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Abstract

Recently, many research efforts focus on modelling partial brain areas with the long-term goal to support cognitive abilities of artificial

organisms. Existing models usually suffer from heterogeneity, which constitutes their integration very difficult. The present work introduces

a computational framework to address brain modelling tasks, emphasizing on the integrative performance of substructures. Moreover,

implemented models are embedded in a robotic platform to support its behavioural capabilities. We follow an agent-based approach in the

design of substructures to support the autonomy of partial brain structures. Agents are formulated to allow the emergence of a desired

behaviour after a certain amount of interaction with the environment. An appropriate collaborative coevolutionary algorithm, able to

emphasize both the speciality of brain areas and their cooperative performance, is employed to support design specification of agent

structures. The effectiveness of the proposed approach is illustrated through the implementation of computational models for motor cortex

and hippocampus, which are successfully tested on a simulated mobile robot.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

During the last decades, many research efforts have

focused on the development of intelligent machines, which

attempt to mimic the performance of biological organisms.

Since mammals constitute the category of biological

organisms that exhibit the highest level of intelligence,

they could be used as an excellent prototype for the

development of machines with advanced cognitive abilities.

Modern theories for the explanation of mammalian cogni-

tion argue that the observed behaviour of animals is a result

of phylogenetic development, and subjective environmental

experience (Geary & Huffman, 2002). Evidently, this

argument may also form a basis for the development of
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cognition in artificial organisms (Tempesti, Roggen,

Sanchez, & Thoma, 2002).

To better understand the behaviour of animals, it is

necessary to appreciate how their brain is functionally and

anatomically organized. Cognitive capabilities of mammals

are supported by their central nervous system (CNS). The

latter consists of several interconnected modules with

different functionalities (Kandel, Schwartz, & Jessell,

2000). A lot of research is recently oriented towards

determining how the information flows within CNS

modules, what kind of information is processed in each

area of the CNS, and how these modules cooperate in order

to accomplish real world tasks (Cotterill, 2001).

Even if the detailed, exact properties of each brain

module in mammals are not clear yet, a large number of

computational models of mammalian brain areas have been

proposed capturing the known characteristics of these

structures, as a means to explain and reproduce their

functionality (Ajemian, Bullock, & Grossberg, 2000; Arleo

& Gerstner, 2000; Kali & Dayan, 2000; Maniadakis &

Trahanias, 2003; Norman & O’Reilly, 2001; Samsonovich

& McNaughton, 1997; Stringer, Rolls, & Trappenberg,

2004; Todorov, 2000). These models operate at different
Neural Networks 19 (2006) 705–720
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levels of description and explanation, based on different

assumptions. At the same time, very different computational

approaches are followed by researchers in these modelling

endeavours, which are usually constrained from heuristic

design specifications. The developed models seem to form a

heterogeneous collection, where computational differences

among them constitute their integration very difficult

(Wermter & Sun, 2000). Thus, a consistent procedure to

support design specifications and model integration is still

lacking.

In the present work, we introduce a systematic method to

implement computational models of each part of the

mammalian central nervous system, emphasizing on the

integrative performance of substructures. Moreover, follow-

ing research efforts which link cognitive capabilities of

robots to brain science (Scassellati, 2000; Shin, 2002),

implemented CNS models are embedded in a robotic

platform to furnish it with behavioural capabilities. Thus,

interaction with the environment is supported, and the

proposed approach can be assessed. By employing a

computational model, which follows the mammalian

paradigm in both the functional organization and the

mechanisms for cognition development, we aim at the

construction of artificial systems able to develop advanced

cognitive capabilities. It is worth emphasizing that the

current work addresses primarily the development of a

method to support CNS modelling for robotic applications,

than presenting perfect models of specific brain areas.

We follow an agent-based approach to design models of

partial brain areas, supporting the autonomy of substruc-

tures. This approach offers many advantages in terms of

modular and scalable development of effective models

(Franklin & Graesser, 1996; Jennings, 2000). Each agent

consists of a neural network structure that captures the basic

anatomical principles of the mammalian CNS. The design

of agents focuses on the emergence of partial brain model

functionality, based on robot–environment interaction

(Cotterill, 2001; Thelen, 2000). Similar to a phylogenetic

process, we employ an evolutionary approach to specify the

computational details for each neural agent (Rolls &

Stringer, 2000). Instead of using a unimodal evolutionary

process, we employ a collaborative coevolutionary method

which offers enhanced search abilities of partial elements,

and emphasizes the independence of agent structures

(Maniadakis & Trahanias, 2004). Moreover, the coevolu-

tionary approach is also able to emphasize the cooperative

performance of partial brain models (Poter & De Jong,

2000) and, therefore, the ability to achieve integration of

partial models is inherent to our approach.

However, there are still open issues in the area of

coevolutionary methods and current research efforts attempt

to address them (Wiegand, Liles, & De Jong, 2001). One

major problem concerns how collaborators are chosen

among species, especially in the case of more than two

coevolved species (Wiegand, Liles, & De Jong, 2002). We

propose in this work a two level collaborative
coevolutionary strategy (Maniadakis & Trahanias, 2004),

aiming at a systematic method to approach this issue.

Following our method, coevolution of a large number of

species is possible. Thus, it can be used for large scale brain

modelling tasks, with separate species for each partial brain

structure.

The rest of the paper is organized as follows. In Section 2,

we provide the motivation behind our work. Then Section 3

presents a formal computational framework for the

implementation of partial brain models. In Section 4 we

present a collaborative coevolutionary schemewith purpose-

ful selection of collaborators, which is able to support

coevolution of a large number of species. Computational

experiments which follow the proposed approach to

accomplish two partial brain modelling tasks are presented

in Section 5. Both models are embodied in a robotic platform

to furnish it with cognitive abilities and verify the validity of

results. Specifically, we demonstrate the implementation of a

computational model of motor cortex able to achieve a wall

avoidance navigation behaviour, and also a computational

model of hippocampus which achieves a self-localization

behaviour bymeans of development of place cells. A detailed

discussion on the achieved results ends this section. Finally,

conclusions and suggestions for further work are drawn in the

last section.
2. Motivation

The long-term vision of developing artificial organisms

with high cognitive abilities, has given new impetus in brain

modelling studies. In this endeavour, environmental inter-

action is of utmost importance, since it is difficult to

investigate the mammalian CNS without embedding the

models into a body to interact with its environment. Our

work aims at supporting both intelligence development in

artificial organisms and brain modelling efforts, by bringing

them in the same field.

An agent-based approach seems suitable to support brain

modelling tasks, mainly due to the distributed organization

of CNS. Agents are deemed as a new theoretical tool for

modelling complex, distributed systems. Agent-based

technology is appropriately designed to facilitate the

development of intelligent systems with a large number of

cooperative interactive parts, supporting their flexibility,

autonomy, subjectivity, and situatedness in a specific

environment (Franklin & Graesser, 1996). From a designer

point of view, it supports problem decomposition, abstrac-

tion of partial models, and scalability of global problem

solution (Jennings, 2000).

The design of agent structures should ideally be based on

the natural principles of the CNS of biological organisms.

Recently, there is a debate among genetics and neurobiol-

ogy regarding the extent that brain organization and the

associated cognitive functions are genetically predeter-

mined, or emerge through patterns of developmental
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experience (for a recent review, see Geary and Huffman,

2002). One proposition claims that brain structure is the

result of an evolutionary process over time (Duchaine,

Cosnides, & Tooby, 2001). At the same time, recent

research has provided evidence for the fact that the observed

behaviour of mammals is a result of their continuous

interaction with the environment throughout their lives

(Cotterill, 2001; Thelen, 2000). In contrast to the widely

used human-oriented hardwired solutions that support

cognition of artificial systems, the emphasis on environ-

mental experience highlights subjective understanding of

the organism about the world.

Based on the above, it seems plausible that both

genetically encoded features and subjective experience

have a significant role in the formation of the animal’s

behaviour. Phylogenetic development determines the

internal dynamics of brain structures that allow

the epigenetic1 emergence of valuable behaviours, after

a certain amount of interaction with the environment.

Besides the modulation of epigenetic learning by phylo-

genesis, the reverse interaction is also true. The well

known since 1896 Baldwin effect, discusses the outcome

of epigenetic learning on evolution, with the best able to

learn organisms having larger numbers of offsprings

(Smith, 1987).

In the present work, we propose a computational

approach to brain modelling tasks, which combines the

above aspects. A collection of agents is employed to

represent CNS modules. Their design is based on the

interactions of phylogenetic and epigenetic processes.

Phylogenesis is represented by an evolutionary process,

while epigenesis is represented by online adjustment of

CNS agents. The objective that is followed in agent

evolution is to furnish them with abilities to develop

performance similar to the respective brain areas, after a

certain amount of interaction with the environment. In

other words, the evolutionary process genetically deter-

mines the internal dynamics of partial brain models, which

in turn allow the emergence of a desired behaviour during

lifetime performance. In this context, the utilization of

evolutionary processes for brain modelling has also been

proposed by others (Rolls & Stringer, 2000), although not

adequately tested.

Furthermore, evolutionary psychologists proposed the

coevolution of partial brain areas over time (Klein,

Cosmides, Tooby, & Chance, 2002). The computational

analogy of this proposition is that the evolutionary approach

can be further extended to a coevolutionary one. Using a

coevolutionary method, the computational details for each

agent are confined to a small searchable domain, without

constraining its functional capabilities. We propose, there-

fore, the employment of a coevolutionary approach for the

design of brain models, because compared to a unimodal
1 Epigenesis here, includes all learning processes during lifetime.
evolutionary process it exhibits the following advantages

(Poter & De Jong, 2000):
†
 It is able to support both the individual and the

cooperative characteristics of partial brain areas.
†
 It offers a systematic methodology to deal with the

integration of different structures.
†
 It supplies a mechanism for developmental brain

modelling by adding gradually new coevolved species

to represent new brain areas.
†
 Similarly to all evolutionary strategies, it is a biologically

plausible method.

Additionally, the brain modelling problem fits very well

to collaborative coevolutionary approaches, because separ-

ate coevolved species can be used to perform design

decisions for each model of partial brain area. Hence, by

using a distinct fitness function to evolve each species,

different roles can be assigned to partial structures. At the

same time, the concurrent evolution of each species under a

common evolutionary scheme enforces cooperation among

brain modules. Therefore, we argue that coevolution

facilitates complex brain-modelling tasks.

In summary, the current paper introduces a novel method

to approach the implementation of mammalian CNS

computational models, which are embedded in a robotic

platform to furnish it with cognitive abilities. We introduce a

computational framework for brain modelling tasks empha-

sizing on the integrative performance of substructures. It is

based on the fact that CNS consists of distinct areas with

different functionalities. Each brain area is modelled by a

flexible agent structure, to emphasize on the special

characteristics of the area. The internal dynamics of each

agent are specified by a phylogenetic process. The latter aims

at allowing the development of the desired behaviour in each

agent structure, after a certain amount of environmental

interaction. The cooperation of partial structures is achieved

by employing a coevolutionary mechanism to support

integrative performance of agents. Following a coevolu-

tionary approach, both the individual and the cooperative

characteristics of brain areas are highlighted.

In the following, we present in turn the computational

details of the neural agent model, and the coevolutionary

scheme used to perform design decisions of the model’s

structure.
3. Computational model

We have implemented two different neural network

based agents, to supply general computational structures for

brain modelling: (a) a computational cortical agent to

represent brain areas, and (b) a link agent to support

information flow across brain areas.

The proposed computational structures are not restrictive

for the coevolutionary method, but rather serve as a guide on
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how coevolutionary approaches can be employed to support

brain modelling tasks. Currently, the employed compu-

tational structures have been formulated as simple

configurations that are suitable for the tasks at hand.

Additional constraints can be integrated to increase their

biological reliability, or even more, a different neural

structure with emphasis on biological features can be used

instead, to implement CNS models with enhanced biologi-

cal reliability.

Neural network agents which serve the needs of the

present study, are presented in detail in the next sections.
3.1. Cortical agent

Each cortical agent consists of a population of excitatory

and inhibitory neurons. A rectangular plane with both sets of

neurons, uniformly distributed, simulates the cortical area.

Thus, an excitatory and inhibitory grid are defined on the

cortical plane with each neuron occupying a predefined

position (Fig. 1).

In order to achieve common spatial properties for

neurons in the middle and neurons in the borders of the

plane, we assume that opposite planar sides are met and the

neurons near by can be connected. Four sets of synapses

are defined depending on the nature of presynaptic and

postsynaptic neurons (excitatory–excitatory, excitatory–

inhibitory, inhibitory–excitatory, inhibitory–inhibitory).

The connectivity of neurons follows the general rule of

locality (Redish, Elga, & Touretzky, 1996). Synapse

formation in cortical agents (Fig. 1) is based on a circular

neighbourhood measure with the possibility of a different

radius for each of the four synapse sets. In that way, bi-

directionally neural pairs can be defined, with the

flexibility of assuming different synaptic weights in each

direction.

Both excitatory and inhibitory neuron sets follow the

Wilson–Cowan model with sigmoid activation, similar to

Tkaczyk (2001). The firing rate x of a neuron is updated

based on the afferent input information A and the excitatory

E and inhibitory I signals accepted by neighbouring
Fig. 1. Schematic representation of a computational model with two cortical

agents A, B, appropriately connected by a link structure. Neighbouring

neurons are connected by intra-cortical synapses (e.g. neurons in cortical

agent A). Link synapses are defined among neurons of different cortical

planes located at neighbouring positions (e.g. inter-cortical synapses across

agents A and B).
neurons. This is expressed mathematically in a single

form for both types of neurons, by

m Dx ZKxCSðWAACWEE KWIIÞ (1)

where m presents the membrane time constant, WA are the

synaptic weights of the afferent signals, and WE, WI the

synaptic weights of neighbouring excitatory and inhibitory

neurons. SðyÞZ1=ð1CeKaðyKbÞÞ is the non-linear sigmoid

function where b and a stand for the threshold and the slope,

respectively.
3.2. Link agent

An appropriate link agent is specified to allow infor-

mation flow across cortical agents. Using the link structure,

any two cortical agents can be connected. Thus an arbitrary

complex connectivity can be defined, to simulate connec-

tivity of brain areas.

Each link agent is specified by two sets of one-way

synapses. Only excitatory neurons are used as outputs of the

efferent cortical agent, while both excitatory and inhibitory

neurons receive input in the afferent agent (Fig. 1). Synapse

definition follows the principle that neighbouring cells

project to neighbouring areas. Thus, a locality threshold is

also employed to specify neighbourhood across cortical

agents. This is achieved by using the spatial properties

inherited by the planar cortical model. Locality is

approximated by the circular neighbourhoods defined after

projecting the neurons of the linked cortical agents on a

common virtual plane (Fig. 1). Before its projection to the

common plane, the plane of afferent agent can be

appropriately scaled and rotated. Thus, increased flexibility

on link synapse definition is offered.
3.3. Learning rules

Epigenetic learning has an important contribution to the

performance of the brain (Thelen, 2000). To enforce

experience-based subjective learning of robots, each set of

synapses (for both link and cortical agents) is assigned a

Hebbian-like, biologically plausible learning rule, similar to

(Floreano & Mondada, 1996). We have implemented a pool

of 10 Hebbian-like rules that can be appropriately combined

to produce a wide range of functionalities. Thus, adequate

flexibility is offered to cortical and link agents to develop a

desired behaviour. These rules have been selected based on

their simplicity and their previous application in a variety of

tasks (Choi, 2002; Floreano & Mondada, 1996; Hafner,

2000; Kohonen, 1998; Oja, 1982; Palmieri, Zhu, & Chang,

1993; Schraudolph & Sejnowski, 1992). Still, the architec-

ture of agents is open and amenable to other learning rules

with desirable characteristics in terms of either model

performance or biological plausibility.

Each learning rule is specified by a unique identifi-

cation number. Assuming that there is a synapse with
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strength wab from neuron a with activation xa to neuron b

with activation xb, then employed learning rules are

described below:
1.
 Differential decorrelation (Choi, 2002): DwabZK_xa _xb,

where _x is approximated by its discrete time counter-

part _xðtÞZxðtÞKxðtK1Þ.
2.
 Differential correlation (Choi, 2002): DwabZK_xa _xb,

where _x is similar as above.
3.
 PostSynaptic (Floreano & Mondada, 1996):

DwabZwabðxaK1:0ÞxbC ð1:0KwabÞxaxb.
4.
 PreSynaptic (Floreano & Mondada, 1996):

DwabZwabðxbK1:0ÞxaC ð1:0KwabÞxaxb.
5.
 Covariance (Floreano & Mondada, 1996):

Dwab Z
ð1KwabÞt; if tO0

wabt; otherwise

(

where tZ tanhð2K4jxaKxbjÞ
6.
 Connectedness (Hafner, 2000): DwabZ1Kwab.
7.
 Kohonen (1998): DwabZxaKwab.
8.
 PCA (Oja, 1982): DwabZxb(xaKxbwab).
9.
 AntiHebbian I (Palmieri et al., 1993): DwabZkKxaxb,

kO0 a small forgetting factor, to avoid vanishing.
10.
 AntiHebbian II (Schraudolph & Sejnowski, 1992):

DwabZkC ðK2xaxb=x
2
bC1Þ, where k is similar as

above.
Synapse sets in all agent structures are assigned a rule,

which specifies the dynamics of the epigenetic learning

process. The assignment of the appropriate learning rule in

each synapse set allows the emergence of the desired

performance in each partial computational model, after a

certain amount of robot–environment interaction.

The plasticity of agent structures, which stems from the

assignment of learning rules, allows synaptic adjustments at

run-time. Consequently, a large number of synapses (in the

order of thousands in our case) can be self-organized based

on internal agent dynamics and environmental experience.

The most common, but harder to evolve, alternative of

genetically encoded synaptic strengths, results to a rather

unmanageable problem complexity.
3.4. Agent design specification

In the previous sections, we have presented the general

models of cortical and link agents. Except of the predefined

number of excitatory and inhibitory neurons of cortical

agents, the other details of their structure are parametrically

specified. Neural parameters (m, a, b) are defined by six real

values, separately for excitatory and inhibitory neurons. The

radii used for the definition of the four synapse sets

(excitatory–excitatory, excitatory–inhibitory, inhibitory–

excitatory, inhibitory–inhibitory) are specified by four real
values. Additionally, four integers specify the identifiers of

the learning rules which adjust synapse weights during

lifetime performance. In summary, 14 parameters are

necessary to specify the complete structure of a cortical

agent.

Synapse set definition for link agents is supported by two

real values specifying the necessary inter-cortical neigh-

bourhood radius (efferent excitatory to either excitatory or

inhibitory afferent neurons). Additionally, two integers

specify the identifiers of the learning rules which adjust

synapse weights in each synapse set. The rotation and

scaling of the afferent cortical agent plane are defined by

two more real values. In total, the structure of link agents is

specified by six parameters.

Similar to a phylogenetic process, the specification of

parameter values for all agents is approached in a systematic

way by using an evolutionary mechanism. To support the

autonomy of agents, a coevolutionary method is employed

with separate species for each agent structure. This is

described below.
4. Two-level collaborative coevolution

The majority of applications that involve evolutionary

processes employ a single solution representation to map

genotypes to phenotypes. This is also the usual case for the

evolution of agent structures (Landau & Picault, 2001; Lee,

2003). However, using this approach, it is not possible to

sufficiently explore partial solutions, which correspond to

partial specifications of the genotype (Poter & De Jong,

2000).

To alleviate for that, coevolutionary algorithms have

been recently proposed that facilitate exploration, in

problems consisting of many decomposable subcomponents

(Casillas, Cordon, Herrera, & Marelo, 2001). They involve

two or more coevolved species (populations) with inter-

active performance. Each species is allowed to evolve

separately, by using its own evolutionary parameters (e.g.

encoding, genetic operators). Accordingly, increased search

competences are inherently available in coevolutionary

algorithms, while the special characteristics of each species

can be preserved. Most of the coevolutionary approaches

presented in the literature can be classified as competitive

(Rosin & Belew, 1997), or collaborative (Poter & De Jong,

2000). Competitive approaches are based on an antagonistic

scenario, where the success of one species implies the

failure of the other. In contrast, collaborative approaches

follow a synergistic scenario, where individuals are

rewarded when they successfully cooperate with individuals

from the other species. Since brain modelling efforts aim at

the cooperative performance of partial structures, in the

following we only consider collaborative coevolution.

Despite the increased number of applications of colla-

borative coevolutionary algorithms, the significance of

collaborator choice is usually overlooked (Wiegand et al.,
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2001, 2002). The majority of existing applications consider

only the ability of species to cooperate with the best

individuals from the other species (Krawiec & Bhanu, 2003;

Landau & Picault, 2001). Following this heuristic, evolution

is driven to a direction of reduced diversity, since all

individuals of one population have to cooperate with the

same (best) partial solution suggested by the remaining

species. Even the additional random selection of more

collaborators, followed by some approaches (Casillas et al.,

2001; Gomez & Miikkulainen, 1999), is not always able to

improve the performance, especially in the case of more

than two coevolved species. Evidently, the coevolutionary

process could be supported by the maintenance of success-

ful collaborator assemblies, as in Moriarty and Miikkulai-

nen (1997). This can be accomplished by employing a

multiple level evolutionary approach (Delgado, Von Zuben,

& Gomide, 2004).

We have introduced a new evolutionary scheme

(Maniadakis & Trahanias, 2004) which combines both

aspects mentioned above. Besides species evolution, our

method employs an additional higher-level evolutionary

process, to select the proper individuals from each species

that cooperatively are able to construct a good problem

solution. Thus, exploration is performed concurrently in two

different spaces. The lower level evolution of each species

supports search in distinct partial domains of the parameter

space, while at the same time, another high level

evolutionary process searches within species to identify

the best collaborator schemes. The higher-level evolution-

ary process is able to memorize good configurations of

collaborating individuals across consecutive epochs. These

configurations can be used as a basis to drive coevolution,

since individuals are more likely to be members of good

collaborator schemes. At the same time, we introduce a new

genetic operator, termed Replication, which enforces

exploration across species.

Moreover, in the current work we extent the coevolu-

tionary scheme to allow different fitness functions for

different species. This is particularly important for coevolu-

tion of agents since different objectives can be defined for

each agent. The latter affects the global CNS model in two

ways. First, it preserves the autonomy of agents which

represent CNS areas. Second, by means of the fitness

functions, distinct roles can be assigned to each agent,

similar to the role of the respective brain area.

We note that chromosomes are designed in an abstract

form, able to handle a variety of computational structures.

Thus, neural agents of any level of biological plausibility

can be employed to represent CNS areas. The details of the

proposed coevolutionary scheme are presented below.

4.1. Encoding

A general purpose genotype is employed for both the

lower level evolution of species, and the higher-level

collaborator selection process (Fig. 2(a)). According to that,
each individual is assigned an identification number and

encodes the values of a predefined number of variables,

depending on the application. There are two different kinds

of variables. The first kind is allowed to get a value from a

set of unordered numbers (e.g. {1, 5, 7, 2}, with the ordering

of the elements being of no use). These variables are called

SetVariables and they are employed to store identification

numbers, encoding the relationship between various

elements of the CNS model. The second kind of variables

is allowed to get a value within a range of values (e.g. [0,1]);

therefore, they are called RangeVariables and they are

employed to search the domain of parameters in partial

structures. The values of the variables are encoded in the

genome by an integer and a real number, respectively, for

the two kinds. They are graphically represented with the

dashed and solid boxes (Fig. 2(a)).

Based on the genome structure, we have implemented

crossover and mutation operators which slightly differ

from the standard ones. During the mate process, the usual

single-point crossover is applied separately for SetVari-

ables and RangeVariables (Fig. 2(b)). Different mutation

operators are implemented for each kind of variables.

Mutation corresponds to a random assignment in the case

of SetVariables and to additive noise in the case of

RangeVariables (Fig. 2(c)).

4.2. Coevolutionary scheme

The evolutionary process at the higher level performs on

a population of individuals, which consist only of SetVari-

ables. The number of SetVariables is equal to the number of

species at the lower level. Thus, each SetVariable is joined

with one lower level species. The value of a SetVariable can

be any identification number of the individuals from the

species it is joined with. Coevolved species at the lower

level consist of individuals which follow the genome

prototype described above, with both SetVariables and

RangeVariables, depending on the parametric specification

of the substructure to be modelled.

A schematic representation of an evolutionary process

with three coevolved species at the lower level is illustrated

in Fig. 3. We assume the existence of one cortical agent and

two link agents representing its afferent and efferent

projections (Fig. 3(a)). One lower level species is employed

to evolve each agent structure, while a top level evolution-

ary process searches for cooperable individuals of agents

among species (Fig. 3(b)). Individuals of the top level

species consist only of SetVariables encoding identifiers of

individuals at the lower levels. The genotype of individuals

at low level species consists of both SetVariables

and RangeVariables, as it is discussed in Section 3.4. In

short, for the individuals of cortical agent species, four

SetVariables encode learning rule identifiers, and 10

RangeVariables encode neural parameters of excitatory

and inhibitory neurons, and neighbourhood radii used for

the definition of intra-cortical synapse sets. Individuals of
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link agent species employ two SetVariables to encode

learning rule identifiers and four RangeVariables to encode

rotation, scaling, and inter-cortical neighbourhood radii

used for synapse definition.

In order to test the performance of individuals, the

population at the higher level is sequentially accessed. The

values of SetVariables at the higher level are used as guides

to select collaborators among species. The collaborators are

decoded to detailed agent structures. Then, agents are

appropriately combined to form the proposed solution,

which is further tested.

Because of the probabilistic nature of the process, some

individuals of the species at the lower level could be

multiply selected to participate in various combinations.

Multiple collaborations are generally a drawback for the

coevolutionary process. This is due to the fact that different

collaborators would demand evolution of the same individ-

ual in different directions.

At the same time, some individuals in the same species

might exist, which are not offered any collaboration (termed

non-collaborative henceforth). Unused individuals can be

utilised to decrease the multiplicity of collaborations for

those which are heavily reused. This is achieved by

introducing a new genetic operator termed ‘Replication’.

For each non-collaborative individual x of a species,

replication identifies the fittest individual y with more than

maxc collaborations. The genome of y is then copied to x,

and x is assigned maxcK1 collaborations of y, by updating

the appropriate individuals of the population at the higher

level. After replication, individuals x and y are allowed to

evolve separately following different directions. Replication

is illustrated in Fig. 4. The lower level individuals with ids

14, 7, 29, 9 are offered 5, 2, 0, 3 collaborations, respectively
(Fig. 4(a)). Assuming that maxcZ3, individual 14 is heavily

reused. At the same time individual 29 is offered no

collaboration at all. By applying replication, the genome of

14 is copied to 29 and two of the collaborations are

appropriately redirected (Fig. 4(b)). From now on, crossover

and mutation operators can separately evolve individuals 14

and 29.

The evolutionary step for the populations at all levels

starts by sorting individuals according to their fitness values.

Replication is applied to reduce multiple collaborations.

Then, a predefined percentage of individuals are probabil-

istically crossed over. An individual selects its mate from

the whole population, based on their accumulative prob-

abilities. Finally, mutation is applied in a small percentage

of the resulted population. Genetic operators are applied in

both levels in a similar way, as described above.

4.3. Fitness assignment

Even if the majority of existing collaborative coevolu-

tionary methods assume that all species share a common

fitness function (Casillas et al., 2001; Krawiec & Bhanu,

2003; Wiegand et al., 2001), our method allows the

employment of separate fitness functions for each species.

This is in accordance to the coevolution of agent structures,

because different objectives can be defined for each agent.

Thus, the evolution of different agents is driven by the

fulfilment of their own objectives, which specify their role

in the global model. Additionally, the agents should also

learn to perform as a group. To accomplish cooperative

performance of agents, a separate fitness function for the top

level evolutionary scheme is utilized to define the objective

of the group. Thus the proposed coevolutionary scheme is
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Fig. 3. Design of agents by means of collaborative coevolution. Part (a) represents schematically a hypothetical connectivity of agents. Cortical agent is

illustrated with a block, while link agents are illustrated with double arrows. Part (b) illustrates the coevolutionary scheme used to evolve partial structures, with

the coevolution of three low level species, tuned by a high level evolutionary process. See text for details.
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able to support both the specialities of agent structures and

their collaborative interactions. Both of them are particu-

larly useful for brain modelling tasks.

When an assembly of collaborators is tested, the

cooperative performance of all agent structures is evaluated.

The fitness function of each species evaluates subjectively

the overall performance that is it evaluates the performance

according to the objectives it is designed for. Thus, for each

species s, a distinct fitness value fs is evaluated for the needs

of its evolution; this evaluation is independent of the level of

the species in the evolutionary process.

During fitness assignment, the individuals of the higher

level are assigned a fitness value fTOP, representing the

appropriateness of the solution formed by the selected

collaborators. Similarly to most existing approaches,

individuals of the coevolved species at the lower level are

assigned the maximum of the fitness value achieved by all
the solutions formed with their membership. Thus an

individual of the sth lower level species is assigned the

value f sZmaxiff
s
i g, where f si is the fitness value of the ith

solution formed with the collaboration of the individual

under discussion.
5. Experimental methodology

The effectiveness of the proposed approach is illustrated

in the design of two partial brain computational models,

namely motor cortex and hippocampus. The relevant

experiments are indicative of the proposed coevolutionary

CNS modelling approach. In the named tasks, the

coevolutionary process has to perform structural and

parametrical tuning in a combination of cortical and link

agents, which model the performance of the respective



Fig. 4. Schematic representation of the replication operator (maxcZ3). Collaborations of individuals considered by replication operator are illustrated by thick

arrows, while additional connections which are not considered by replication are illustrated by thin arrows (see text for further explanations).
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brain areas. We use one species for each partial component

of the computational model (either cortical or link agent).

The chromosomes employed by each species are the ones

described in Section 3.4.

The coevolutionary-designed models are embedded in a

simulated robot to furnish it with cognitive abilities and

prove the validity of the result. We employ a two wheeled

robotic platform equipped with eight distance and light

sensors, uniformly distributed in a circular manner around

the robot, to support environmental interaction.
Fig. 5. A schematic overview of the Primary Motor Cortex model. Cortical

agents are illustrated with blocks, while link agents are illustrated with a

double arrow.
5.1. Modelling primary motor cortex

In the present experiment we aim at implementing a

computational model of primary motor cortical areas able to

emerge a wall avoidance navigation behaviour, after a

certain amount of interaction with the environment.

Computational models of the same brain areas have also

been proposed in the literature, e.g. (Ajemian et al., 2000;

Todorov, 2000), which, however, do not emphasize on the

self-organized robot understanding of environmental

characteristics.

Specifically, we demonstrate the implementation of a

computational model of Primary Motor Cortex (M1) and
Spinal Cord. The connectivity of neural network structures

is illustrated in Fig. 5. Sensory stimuli is projected to the

motor cortex via link agents and from there to the spinal

cord with another link structure.

Following the mammalian paradigm, sensory infor-

mation is somatotopically organized. Somatotopy is rep-

resented by a circular organization of environmental

distance sensor. In the present experiment, we do not

illustrate the projection of light stimuli in motor cortex since

it does not offer valuable information for the development of

wall avoidance behaviour.

Spinal cord is simulated only by its descending pathway

and a cortical agent is employed to represent it. We assume

the existence of an agonist and antagonist muscle in each

side of a robot wheel. One motor neuron of the spinal cord



Fig. 6. A sample result of robot wandering navigation.
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activates each of these muscles. Wheel speed is defined by

the activation difference between the muscles. Thus, four

motor neurons are necessary to define muscle’s activation,

and by consequence the speed of the robot. Proprioceptive

information of muscles activation is fed back to the motor

cortex, organized in a rectangular form.

Pain sensors are activated when robot bumps on the wall,

and are directly projecting to spinal cord motor neurons to

produce a reflexive movement. This process is very

important for the early steps of learning since it prevents

robot from getting stack against the wall and allows it to

continue interaction with the environment.

Motor cortex agent is represented by a neural structure

with 49 excitatory and 36 inhibitory neurons. Spinal cord is

represented by four excitatory motor neurons with zero

membrane time constant. All cortical and link agents are

randomly initialised with synaptic weights close to 0.1.

The whole computational model consists of five

subcomponents (two cortical and three link agents) which

have to cooperate to accomplish the desired performance. A

higher-level evolutionary process with genomes of five

SetVariables tunes the coevolution of all five species

following the method presented in Section 4. Populations

of 150 individuals evolve all subcomponent species, while a

population of 300 individuals evolves the higher-level

collaborator selection process. In the present experiment, a

common fitness function is used for both high and low levels

of coevolution. Each individual is assigned a fitness value

according to the function
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where we assume that robot performance is observed for M

steps, sl, sr are the instant speeds of the left and right wheel,

p is the maximum instant activation of distance sensors, and

B is the total number of robot bumps. The first term of Eq.

(2) seeks for forward movement far from the walls, the

second supports straight movement without unreasonable

spinning, and the last term minimizes the number of robot

bumps on the walls.

The robot is allowed to interact with the environment for

2M simulation steps. To avoid the effect of random

initialisation, robot performance is only observed for the

last M steps. Thus neural agent structures are given enough

time to self-organize synaptic weights and develop the

desired behaviour. Fitness value is evaluated only in that

period, following Eq. (2). In the present experiment, we use

a number of MZ1500 simulation steps.

Evolution was performed in synchronous steps for all

populations with 0.7 crossover probability and 0.08

mutation probability. After 50 epochs we got many

computational structures able to drive the robot without
bumping on the walls. The total amount of synapses that the

coevolutionary process specified for both cortical and link

agents varies from 1100 to 1450 synapses. A sample result is

illustrated in Fig. 6.
5.2. Modelling hippocampal formation

The hippocampus is one of the most studied areas of the

mammalian cortex because of its prominent role in the

memorization of spatial information. Different groups of

cells, namely place cells, have been detected in the

mammalian’s hippocampus, which preferably fire when

the animal is in a particular portion of its environment, but

they are largely independent of its orientation and actual

view (O’Keefe, 1976). The hippocampus consists of partial

areas which cooperate to develop place cells. Thus, the

proposed model does not employ a single module to model

the hippocampal performance, even if it could have been

possible for the present experiment. The reason is that it is

far from the biological hippocampal connectivity, and it will

be not able to reproduce any additional hippocampal data.

Following recent trends in the area, we focus our study in

the investigation of the entorinal cortex (EC) from

parahippocampal region and dentate gyrus (DG), and

Amon’s horn structures CA3, CA1 from hippocampal

formation. Recently, place cells have been detected in all

these structures. Since the exact role of hippocampal areas

has not been specified yet in the literature, the design of the

computational model will be based on existing knowledge,

that is development of place cells in hippocampal

substructures.

A number of hippocampal computational models have

been proposed in the literature, which are able to develop

place cells based on allothetic sensory stimuli. Some

approaches consist of an arrangement of appropriately

connected neurons on a planar map (Arleo & Gerstner,

2000; Hafner, 2000). Other hippocampal models are based

on the recurrent connectivity of CA3 neurons (Kali &

Dayan, 2000). A combination of planar map with

recurrent connections is presented in Samsonovich and

McNaughton (1997). However, according to Eichenbaum,

Dudchenko, Wood, Shapiro, and Tanila (1999)



Fig. 7. A schematic overview of the hippocampal model. Cortical agents are

illustrated with blocks, while link agents are illustrated with a double arrow.

Table 1

The distribution of neurons in hippocampus

Area Rat Model

EC 200,000 85 (Exc: 49, Inh: 36)

DG 1,000,000 130 (Exc: 81, Inh: 49)

CA3 160,000 61 (Exc: 36, Inh: 25)

CA1 250,000 100 (Exc: 64, Inh: 36)

The second column presents a rough estimate of neurons in rat hippocampal

areas (Norman & O’Reilly, 2001). The number of excitatory and inhibitory

neurons used in each cortical agent is presented in the third column.
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and O’Keefe, Burgess, Donnett, Jeffery, and Maguire

(1998), the existence of a topographical relation between

environmental location and hippocampal cells seems not

valid. This is taken into account in Stringer et al. (2004),

where attractor networks are employed to perform feature

encoding. Additionally, the majority of existing models

employ simplified structures which omit the projection

from CA1 to EC. This is a very critical design decision,

since a recurrent cellular structure is computationally

represented by a feed forward one. A computational

model with re-entrant projections from CA1 to EC is

presented in (Norman & O’Reilly, 2001), but it is not

tested for the development of place cells.

In the present experiment, we present a detailed

hippocampal model with separate neural agents represent-

ing each hippocampal area (EC, DG, CA3, CA1). Thus, all

interactions within these areas can be simulated. Similar to

the majority of the models, we follow an approach based on

environmental features for the development of place cells,

but in contrast to them we do not assume global view of the

environment. Appropriate fitness functions drive the

coevolutionary process (as explained below), aiming at

the development of place cells.

It has been experimentally shown that the hippocampal

system processes allocentric (orientation invariant) infor-

mation (Burgess, Becker, King, & O’Keefe, 2001). This is a

common hypothesis for all computational models. We have

implemented a simple computational formula to perform

this transformation, given the current orientation f of the

animal (Maniadakis & Trahanias, 2003). For the sake of

simplicity we assume that the number of head-direction

(HD) neurons is equal to the number of light or distance

sensors; let this number be M. Each HD neuron has a

preferred direction q of maximal activation and follows the

gaussian model, similar to real HD cells (Taube, 1998). Let

us assume that the information of the ith egocentric sensor is

given by hi. The allocentric measure is achieved by the

following summation over all HD neurons

fi Z

P
jZ0.MK1 e

KðfKqðMKjÞmod MÞ2hðiCjÞmod MP
jZ0.MK1 e

KðfKqðMKjÞ modMÞ2
(3)

where fi is the new orientation invariant measure. This

formula has a slight smoothing effect in sensory stimuli,

which is due to the averaging performed. Intuitively, it

considers stimuli from all sensors, rotated by certain angles,

and weighted each time by a factor that is proportional to the

matching of rotation and head direction. It is interesting to

observe that this formula can be directly used to combine

our approach with other computational models that develop

HD cells (e.g. Redish et al., 1996).

Hippocampal model is fed with allocentric measures.

Both senses (i.e. distance and light) are somatotopically

organized following a circular representation. Distance and

light sensory stimuli are projected to EC and then they
travel along partial hippocampal structures as it is

illustrated in Fig. 7.

The complete computational model consists of 12

subcomponents (four cortical and eight link agents) which

have to cooperate to accomplish place cell development.

The distribution of neurons in cortical agents is in analogy

with the biological prototype, as it is shown in Table 1. The

coevolutionary scheme presented in Section 4 is employed

to perform design decisions for all computational structures.

A higher-level evolutionary process with genomes of 12

SetVariables tunes the coevolution of all 12 species. Each

agent species evolves 150 individuals, while the higher-

level collaborator selection process evolves a population of

320 individuals.

In order to test the development of place cells, we define

P (PZ13 in this experiment) areas in the environment (see

Fig. 8), where the activation of hippocampal excitatory

neurons is observed. The activation of inhibitory neurons is

not examined, since only excitatory neurons encode efferent

information. For each cortical agent i2{EC, DG, CA3,

CA1}, and each location p2{1,.,P}, separate activation-

averages over time, a
ip
j , are computed, with j identifying

excitatory neurons.

Place cell development implies that when the robot is

positioned in two different areas, the rate rd of differences

within activation-averages, divided by the total activation,

should be close to one. For two locations p, q, with qsp,

this measure is expressed mathematically by:

rdiðp; qÞZ

P
j ja

ip
j Ka

iq
j jP

jða
ip
j Ca

iq
j Þ

(4)

A successful development of place cells in cortical

agent i implies that the average activations at any two



Fig. 8. Experimental setup of the hippocampal model testing. Environ-

mental areas (PZ13) are illustrated with dashed circles. Solid circles

illustrates the existence of two light sources.
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locations p, q give high values of relative difference rd.

Following a worst case scenario, a separability measure

of place cells RDi can be defined based on the most

similar locations:

RDi Zminp;qfrdiðp; qÞg (5)

Another measure is also defined to support the

stability of cortical agents performance. It estimates the

consistency of activations for the case that the robot is

located in area p more than once. This can be done using

the contrast of activation-average values at p. We use the

variance vip as a contrast measure:

vip 1

Ne

X
j

jmKa
ip
j j; with m Z

1

Ne

X
j

a
ip
j (6)

for a cortical agent i, with Ne excitatory neurons. If the

same neurons are activated every time the robot is

located in p, contrast measure vip will have a high value,

while if different neurons are activated every time the

robot is located at the same p, then vip will have a small

value. The average of variances at all locations is

employed as a consistency measure of cortical agent i:

Vi Z
1

P

X
p

vip (7)

Since CA1 is the major efferent structure of

hippocampus, we assume that the excitatory activation

in CA1 agent should be able to infer the location of the

robot. This is done at every simulation step by estimating

the distance of current activation xCA1j with the

activation-averages of CA1, at every location p:

dp Z
X

j

��xCA1j Ka
CA1p

j

�� (8)

A simple process infers the robot location p as the

one with the minimum distance dp.
Using the location inference process described above, a

success rate SZs/t is defined for the total hippocampal

model. It is based on the number of simulation steps s that

the inference process is able to successfully identify the

robot location, relative to the total number of simulation

steps t that the robot is located in known positions.

The fitness function which supports the coevolutionary

process is based on the measures described above. Since

different brain areas exhibit different functionalities, it is

necessary to define separate objectives for each partial

structure. Fortunately, following an agent-based brain

modelling, different objectives can be defined for each

partial area. The coevolutionary approach described in

Section 4 is particularly suitable to support this task, due to

the fact that separate fitness functions can drive the

evolution of each species.

Since the exact functionality of hippocampal substruc-

tures is a matter of current research, the coevolutionary

method exploits only existing knowledge concerning the

development of place cells in all substructures, to

implement an appropriate hippocampal model. Thus, it is

implicitly assumed that the objective of partial agents is the

development of their own place cells. Additionally, since

the connectivity of substructures follows the biological

prototype and the coevolutionary method inherently sup-

ports their cooperation, partial structures develop a

functionality similar to the respective brain areas.

The fitness function Fi employed for the evolution of the

ith cortical agent species is defined by:

Fi ZRDi
ffiffiffiffiffi
Vi

p
S (9)

(e.g. FECZRDEC
ffiffiffiffiffiffiffiffi
VEC

p
S, for the EC cortical agent). The

first term seeks for increased separability of place cells in

the respective partial hippocampal area, the second term

supports the consistency of place cell firing, and the third

maximizes the success rate of the overall hippocampal

model.

The fitness function Fi0j employed for the evolution of

the link agent that supports efferent projection from cortical

agent i to cortical agent j, follows a similar pattern. It is

defined by:

Fi0j ZRDj
ffiffiffiffiffi
Vj

p
S (10)

(e.g. FEC0DGZRDDG
ffiffiffiffiffiffiffiffiffi
VDG

p
S, for the link agent connecting

EC to DG). Since link agents are consisting of one way

synapses, they only affect the performance of the afferent

module. Intuitively, Eq. (10) assumes that cortical agent i

functions properly, and the (one way) link agent i0j is

designed to support the performance of cortical agent j.

The higher-level evolutionary process is driven by the

fitness function FTOPZRDCA1
ffiffiffiffiffiffiffiffiffiffi
VCA1

p
S. This is equal to the

fitness function of CA1 cortical agent because this structure

is the major output gateway of hippocampus.

Evolutionary learning is performed following a two phase

incremental procedure. In the first phase (epochs 1–20)



Fig. 9. Development of place cells at the CA1 agent for the environment areas of Fig. 8. Activation of cells is illustrated with levels of grey.
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the robot is randomly moved to one of the P areas every k

simulation steps (kZ25 for the results illustrated here).

Hippocampal processing is then performed with a standing

robot. This phase enforces the fast consideration of

environmental differences at various locations, by the first

generations of hippocampal structures. In the second phase

(all following epochs), the random movement of the robot is

stopped, and coevolutionary testing is performed with a

freely moving robot, by employing the navigation behaviour

described in Section 5.1. This phase additionally enforces the

synchronization of the robot’s wheel speed, with the change

rate of activations at hippocampal neurons.

The end of the evolutionary process specified cortical

and link agents with a total number of synapses ranging

between 16,200 and 18,400. The results of place cell

development at CA1 for the robot path of Fig. 8 are

illustrated in Fig. 9. Similar to biological place cells, neural

activation is able to specify environmental areas. Place

cells are able to successfully infer the position of the robot,

with a success rate SZ94.5%. The small error rate is

mostly due to the phenomenon of spatial hysteresis in the

activation of place cells. This is a side effect of the

recurrent connectivity in hippocampal structures, which

preserves very recent environmental experience, and

consequently delays stabilization of place cells (Doboli,

Minai, Best, & White, 2001). We can easily observe that

there is no spatial relationship within the developed place

cells, as it is suggested by biological studies (Eichenbaum

et al., 1999; O’Keefe et al., 1998).
Finally, it should be mentioned that place cells have also

been developed in all other hippocampal sub-structures (EC,

DG, CA3). This is a result of the appropriate fitness

functions employed for the evolution of partial agents

(Eqs. (9) and (10)). In another set of experiments, we used

the very same fitness function (equal to FTOP) for the

evolution of all species. In a qualitative comparison to the

approach described in detail above, these experiments

showed that the process converged successfully, developing

place cells in CA1, but no place cells were developed in the

remaining hippocampal sub-structures (since no such

objective were described by the employed fitness function).

This point indicates that the employment of a separate

fitness function describing the objective of each partial

agent is necessary for the successful modelling of

hippocampal formation. Additionally, in the set of exper-

iments not presented here, the speed of convergence of the

evolutionary process was significantly reduced. This point

denotes that the successful development of place cells in one

agent assists the emergence of the desired performance in

the rest partial structures.
5.3. Discussion

In both experiments described above, there were many

different assemblies of cortical and link agents with

successful performance. The variety of partial solutions is

appropriately combined by the higher-level collaborator

selection process to construct successful global solutions.
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The pluralism of results offers the opportunity to devel-

opmentally add more components to represent additional

models of brain areas, which will be further coevolved to

obtain successful performance in even more complex tasks.

The coevolutionary process specifies a large number of

synapses for both computational models (on average 1400

for a cortical agent and 450 for a link agent). This fact

highlights the need for a compact encoding of agent

structures, since the alternative choice of detailed geneti-

cally encoded synaptic weights would be very difficult to

evolve successfully. Following the proposed agent rep-

resentation with the assignment of a learning rule to each

synapse set, we are able to achieve both the evolvability of

agents and the self-organization of their structure.

The coexistence of different rules in the same model

increases the behavioural abilities of the neural agents, but

at the same time complicates their systematic analysis.

The most common analysis methods address investigation

of the real-time dynamics that a single learning rule

imposes on agents (Vegas & Zufiria, 2004). The

coexistence of several different rules in the same model

(14 for motor cortex, 32 for hippocampus)2 prevents us

from performing a similar analysis, since typically in the

bibliography only one rule is used for the whole model.

For example rule 8 is well known to perform principal

component analysis, while rule 7 is known to perform

classification, but their coexistence in the same network

has not a known interpretation. We also mention that it is

difficult to perform even manual tests to reasonably

investigate the impact of different rules at various

synapses. This is because the change of only one rule

may drastically affect the performance of the whole

model, as it is also mentioned in previous studies

(Floreano & Urzelai, 2000; Rolls & Stringer, 2000).

Therefore, only intuitive explanations can be given to the

final rule choice. For example, in motor cortex experiments,

anti-hebbian rules are usually selected on either the

projection of sensory information to M1, or to the

excitatory–excitatory synapses within M1. The first case

may be explained by the need to increase M1 sensitivity

when distance sensors are not able to sense the wall. During

that ‘no sensation’ period, the synapse weight is increased

by the anti-hebbian rule, and the model is prepared to react

when a wall is sensed again in the future. The second case

can be explained by the relationship of anti-hebbian

learning to mean square error minimization (Wang, Kuo,

& Principe, 1995), where the M1 agent aims at developing

the appropriate sensor-to-actuator mapping. Obviously,

such intuitive explanations contribute to our understanding
2 In the case of the primary motor cortex model, 14 different learning

rules are employed. This results as follows: four rules for each of the two

cortical agents and two rules for each of the link agents. For the

hippocampus model, 32 different learning rules are employed, four rules for

each of the four cortical agents and two rules for each of the eight link

agents.
of the modelling process, but are far from a systematic

analysis, and further research is necessary in that direction.

The design of fitness functions is very crucial for the

success of the coevolutionary process, since they constitute

the means to assign roles in each agent structure. Their

formulation can be based on either external or internal

characteristics of robot behaviour (Floreano & Urzelai,

2000). External measures are those that cannot be directly

estimated by the robot, but only by an external observer (e.g.

distance from a non-visible position). Internal measures are

those that can be directly estimated by the artificial

organism (e.g. wheel speed difference). Even if the former

category of measures simplifies the design of fitness

functions, they are environment-specific, and offer less

generalization to different circumstances. In contrast, fitness

functions based on internal characteristics are usually

slightly more complex, but tend to be more robust under

various environmental conditions. Consequently, the fitness

functions employed in the present work are based on

internal measures to support the reliability of the evolution-

ary process.

The proposed coevolutionary approach allows separate

fitness functions to be employed for the evolution of each

species. This is in contrast to a unimodal evolutionary

process that calls for a single fitness function, preventing the

consideration of each agent’s own performance. Moreover,

with our approach, autonomous partial structures with

collaborative performance can be designed. The combi-

nation of autonomy and collaborative performance in a

single method seems particularly appropriate for brain

modelling tasks.

In the first experiment described, all species employ the

same fitness function. The experiment of hippocampal

modelling demonstrates the power of the coevolutionary

agent-based design, since it allows the definition of distinct

objectives for different agents. Each agent is evolved aiming

at the reproduction of the respective biological data

(development of its own place cells). Consequently, in

contrast to existing computational hippocampal structures,

our hippocampal model is the only one with the ability to

develop place cells without spatial relationship in all partial

areas. The ability of the model to reproduce biological data,

together with the connectivity of its subcomponents that

follows the biological prototype, enforce partial structures

to develop a role similar to that of the respective brain areas.

It should be noted that both results obtained are

biologically plausible, but additional experiments are

necessary to support their biological reliability. For

example, the motor cortex model should be also employed

to achieve goal directed robot motion, while the hippocam-

pal model should also reproduce data from additional

episodic memory tasks. The more biological data the model

is able to reproduce, the more reliable become the emergent

roles of agents. Thus, additional experiments should be

designed to run in parallel with those discussed in the

present study, and fitness functions should be appropriately
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modified, also aiming at the reproduction of the new data.

The coevolutionary approach introduced here may be

employed to search the parameter spaces of the motor

cortex and the hippocampal models to specify those values

which are able to reproduce all biological data simul-

taneously. Since in the present study we obtained very

different results with successful performance, we expect that

the coevolutionary method will be able to identify

parameter values with the desired performance in the

proposed set of experiments. This constitutes a direction of

our future work.

The proposed two level coevolutionary strategy can be

easily extended to a multiple level hierarchical coevolu-

tionary strategy, which fits to large scale brain modelling

tasks. Following a hierarchical coevolutionary approach, the

integration of existing computational models representing

different brain areas can be achieved by introducing an

arbitrary number of higher-level evolutionary processes.

This consists another direction of our future work. More

specifically, the performance of motor cortex and hippo-

campal models should be combined to accomplish tasks of

purposeful motion.

It should also be noted that the compound brain model

does not have to perform in a hierarchical mode. The

performance of partial brain structures can be either

hierarchical or completely parallel. Hence, the hierarchical

coevolutionary approach does not impose any further

constraints. It is introduced only to support the design

process of incremental brain modelling.

Finally, it is worth mentioning that the coevolutionary

design method is currently enhanced, to support simulation

of partial brain area lesion studies. This ability is a clear

advantage offered by the coevolutionary approach. In short,

appropriate partial agents are deactivated, and the remaining

structures are appropriately designed to achieve the

behaviour suggested by the biological prototype. Very

different fitness functions specify the role of each partial

structure in the complete or the eliminated model. More

specifically, we are currently extending the model of

primary motor cortex to achieve more complex behaviours.

An additional cortical agent is employed simulating

premotor areas, to modulate the performance of primary

motor cortex. By following the coevolutionary approach,

the entire model (both primary motor and premotor

structures) is designed to develop a goal following

behaviour, while the eliminated model (primary motor

structure only) is designed to perform wall avoidance. Thus,

the coevolutionary method is able to design CNS compu-

tational models which reproduce pre- and post-lesion

performance of biological organisms. Consequently, the

reliability of the model is further supported. In the near

future, we aim at employing the coevolutionary approach to

reproduce biological data regarding hippocampal lesions.

These experiments could not be performed in the present

study, since they demand more complex navigation

behaviours than wall-avoidance, including planning
abilities. Similar experiments are of great importance

since they are able to highlight the specific role of partial

structures in the global model, and also support predictions

regarding lesion experiments in biological organisms.
6. Conclusions

In the present work we proposed a novel computational

framework for the design and implementation of partial

brain models following a coevolutionary agent-based

approach. These models are embedded in a robotic

platform to furnish it with cognitive capabilities. Although

the biological reliability of implemented CNS models was

not the focus of this paper, our method can also address

this issue by additional constraints on the evolutionary

process.

With regards to the implemented models, the character-

istics of the employed agent based approach support partial

structure autonomy. Appropriate neural agents are

employed to represent brain areas following a similar

connectivity to the mammalian CNS. We introduce the

utilization of collaborative coevolutionary algorithms to

support design specification of agent structures. The

proposed coevolutionary method is suitable for the design

of agents because it offers increased search abilities of

partial components, and is able to emphasize both the

speciality of brain areas and their cooperative performance.

By following a coevolutionary method for design specifica-

tion, our approach is inherently furnished with the ability to

integrate partial brain models.

The work presented here constitutes a first attempt

towards a rigorous method for brain modelling, based on

collaborative coevolution. The results obtained attest to its

validity and effectiveness in modelling partial brain areas

and replicating biological behaviours. Further work is

necessary and currently underway, to investigate the

suitability of our approach in large-scale modelling tasks

and the respective endowment of cognitive abilities to

artificial systems.
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