitness function of the pre-motor region was set to
benefit the individuals in the population that achieved
maximum contact with the object for the most time.

�'�� !"##�()*"+�,+-. � //�0 �

�

�1

� �2�

!

 1


where t equals the time-steps for each task, F the number of
body parts in the hand (two parts for each of the three
fingers) and �0 � a Boolean variable indicating whether the
specific part was in contact with the object during the t step.
Therefore eq. 6 sums the contact made by all fingers, over
all the time steps of each task.

The second task evaluated the ability of the controller to
perform a precision grip. For this reason we modified the
fitness function to penalize any contact made by the lower
parts of the fingers, while benefit individuals that resulted in
contact of the object with the upper parts. The fitness
function used in this case is shown below:

�'�� !"##�(+"3�##�)!�,+�	 � //�0 4

�5

41


!

 1

�//�0 �

�6

�1


!

 1

� �7�

where the first term corresponds to the sum of time steps that
all the upper parts, of all the fingers (�8) where in contact
with the object, while the second sums time steps in contact
with all the lower finger parts (�9). Ideally this fitness
function should result in the robot moving only the upper
parts of its fingers, keeping the lower ones immobile.

We point out, that the last two fitness functions (in eqs.
6,7), which are assigned to F5, are independent of the
specifics of the object to be grasped, i.e. no information on
the contour of the object is forward to the computational
model. Instead, we use the degree to which the controller
performed appropriately a grasp, which is depicted in the
number of time steps specific fingers were in contact with
the object. This is in accordance to neurobiological studies
which indicate that a large degree of the shaping of the hand
occurs during the initial levels of control, without processing
the visual information of the object, but instead combining
stored information regarding the task, and feedback
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