A Biologically Inspired Approach for the Control of the Hand
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Abstract-The control of the hand in primate species is
characterized by a high dimensionality, due to the large
number of joints in the fingers. In this study we present how its
manipulation can be simplified without compromising its
usage, through a constraint methodology that is inspired from
recent neurobiological findings. We further develop a
computational model, consisting of several brain areas related
to hand control, using a co-evolutionary architecture. Due to its
neurobiological basis the methodology gives rise to a number of
emergent properties that have been shown to occur in primate
species during reach-to-grasp tasks.

1. INTRODUCTION

In biologically inspired robotic motion control, reaching-
to-grasp tasks are considered quite interesting, due to the
diverge roles of the collaborating brain regions that are
involved in their execution, as well as the high
dimensionality that is imposed by the large number of joints
in the articulator. Since the variety of tasks that we perform
using our hands, is characterized by different levels of detail,
controlling such complex apparatus in an exhaustive
manner, i.e. explicitly move each joint individually, seems
rather redundant. Recent studies in neurobiology indicate
that our brain has evolved to resolve the ambiguity of each
task, and initiate different levels of control for the hand,
which are in turn processed on interdisciplinary brain
regions. Apart from the traditional motor related neurons in
the primary motor cortex, these studies indicate the
contribution of supplementary brain areas, such as the
Somatosensory (SI, SII) and Spinal Cord (Sp), to motor
control. More importantly, they indicate the manipulation of
the hand as being the product of different resolution levels,
each partially contributing to the final motion.

Most of the interrelated research in the field has focused
on directly solving the problem, using Hebbian learning
rules on architectures of Neural Networks, and relying on
the pre-tuning of the dividing linkages to resolve the
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complexity of the problem. The complication of the hand
was either confronted implicitly by custom Neural
Networks, or explicitly through constraint models that were
designed for specific tasks. Here we present a biologically
inspired computational model that is based on experimental
studies indicating the hand being controlled on different
resolution levels during action execution. These
simplifications are imposed by several brain areas in the
form of kinetic coordination patterns, on a peripheral, i.e.
global force control level, as well as local, i.e. fine-tuning,
perspective. Our approach contrasts previous endeavors in
the field, since it deals with the problem implicitly through
the defining roles of the brain. The strength of our model is
evident in numerous control strategies that are evolved
during various experiments, which present a strong
resemblance with the ones employed by nature.

Among the most noticeable computational models in the
field, is the FARS architecture [1] which replicated the roles
of several brain areas, by pre-tuning cell activations to
perform reaching tasks, without assuming any specific hand-
model. Oztop and Arbib [2] later endowed that architecture
with the computational counterparts of the pre-motor (PM)
and primary motor cortex (M1) to study imitation of
grasping. The large degree of variability of the joints was
confronted through an empirical constraint model that would
simplify the control of the articulator, using task-related
parameters such as the distance of the fingers to the object,
or the disparity axis between the hand and the object. More
recently other projects employed Hebbian Neural Networks
to create a model that could benefit from self-observation [3]
or from watching a human [4] in order to develop an
adequate controller for imitation of grasping. Most of these
studies employ the concept of mirror neurons [5], which
indicates overlapping activations in the F5Sm area of the pre-
motor cortex during execution and observation of primates.
Due to the mirror neuron hypothesis, the main functioning of
the control task in these models was either focused directly
on the F5m region, or neighboring areas, leaving any
remaining parts to carry out sensory processing tasks. More
recently, brain imaging methods such as C-Deoxyglucose,
that provide a greater resolution on the internal activations of
the motor control related brain regions, indicate that these
overlapping execution/observation activations occur over a
wider spectrum [6] of cortical areas. These findings indicate
the importance of additional brain regions that collaborate
and contribute to the control of the hand, among which the
Somatosensory cortex. Even though this study is not mainly
concerned with imitation, the underlying areas that are being
activated during the execution of a behavior resemble at a
great extent the ones being active during imitation. Further
neurobiological studies [7] have reported that the processing
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of the hand control occurs in diverge levels and resolutions,
and is distributed among several areas in the brain. Another
characteristic of hand control is that even though grasping
tasks are commonly complex in nature, most of their motion
can be described by a small number of standard postures.
Masson [8], using Principal Component Analysis on
recorded trajectories of Macaque monkeys while performing
a grasp task, illustrated that the complete motion of a power
grab can be reproduced adequately using only a few standard
postures (named eigenpostures).

It is rather obvious that a constraint model for the
simplification of the hand is necessary, but it should be
coupled with the ability to initiate solitary finger motion
(a.k.a. single-digit control). In Macaque monkeys it has been
shown that the reduced ability to individuate the motion of
single fingers, has resulted in performing an abridged variety
of grasps [9].

Thus, a key issue that rises is to impose such constraints
on the synergies of the hand in a way that will complement
and extend its applications and usability, rather than bound
them. In addition, the constraint model that will be used
should be general enough to cover the great variety of tasks
that are performed using the hand. A good example of
constraints is the Hand-state hypothesis [2] a simplification
model for the hand, that was based on the virtual fingers
theory [10]. The main intuition behind this is that fingers
consist as physical entities and are characterized by their
contact surfaces. Hand state was then brought as an
extension to this concept, and suggested that the grip
controller should process task specific parameters, instead of
explicitly controlling all joint parts of the hand. Even though
this approach seems promising when dealing with the high
complexity imposed by the joints, the method is based on
empirical observations derived from the specific grasp tasks
under study. In addition, their constraint model is decoupled
from the computational model, leaving any processing solely
on the outputs of the underlying Neural Networks, while the
hand model is fed externally any control commands.

II. BIOLOGICALLY INSPIRED GRASPING

Our approach to grasping is based solely on
neurobiological experiments, revealing what types of
simplifications are employed by primate species in order to
control their palm and fingers. More importantly, we do not
make any compromises on the structure of the hand, but
rather focus on defining roles for various brain regions in
order to control different combinations of joints at different
resolution levels. This is mainly derived from evidence,
showing that such constraints do exist in primate species,
and are imposed through the functioning of particular brain
regions. More specifically, recent evidence indicate that the
27-DoF of joints existent in the hand are controlled both in a
global level, i.e. a universal, common to all joints, force
navigates the fingers to complete the assignment intended,
and in a local level, where fine-tuning initiatives, on
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individual fingers, are taken to increase the performance on
a particular task [7]. In addition, it has been shown that the
pre-shaping of the posture occurs long before the fingers
come in contact with the object, still while the hand reaches
towards the objective position, where fingers gradually take
a formation to approximate the object contour [11]. Variance
of the grasp tasks is then attained by acting forces explicitly
on specific fingers, after touching the object. These
coordination patterns have been shown to hold more than
90% of the discrepancy in grasping tasks [8], while the
remaining 10% is handled through individual motion,
custom to the specifics of the action being performed. The
same study also reports, that a small number of these
coordination patterns is adequate for reproducing a complete
grasp motion, which also seem to be organized along a
gradient from lower to higher finger movement
individuation. Therefore the higher principal components
reported in the analysis of [8], encapsulate the coordination
patterns that pre-shape the hand to an approximation of the
object contour, while the remaining perform fine
adjustments on the hand shape.

III. A MODEL FOR GRASPING

As mentioned during the introduction, our approach does
not impose any sort of constraints to the articulator itself, but
rather on the way it is controlled. Our proposed model
therefore, in accordance to biology, is concerned with
providing an underlying control framework for the forces
that are applied on the joints of the fingers of our robot, on
two different resolution levels, at a global level, to perform
an initial shaping of the hand, and on local level, in order to
fine-tune the posture, as illustrated by Fig. 1. More
specifically each junction between fingers in our model is
controlled by four force inputs, two that control each joint
individually and two that control all joints, through a global
force. Two neurons refer to each joint, and are assigned the
roles of controlling the flexor and extensor muscles as
suggested by neurobiological studies (the flexor is
responsible for the positive force applied between two body
part junctions, while the extensor refers to the negative one.
The sum of the flexor and extensor corresponds to the final
force that is applied to the joint). The two remaining neurons
impose a general force level that is applicable on all body
parts, using also this flexor/extensor intuition. The degree to
which each neuron affects the final motion of the
corresponding joint is also set as an open parameter, scaling
the final outcome, between global and local force levels.
Ideally this parameter should be fine-tuned to converge to an
appropriate compromise between the two levels of
resolution, in accordance to the requirements of the task in
hand. Therefore, for tasks that require explicit control of
individual joints the global assigning parameter should be
set to a low value, in order to emit the effect of the general
force during motion, and maximize individual finger
movement. The remaining parts of the hand, corresponding
to the main arm joints (elbow and shoulder), are assigned
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only one pair of neurons per joint and thus are not affected
by the global force parameter.

In our simulations, the hand is controlled by a computational
model that replicates the operation of several cortical regions
known to be active during primate hand control. In these
experiments we have replicated the role of the F4 and F5

Global Force Control

s 1l
Ry

Fig. 1. The two control levels for the hand. Global force applies to all joints
in the fingers, while local is specific to one joint. The degree of influence
scales appropriately each level of control, and sends the final force
command to the controller of the robot’s hand.

-

Local Force Control
1
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areas of the pre-motor cortex, and the primary motor cortex
(M1). Each brain area is assigned a different role (using a
fitness function), in accordance to its biological counterpart.
The complete representation of the computational model is
illustrated in Fig. 2. The inputs to our system consist of the
recurrent sensory signals emitted by the touch sensors in the
fingers of our simulated robot, as well as the distance of the
index finger from the object, which we calculated
empirically, based on the space between the object and the
hand (using the software of the simulator). We note here that
the model does not process any shape specific parameters,
such as the diameter of each item to be grasped, but instead
approximates the appropriate posture based on an ad-hoc
interaction with each object, through the perceived sensory
indications from the fingers.

In our implementation, the F5 pre-motor cortex is evolved
based on the ability of the fingers to form an appropriate
posture in respect to the object present on the scene
(evaluated by measuring the type and amount of contact
made). In addition, the F4 region is evolved to optimize the
performance of the joints that refer to the upper parts of the
hand (two joints for the shoulder, one joint for the elbow)
and thus corresponds to the reaching counterpart of the task.

Up till now, there was a strong ambiguity on the explicit
role of the primary motor cortex to motor control. Most
computational related studies have defined this area as a
predecessor of the spinal cord, assigned the task to activate
the motor neurons (e.g. [2, 12]). Our computational
counterpart for the primary motor cortex is based on
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neurobiological evidence [7] that denote its functionality as
globally acting on the final commands based on the overall
performance of the robot in the task.

All underlying processing occurs in the computational
model, which encapsulates the brain of our robot, while the
outputs are filtered externally using the following equation:

Ji= Rli(Cpll Cpiz) + Rg(Cgpl Cgpz) )]
where J; refers to the i joint of the hand, R;; is the local
force level that controls the effect of the confined control
inputs Cp;q, Cpi to the task, while Rgis the extent to which
the global force level inputs, Cgpq, Cgpz, influence motion,
and are common to all joints. An important aspect of eq. 1 is
that it does not define any relation between the global R,
and local R;; force levels. Even though the computational
model could be assigning both of these variables
individually, we believe it is a good practice to define a
relation between them, in order to optimize the processing
requirements of the task. In its most general form, this
relation would have the following form:

R =f(R;)) @

The most obvious definition for f would be to embody a
percentage type function. Therefore, assuming that the
outputs of the neurons range from 0 to 1 (sigmoid units):

f)=1-x (3)

More elaborate tasks however could benefit from f using an
inverse log function, therefore obliging complexity to
remain low during the initial levels of control where the
details of the task are usually unknown, and increasing
gradually with time. A common function that encapsulates
such gradual increase is the inverse log function:

f() =1log™'(x) (4)

An example where eq. 4 could provide a better output for
the model is in a combined reaching and grasping task,
where the grip is not in contact with the object during most
of the time.

It is evident from the above, that the only constraints that
are imposed to the model are of kinematic nature, i.e. kinetic
coordination patterns, and not on the articulator itself. The
strength of such model is that it facilitates both detailed and
general motion control, relying on the underlying cognitive
model to resolve the degree to which higher, and thus more
complex (and detailed), or lower resolution is required. In
addition, the constraint methodology works in cooperation
with the computational model, by allowing modifications on
the scaling parameter between the two control levels, instead
of acting on a top level. Later in this paper, we demonstrate
how our model is able to resolve the level of difficulty of
each task, and innately assign a global force level scale
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factor that matches its ambiguity, using solely the feedback
from the Somatosensory.

IV. CO-EVOLUTIONARY MODEL

It is evident from the description above, that our proposed

methodology for grasping does not make any assumptions
on the underlying cognitive model that should be used. This
grants the methodology with generality, as it is possible to
be combined with any implementation of a computational
model. In a previous work [13], we demonstrated how a co-
evolutionary framework [14] 1is able to tune the
interconnectivity of several Neural Networks to perform
reaching tasks. In this study, we extend this model to include
our grasping prototype in the architecture, and evaluate the
overall performance in grasping related experiments.
In addition to our previous work, we also specify each
Neural Network in our model with a defining role to the
control process. The intuition behind our co-evolutionary
modelling approach is that several co-evolving populations
of Neural Networks are used to optimize a diverse range of
brain regions which are assigned different fitness functions,
while the architecture as a whole is attempting to accomplish
a specific task. Each Neural Network in the architecture
corresponds to a specific brain area, and is evolved based on
a fitness function that encapsulates the computational
specifics of its biological equivalent. For more details on the
implementation of the co-evolutionary brain modelling
approach, the interest reader is referred to [14].

V. EXPERIMENTS

We employed the Webots simulation platform, a
commercial 3D physics package that included an accurate
replication of the Fujitsu Hoap2 robot. To perform the
experiments, we extended the simulator, to three fingers,
thumb-middle-index, each consisting of two 2DoF joints, for
each of the lower and upper finger parts, attached to a wrist
of 3DoF. The control of the articulator depended on the
outputs of the co-evolutionary architecture, consisting of
five interconnected levels of Neural Networks, with
membrane potential neurons. Each level was explicitly
assigned a fitness function that corresponded to its biological
counterpart, and awarded the evolved individuals that
performed adequately on trial tasks. The final network
included 21 sigmoid outputs that acted as input to the
constraint model. The complete representation of our system
is shown in Fig. 2.

The level corresponding to the F4 area of the pre-motor
cortex was assigned the role of evaluating the performance
of reaching tasks. The fitness function that was used to
evaluate the region is the following:

1

Flpitness = E 5)
T
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where Dy is the distance between the thumb and the object.
Therefore, the F4p;,.ss function evaluated the degree to
which a specific motor initiative resulted in the palm
advancing towards the object. This assumption is in
accordance to neurobiological studies that indicate F4 to be
associated with motor controls that result in reaching of the
whole hand towards the object.

The area that encapsulated the F5 pre-motor cortex
inputted only the sensory information that was recurrently
fed from the Somatosensory cortex (i.e. the touch sensors in
the fingers of our robot). Based on the definition of a power
grab, the fitness function of the pre-motor region was set to
benefit the individuals in the population that achieved
maximum contact with the object for the most time.

F

n
FSFitness,Power Grab = Z Z Cnti (6)

t=1i=1

where t equals the time-steps for each task, F' the number of
body parts in the hand (two parts for each of the three
fingers) and Cn,; a Boolean variable indicating whether the
specific part was in contact with the object during the # step.
Therefore eq. 6 sums the contact made by all fingers, over
all the time steps of each task.

The second task evaluated the ability of the controller to
perform a precision grip. For this reason we modified the
fitness function to penalize any contact made by the lower
parts of the fingers, while benefit individuals that resulted in
contact of the object with the upper parts. The fitness
function used in this case is shown below:

Cnyy — Z Yeng @

=1 t=1i=1

Fy

F5Fitness.Precission Grip =

n
t=1

-

where the first term corresponds to the sum of time steps that
all the upper parts, of all the fingers (Fy;) where in contact
with the object, while the second sums time steps in contact
with all the lower finger parts (F). Ideally this fitness
function should result in the robot moving only the upper
parts of its fingers, keeping the lower ones immobile.

We point out, that the last two fitness functions (in egs.
6,7), which are assigned to F5, are independent of the
specifics of the object to be grasped, i.e. no information on
the contour of the object is forward to the computational
model. Instead, we use the degree to which the controller
performed appropriately a grasp, which is depicted in the
number of time steps specific fingers were in contact with
the object. This is in accordance to neurobiological studies
which indicate that a large degree of the shaping of the hand
occurs during the initial levels of control, without processing
the visual information of the object, but instead combining
stored information regarding the task, and feedback
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Fig. 2. The complete architecture of our system. On the left exists our co-evolutionary scheme that encapsulates the operations of F5, F4, M1, Sc brain
regions. The constraint model is applied on the scaling between global and local force levels which is depicted on the connectivity of the outputs with the
hand. The Ia regions, correspond to the flexor/extensor pairs for each joint.

that is received from the Somatosensory [7]. Our results
demonstrate that the articulator can form an appropriate
grasp posture, even without shape information. To the
authors’ knowledge, this is the first attempt to confront the
problem of grasping using only information from the
interaction of the object.

Finally, the top-level Neural Network, was assigned the
role of the Primary motor cortex, i.e. evaluate the overall
performance of the output, based on the two levels of motor
coordination (reaching and grasping). Therefore the fitness
function for this task was set to the product of all the
previous fitness functions:

M1pitness = F4ritness * FSritness  (8)

where F4pipness 1S computed from eq. 5, and F5g;ppess from
either eq. 6 or 7, depending on the task we are testing.

Biological studies indicate the role of the spinal cord as to
distribute the motor signals on the muscles of the body, i.e.
the controllers in our robotic simulation. Due to this, the
module equivalent to Spinal Cord consisted of twenty one
outputs that controlled the parameters of the hand, six output
neurons for controlling the upper parts, two for each
flexor/extensor pair of each joint of the fingers, two for the
global force level of all fingers, and one remaining variable
for imposing the degree to which either the global or local
force level should influence the motion of the manipulator
(Fig. 2).

Notice that the role of the scaling factor (single output of
the final network in Fig 2) is to weight the local force levels
that are applied to all joints. The Ia boxes in the figure
correspond to the flexor/extensor pairs. As shown, two
outputs from the network input to each of these boxes that
process the positive (extensor) and negative (flexor) forces
for the arm. The role of Ia, is to sum these two values and
output the result, which acts as the local force that is applied
to a joint. The final control for each joint is the sum of the
scaled local and global force levels, as illustrated in eq. 9,
and depicted in Fig. 2. For this simple task, we defined the
relation between global and local force level as a percentage,
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according to eq. 3.
For example, for the control of the lower-finger joint, the
equation used in our experiments is described below:

Ry =043 ©
Ja =Ry * (07 — 0g) + (1 — Ry;) * (014 — O45)

where J4 corresponds to the force that will be applied to the
lower joint of the index finger, R; is the Local force weight,
specified implicitly by the network, and O; correspond to the
outputs of the spinal cord module (final Neural Network in
our computational model).

As shown from the above, due to the design of the hand
constraint methodology, the model is able to cope with
lower resolution tasks (by setting the local force parameter
R;; to a low value), as well as tasks that require a high
degree of detail. Even though none other specification was
defined, such as information on the object or the hand
configuration, our results indicate that the model is sufficient
to facilitate appropriate postures of various grasp types. In
our experiments, the degree of detail (i.e. the scaling
between local and global level control) to which the joints
will be controlled is left as an open parameter specified by
the network, but it can also be set empirically, e.g. based on
the experience of the robot in the performing task, or by
feedback acquired during imitation.

Two different sets of experiments were performed. The
first focused on simple grasping tasks, and evaluated the
performance of the constraint model on two grasp postures,
a power grab and a precision grip. By definition a power
grab requires the palm and fingers to achieve maximum
contact with the object, and is applicable to large items that
are resilient to rough manipulation. In contrast, a precision
grip requires a sub-group of the fingers (commonly the
thumb and index) to touch the object, and carefully form a
posture that will allow a gentle manipulation. Therefore, to
evaluate these two grasp types, we isolated the motion
control only to the finger joints (by disregarding the elbow
and shoulder output units in the network), and predefined a
standard posture for the upper hand parts, in order to keep

1507



the palm in close distance to the object. Fig 3 illustrates this
standard posture that was used for the grasping experiments.

The second type of experiments was concerned with
evaluating the constraint model during both reaching and
grasping. The main challenge in this second trial is that the
grasp posture should form appropriately during the whole
motion, without relying on the sensory information, which is
unavailable before contact with the object. As we will
demonstrate, our model adapted a strategy of forming a
correct posture even before contacting the object. The same
effect has been shown to occur in primate species [8], and is
the result of the brain attempting to simplify the task in
hand.

VI. RESULTS

Based on the two experiments described above we
conducted a number of replications, in order to evaluate the
performance of the robot. We focused mainly on two issues,
the performance of the hand to the task and the implicit
adjustment of the R; parameter by the network. All
experiments were evaluated based on the ability of the robot
to touch the object of the task appropriately, based on the
grasp type.

As mentioned the first set of experiments was concerned
with testing the ability of the constraint model to form
appropriate grasping postures against the object present, and
therefore maximize contact. Since the joints corresponding
to the shoulder and elbow were kept immobile, the output
that referred to these parts was disregarded, while the fitness
function of the F4 region (in eq. 5) was not considered
during the evolutionary selection.

Fig. 3. The graphic output of the simulator during the first set of
experiments (left) and the three objects that we used (right).

Three objects were used, namely a sphere, a box and a
complex shape, as manipulation objects (Fig 3). The
selection of objects was not random since each one’s contour
possesses some interesting properties for the two grasp
types. For example in order to maximize contact with the
sphere, the robot should form appropriately all joints in the
fingers, to have a 45° angle. In contrast to grab the box, due
to the object’s placement, the robot should close only the
two lower parts of the fingers. Finally for maximizing
contact with the complex object (the 3™ object in Fig. 3) the
robot should close the lower parts of the fingers 35° and the
upper parts for approximately 50°.

In respect to the model, the main difference between these
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tasks is depicted on the robot having to form more
appropriately its fingers to grab the complex object, i.e.
proceed to some individual motion of the upper parts of its
fingers. In contrast, adequate grabbing of the ball and box
does not require a large degree of variability, and can be
performed consistently using a low local force level.

i 8. K

(b
Fig. 4. The optimal individuals of the controller, while grabbing the sphere
(a), a box (b) and a complex shape consisting of two boxes (c).

Similarly to biological studies [7, 11] our results indicate
that the controller adopted a strategy of simplifying as
possible the task that was being performed. This is evident in
most of the populations, where the local force level was set
by the computational model to a low value. We consider this
as an emergent property of the system that is due to the
cooperation between the constraint and computational
models. For the first two tasks, where the robot was asked to
grab the sphere and the box, maximum performance was
achieved on an average 0.001 local force level (Fig. 5). This
indicates that on most of its part, the robot was able to
perform the action simply by applying a force that was the
same for all joints. The chart below illustrates the value of
the local force level that was output from the network (single
neuron in Fig. 2), during the grab sphere experiment, for the
91 individuals of the fittest population. This value is
obtained for each individual, by summing over all
consequent time steps of a task, and normalizing the result.
As mentioned this parameter acts as a scaling factor for the
final result, and corresponds to the R;; variable of eq. 9.

Local Force Level Scaling

=3
W

e
o

- A Aa

o

Local Force Level Scaling
=)
yn

1 5 9131721252933374145495357616569737781 8589
Individuals Index in the Population

Fig. 5. The averaged over all time steps local force level that was set by the

computational model, while grasping the sphere using a power grab, for
each of the 91 individuals of the population in the experiment.

It is evident from Fig. 5 that most of the individuals chose
to apply a small local force level (i.e. small degree of finger
individuation). Individuals 78-91 also choose to apply a
local force, and still manage to obtain good results.
Nonetheless, the vast majority of the individuals show a
clear preference of completing the task with the least
complexity possible. We note here that we did not include
the number of joints that can be controlled in our fitness
functions, which adds more importance to this outcome,
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since the controller didn’t penalize any individual control of
the fingers. This means that our evolutionary model wasn’t
biased to set the global force parameter at a high value. This
was an emergent property of our system which indicates that
the model, on its own, chose to adopt the simplest solution.
As mentioned during the introduction, this property is also
found in some primates during the control of their hand.
More importantly, our results indicate that reducing the
complexity of control, by using the same force for all
fingers, didn’t compromise the optimality of the final result.
This is evident on the following graph that illustrates the
fitness of the individuals in the same experiment as in Fig. 5
(i.e. power grab of a sphere), and shows the overall contact
for each individual. Each task consisted of 110 time steps,
and therefore, the fit individuals should grab the object for
approximately 100 steps (10 steps correspond to the
minimum time that is required for the fingers to reach the
object). As shown in Fig. 6, the same individuals that
employed a small local force for the simple task of grabbing
a sphere in Fig. 5 also achieved a very good performance.

Overall Fitness Goodness {Sum of Contact
Points)

150
100} W= e AP
50 \

overall sum of
Contact Points

1 61116212631364146515661667176818691

Individual's Index in the Population
Fig. 6. The fitness function evaluation for the power grab of the sphere.

For the complex object that consisted of the two boxes
attached to each other, the average global force level was
somewhat higher, ranging from 1%-10% (i.e. 0.01-0.1) on
different replications of the experiment. This is also
evidence of the constraint model being adequate to perform
power grab of more complex objects, using the least
complexity possible, where in the case of a more complex
object, is higher. As showing in Fig. 3, the complex object
consists of two boxes attached to each other. Therefore,
ideally, for the hand to maximize contact with this item, it
should control at some extent the upper parts of the fingers
individually. This results in the model having to set the
appropriate local force level to a somewhat higher value than
before. Our model was able to resolve that resolution
intrinsically, through the interaction with the object. The
following graph depicts the changes in the global force
parameter during the consequent time steps, for the 91
individuals of the population that were used in the grasping
of the complex object experiment.

Local Foree Level Scaling
0,05
0,045
0,04
0,035
0,03
0,025
0,02
0,015

0,01
: ]

15 9 13172125293337414549 5357616569 73 77 81 65 89

Local Forcs Weighting

Individual Index in the population
Fig. 7. The local force level, averaged over all time steps, while grabbing
the complex object, for each of the 91 individuals in the experiment
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It is evident from Fig. 7, that during this experiment, more
individuals required a slight higher degree of finger
individuation in order to achieve an optimal performance.
Nonetheless, performance on the task wasn’t compromised,
since most of the individuals performed optimally. The
following graph (Fig. 8) illustrates the number of time steps
that the 91 individuals of the “grab complex object”
experiment in Fig. 7 were in contact with the item. The
overall time steps for this task were also set to 110, while
approximately 10 steps should intervene before the fingers
reached the object.

Goofness of fit(s of contact points)

Sum of contact poirts during ane tral

Individusls index in the pepulation
Fig. 8. The evaluation of grabbing for the complex object.

The second trial of experiments evaluated the precision grip
grasp. Our fitness function therefore was set to the one in
equation eq. 7, penalizing the individuals that used the lower
parts of the fingers of the robot, while benefitting those that
employed only the higher parts. Ideally, to perform
optimally during this experiment the model should set the
local force level to a very high value, in order to permit
individual motion of only the higher parts of the fingers. In
general an average of 70% of the motion was performed by
controlling each finger individually. This outcome is also in
accordance to the previous experiments that indicate the
controller using the least complexity possible. However in
contrast to the previous experiments, the task here was
obviously more complex, and therefore the controller
identified emergently that more fine-tuning initiatives of
specific body parts (i.e. the upper finger parts) should be
taken to increase task performance. We also notice here that
there was none specification on the resolution level that
should be used, in the fitness functions of the experiment.
Essentially our model was able to implicitly resolve that a
higher degree of finger individuation should be used in order
to achieve an optimal result for the specific task.

Finally, we evaluated our model during combined
reaching and grasping tasks. For these experiments we also
activated the fitness function in eq. 5, which corresponded to
reaching. Our results indicate that the controller managed to
form appropriately its fingers in order to maximize the
contact with the object, even though in these experiments the
feedback from the touch sensors was unavailable, while
reaching, i.e. on most of the time steps of the motion (Fig.
9). Also consistent with biological studies [8] is the property
exhibit by the model, of the grasp posture forming long
before initiating contact with the object, which is evident on
the plot in Fig. 9a, that shows the number of time steps that
the grip of the robot wasn’t touching the object (overall task
duration was 110 time steps as before).
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Time step
8
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(a)

Fig. 9. (Left) The average number of time steps, that the grip remained with

no contact is shown on the upper line, the first time step that fingers started

moving is shown on the lower line. (Right) Graphic output of our simulator
after the robot grasped the item.

As the graph above illustrates the number of time steps
that the grip wasn’t in contact with the final object was
ranging from 40 to 50 steps. However, the grip starting
forming long before contact, roughly at the 5™ time step, for
each of the 64 individuals in the population, which is shown
in the lower line in Fig. 9a. This outcome is in accordance to
neurobiological studies that indicate the pre-shaping of the
hand, using a common to all joints force, during the first
levels of the motion [7]. The corresponding output of the
simulator, at the end of the reaching sub-task and after
initiating contact with the object is shown in Fig. 7.b.

VII. DISCUSSION

Reaching to grasp tasks have been long considered as an
interesting problem by the computational modelling society
due to the high dimensionality imposed by the large number
of joints in the hand. Other attempts to confront the issue
have either relied on constraining the task to be executed, or
constraining the articulator to empirically pre-defined
combinations of joints. In this study we presented a model
that does not make any compromises on either the task in
hand, the structure of the articulator or the type of grasps it
can support. In contrast, it includes a constraint model, based
on biologically inspired kinematic coordination patterns that
are controlled by the underlying computational process, and
are common to all tasks. The strength of the methodology
lies in enabling the computational model to decide on the
difficulty of the task and the appropriate level of resolution
that it should follow. In more complicated tasks, where
fingers should form in isolation, the computational model
has been proven adequate to adjust the inline resolution
factor, in order to individuate the motion of appropriate
fingers. The design mechanism employed for developing the
computational process consisted of a co-evolutionary
scheme that has been shown to obtain a high performance
when coordinating a large number of Networks. The
biological inspiration of the paper lies in the design of the
motor related areas, which were evolved to apply different
resolution levels of control for the same task, as well as the
design of the constraint methodology. The performance of
the model was evaluated against both simple and complex
tasks. Results indicate that several biologically equivalent
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properties have emerged, without us specifying them on the
fitness functions. For example, the controller uses the least
possible complexity to achieve optimal results. More
importantly our model has demonstrated very good
performance on the variety of tasks that it was tested.
Another important factor of the research was that grasp
postures where formed solely based on the interaction with
the object, without providing any information regarding the
object contour.

In the future we plan to integrate both the computational
and constraint models to a real robot, in order to study the
complications of grasping in real world conditions. In
addition we will extend these experiments to enable the
robot imitate, by including imitation related areas in our
brain counterpart.

VIII. REFERENCES

[1]1 A.H.Fagg and M. A. Arbib, "Modeling parietal-premotor interactions
in primate control of grasping," Neural Networks, vol. 11, pp. 1277-
1303, 1998.

[2] E. Oztop and M. A. Arbib, "Schema design and implementation of the
grasp-related mirror neuron system," Biological Cybernetics, vol. 87,
pp. 116-140, 2002.

[3]1 M. L. Kuniyoshi, Y. Yorozu, M. Inaba, and H. Inoue, "From visuo-
motor self learning to early imitation - A neural architecture for
humanoid learning," in Proceedings of the 2003 IEEEE International
Conference on Robotics and Automation, Taipei, Taiwan, 2003.

[4] Y. Kuniyoshi, M. Inaba, and H. Inoue, "Learning by watching:
Extracting reusable task knowledge from visual observation of human
performance," in IEEE Transactions on Robotics and Automation,
1994, pp. 799-822.

[5]1 G. Rizzolatti, L. Fadiga, V. Gallese, and L. Fogassi, "Premotor cortex
and the recognition of motor actions," Cognitive Brain Research, vol.
3, pp. 131-141, 1996.

[6] H.E. Savaki, V. Raos, and M. N. Evangeliou, "Observation of action:
grasping with the mind' s hand in Neuroimage, 2004. vol. 23, 2004,
pp. 193-201.

[71 M. H. Schieber and M. Santello, "Hand function: peripheral and
central constraints on performance,” Journal of Applied
Neurophysiology, pp. 2293-2300, 2004.

[8] C.R.Mason, L. S. Theverapperuma, C. M. Hendrix, and T. J. Ebner,
"Monkey Hand Postural Synergies During Reach-To-Grasp in the
Absence of Vision of the Hand and the Object," Journal of
Neurophysiology, vol. 91, pp. 2826-2837, 2004.

[9]1 J.R. Napier, "The prehensile movements of the human hand," Journal
of Bone and Joint Surgery Br, vol. 38, pp. 902-913, 1956.

[10] M. A. Arbib and T. Iberall, "Schemas for the control of hand
movements: An essay on cortical localization," in The control of
grasping, M. Goodale, Ed. Ablex Norwood, 1990, pp. 163-180.

[11] M. Santello and J. F. Soechting, "Gradual modling of the hand to
object contours," Journal of Neurophysiology, vol. 79, pp. 1307-1320,
1998.

[12] M. J. Mataric and A. Billard, "A Biologically Inspired Robotic Model
for Learning by Imitation," in Proceedings of the Fourth International
Conference on Autonomous Agents, 2000, pp. 373-380.

[13] M. Maniadakis, E. Hourdakis, and P. Trahanias, "Modelling

overlaping execution/observation pathways," in International Joint

Conference on Neural Networks, Florida, 2007.

M. Maniadakis and P. Trahanias, "Modelling brain emergent

behaviors through coevolution of neural agents," Neural Networks,

vol. 19, pp. 705-720, 2006.

(14

2007 IEEE Congress on Evolutionary Computation (CEC 2007)




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <>
    /SVE <>
    /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


