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Recently, many brain modelling efforts attempt to support cognitive abilities of artificial
organisms. The present work introduces a computational framework to address brain
modelling, emphasizing on the integrative performance of substructures. Specifically,
we present an agent-based representation of brain areas, together with a hierarchical
cooperative coevolutionary scheme, which is able to highlight both the speciality of
brain areas and their cooperative performance. The inherent ability of coevolutionary
methods to design cooperative partial structures supports the design of partial brain
models and, at the same time, provides a consistent method to achieve their integration.
As a result, the proposed approach proceeds in either an incremental or a compound
mode. Furthermore, the performance of the model in lesion conditions is considered
during the design process to enforce the reliability of the result. Implemented models are
embedded in a robotic platform to support its behavioral capabilities.
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1. Introduction

Contemporary approaches employ in many cases brain-inspired computational sys-
tems to support cognitive abilities of artificial organisms. Along this line, a large
number of models have been proposed, as a means to explain and reproduce the func-
tionality of partial brain areas2,4,8,29,32,50. Unfortunately, these approaches operate
at different levels of description and explanation, based on different assumptions.
Existing models seem to form a heterogeneous collection, where computational dif-
ferences among them constitute their integration very difficult52. Thus, a consistent
procedure to support design specifications and model integration is still lacking.
The present work aims at addressing this issue. Specifically, we propose a compu-
tational framework to support brain modelling efforts, addressing at the same time
the development of cognitive abilities in robotic platforms.

The central nervous system (CNS) of mammals consists of interconnected mod-
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ules with different functionalities20,5, implying that models with distributed archi-
tecture should be designed. Recently, we introduced an agent-based coevolutionary
method to implement partial computational models of the mammalian CNS29. Our
approach is based on the argument that mammalian cognition is a result of phylo-
genetic development, and subjective environmental experience13. In summary, each
brain area is modelled by a self-organized agent10,19, emphasizing the autonomy
and the special features of the area. Each agent is represented by a neural network
structure that captures the basic anatomical principles of the mammalian CNS. The
design of each agent focuses on the emergence of brain area -like functionality, after
a certain amount of robot - environment interaction5,48. Similar to a phylogenetic
process, we employ an evolutionary approach to specify the computational details
for each neural agent. Instead of using a unimodal evolutionary process, we employ
a cooperative coevolutionary scheme which offers enhanced search abilities of agent
components38.

In the present work, we propose a hierarchical extension of this approach which
exploits the inherent ability of coevolutionary methods to integrate partial struc-
tures. We introduce a novel Hierarchical Cooperative CoEvolutionary (HCCE)
scheme which allows the coevolution of a large number of species (populations)
organized in gradually larger groups. By assigning a neural agent in each species,
we are capable of emphasizing both the autonomous characteristics of the agents
and their coupled performance. The ability to address systematically these two par-
ticular features - partial autonomy and cooperative performance - with a single
design methodology, seems particularly appropriate for brain modelling. Both of
them are provided by the proposed approach, as a direct consequence of combining
the distributed modelling (specifically, agent-based modelling) with the distributed
design mechanism (specifically, an HCCE-based scheme).

Following recent trends that study computational models in lesion
conditions1,14,31,36, our method facilitates systematic modelling of biological lesion
experiments. Specifically, lesions can be easily simulated by deactivating appropri-
ate agent structures. Thus, the pre- and post- lesion performance of the model
is investigated during the coevolutionary design process. Furthermore, appropriate
fitness functions are specified to guide the coevolution of partial structures, indi-
cating the performance of the model when all components are present, and also
indicating its performance when some components are deactivated. Following this
approach, biological lesion results can be replicated by the coevolutionary design
process, enforcing the similarity of the model to the brain prototype.

Additionally, the hierarchical approach facilitates the scalability of the mod-
elling process, by providing a mechanism to combine groups of brain areas (partial
models). In other words, the proposed hierarchical coevolutionary approach facili-
tates the design of cooperating components and, additionally, supports their further
re-usability formulating composite structures with enhanced behavioral repertory.
That is, an expanding CNS model can seamlessly result by integrating gradually
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more neural agents. This particular feature, makes HCCE an efficient methodology
to accomplish large scale brain modelling tasks. Other approaches that combine
blocks of neural networks to model brain areas47,21,23 have also appeared in the lit-
erature. However, they suffer in terms of scalability because they lack a systematic
design methodology to support the re-usability of substructures (e.g. evolution17).
Thus, they can not be utilized as a general purpose computational framework for
brain modelling.

The rest of the paper is organized as follows. In the next section we formally
present the agent structures employed for the implementation of partial brain mod-
els. Then, the motivation behind coevolutionary design of agents is discussed. In
section 3 we present the hierarchical cooperative coevolutionary scheme which is
utilized to design brain models consisting of autonomous but cooperating agents.
Experimental results which follow the proposed computational framework are pre-
sented in section 4. Specifically, we demonstrate the implementation of a computa-
tional model which simulates posterior parietal cortex - prefrontal cortex - primary
motor cortex - spinal cord interactions in a delayed response task. Two different ap-
proaches are illustrated to design the model by means of either a compound or an
incremental process. Following research efforts which link cognitive capabilities of
robots to brain science 44,45, the implemented CNS models are embedded in a sim-
ulated robot to furnish it with cognitive capabilities. The robotic platform supports
interaction with the environment, and the assessment of the proposed approach.
Finally, in the last section, the basic features of the proposed method are discussed,
and directions for future work are highlighted.

2. Computational Model

Agents are deemed as an appropriate theoretical tool for modelling complex, dis-
tributed systems. At the same time, the brain is described as a group of cooperat-
ing specialists that achieve the overall cognitive function by splitting the task into
smaller elements41. Thus, an agent-based approach seems suitable to support brain
modelling, mainly due to the distributed organization of CNS. Agent technology fa-
cilitates the development of intelligent systems consisting of cooperative/interactive
parts, supporting their flexibility, autonomy, subjectivity, and situatedness in a spe-
cific environment10,34. From a designer’s point of view it supports problem decom-
position, abstraction of partial models, and scalability of global problem solution19.

We have implemented two different neural network based agents, to supply a
general computational framework for brain modelling: (i) a computational corti-
cal agent to represent brain areas, and (ii) a link agent to support information
flow across cortical modules. The computational structures employed in the present
study, constitute an enhanced version of our previous agents formulation26,29. The
new agents follow a more flexible formulation which emphasizes their reusability,
offering advanced modelling abilities of CNS performance.

We note that the proposed computational structures are not restrictive for the
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coevolutionary design method, but rather serve as a guide on how coevolutionary
approaches can be employed to support brain modelling tasks. The present work
addresses primarily the development of a method to support CNS modelling for
robotic applications, than presenting perfect models of mammalian brain areas.
Currently, the employed computational structures have been formulated as simple
configurations that are suitable for the task at hand. Additional constraints can be
integrated to increase their biological reliability or, alternatively, a different neural
structure with emphasis on biological features can be used, to implement brain
models with enhanced biological reliability.

2.1. Link Agent

The structure of link agent is appropriately designed to support connectivity among
cortical modules. Using the link agent any two cortical modules can be connected.
Thus, proper connectivity among modules can be defined, to simulate the connec-
tivity of brain areas.

Each link agent is specified by the projecting axons between two cortical agents
(Fig 1(a)). Its formation is based on the representation of cortical agents by planes
with excitatory and inhibitory neurons (see below). Only excitatory neurons are
used as outputs of the efferent cortical agent. The axons of projecting neurons are
defined by their (x, y) coordinates in the receiving plane. Thus, a link agent con-
sists of axons terminating at any desired position of the receiving cortical agent.
Cortical planes have a predefined dimension, and thus projecting axons are deac-
tivated if they exceed the borders of the plane. Consequently, not all excitatory
neurons project their outputs in the receiving plane. This is illustrated graphically
in Fig 1(a), where active projections are represented by an × on their termination.
Projections outside the cortical plane are illustrated without a terminal point, and
thus they are deemed deactivated.

When the locations of axons in the cortical plane are defined, synapses between
axon terminals and the excitatory or inhibitory neurons of the receiving plane can
be formulated. The details of synapse specification are is described below.

2.2. Cortical Agent

Each cortical agent is represented by a rectangular plane. A cortical agent consists of
a predefined population of excitatory and inhibitory neurons. Both sets of neurons,
are uniformly distributed. Thus, an excitatory and inhibitory grid are defined on the
cortical plane. Both types of neurons follow the Wilson-Cowan model with sigmoid
activation, similar to49. Let x represent the firing rate of a neuron. It is updated
based on the incoming signals, following the equation:

µ∆x = −x + S(WAA + WEE −WII) (1)

where µ presents the membrane time constant, WA are the synaptic weights of the
afferent axon signals, and WE , WI the synaptic weights of neighboring excitatory
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Fig. 1. Schematic representation of a computational model with cortical and link agents. Part
(a) illustrates a link agent which supports information flow from cortical agent A to B. Part
(b) illustrates synapse definition in cortical agent B. Neighborhood radii for (i) afferent axons
are illustrated by solid lines, ii) for neighboring excitatory neurons by dashed lines, and iii) for
neighboring inhibitory neurons by dotted lines. Sample neighborhoods for excitatory neurons are
illustrated with grey, while neighborhoods for inhibitory neurons are illustrated with black.

and inhibitory neurons. S(y) = 1/(1+ e−α(y−β)), is the non-linear sigmoid function
where β and α stand for the threshold and the slope, respectively. All excitatory
neurons of a cortical plane share common parameters µe, αe, βe. The same is also
true for inhibitory neurons using parameters µi, αi, βi.

The axon terminals from the efferent projected cortical agents are also located
on the same plane (Fig 1(b)). Three synapse types specify the connectivity of cor-
tical agents. All neurons receive input information from (i) projecting axons, (ii)
excitatory neighboring neurons, and (iii) inhibitory neighboring neurons. The con-
nectivity of neurons follows the general rule of locality40, and thus synapse formation
is based on circular neighborhood measures. A separate radius for each of the three
synapse types, defines the connectivity of neurons. This is illustrated graphically
in Fig 1(b), which further explains the example of Fig 1(a). All excitatory neurons
share common neighborhood measures, that is radii n1e, n2e, n3e, relative to the
three synapse types. The same is also true for all inhibitory neurons employing
neighborhood measures n1i, n2i, n3i.

The performance of cortical agents is greatly specified by the experiences of the
artificial organism, obtained through environmental interaction34. This is similar
to epigenetica learning which has an important contribution to the performance of
the mammalian brain48. To enforce experience based subjective learning of robots,
each set of synapses is assigned a Hebbian-like biologically plausible learning rule,
similar to9. We have implemented a pool of ten Hebbian-like rules that can be
appropriately combined to produce a wide range of functionalities. Learning rules
are the same with those presented in our previous work29, and thus they are omitted

aEpigenesis here, includes all learning processes during lifetime.



April 16, 2007 21:9 WSPC/INSTRUCTION FILE HCCE˙AIJ

6 M. Maniadakis and P. Trahanias

here. Still, the architecture of agents is open and amenable to other learning rules
with desirable characteristics in terms of either model performance or biological
plausibility.

Each synapse is assigned a learning rule to adjust its synaptic weight during
real-time performance. A separate rule is used for each of the three synapse types of
a neuron (either with a projecting axon, or with a neighboring excitatory neuron,
or with a neighboring inhibitory neuron), defining learning dynamics of the cortical
plane. All excitatory neurons share common learning rules r1e, r2e, r3e. The same
is also true for all inhibitory neurons employing rules r1i, r2i, r3i. Consequently, six
rules are necessary to specify the learning process in each cortical plane.

The plasticity of agent structures, which stems from the assignment of learning
rules, allows synaptic adjustment at run-time. This process highlights subjective
understanding of the organism about the world, since a large number of synapses can
be self-organized based on agent’s internal dynamics and environmental experience.
All synapses are classified in 6 categories (3 for excitatory and 3 for inhibitory
neurons) to reduce the number of parameters. The most common, but harder to
evolve, alternative of genetically-encoded synaptic strengths, results to a rather
unmanageable problem complexity, and at the same time prevents experience based
adjustment.

3. Hierarchical Cooperative CoEvolution (HCCE)

Recently there is a debate among genetics and neurobiology regarding the extent
that brain organization and the associated cognitive functions are genetically pre-
determined, or emerge through patterns of developmental experience5,7,48. It seems
that both genetically encoded features and subjective experience have a significant
role in the formation of the animal’s cognitive skills13. Phylogenesis determines
the internal dynamics of brain structures that allow the epigenetic emergence of
valuable behaviors. Besides the modulation of epigenetic learning by phylogenesis,
the reverse interaction is also true. The well known since 1896 Baldwin effect, dis-
cusses the outcome of epigenetic learning on evolution, with the best able to learn
organisms having larger numbers of offsprings46.

Thus, an appropriate mechanism to perform structural specification of the com-
ponents representing brain areas, should be based on the interactions of phylogenetic
and epigenetic processes. Phylogenesis is represented computationally by an evolu-
tionary process, while epigenesis is represented by online adjustment of agents9. The
evolutionary process genetically determines the internal dynamics of partial brain
models, which in turn allow the emergence of a valuable behavior during lifetime
performance. This is the approach followed in the present work.

The majority of evolutionary algorithm applications involve a single solution rep-
resentation to map genotypes to phenotypes. However, using this approach, it is not
possible to sufficiently explore partial solutions, which correspond to partial spec-
ifications of the genotype38. To alleviate for that, coevolutionary algorithms have
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been recently proposed that facilitate exploration in problems consisting of partial
components3. They involve two or more coevolved populations with interactive per-
formance. Distinct populations are usually referred as species in the coevolutionary
literature, and thus this term will be employed henceforth. Each species is allowed to
evolve separately, by using its own evolutionary parameters. Accordingly, increased
search competencies are inherently available in coevolutionary algorithms, while the
special characteristics of each species are also preserved. The brain modelling prob-
lem fits very well to coevolutionary approaches, because separate coevolved species
(populations) can be utilized to perform design decisions for each model of a brain
area, enforcing also the cooperation among brain modules.

Most of the coevolutionary approaches presented in the literature can be clas-
sified as competitive42, or cooperative38. Competitive approaches are based on an
antagonistic scenario, where the success of one species implies the failure of the
other. In contrast, cooperative approaches follow a synergistic scenario, where in-
dividuals are rewarded when they successfully cooperate with individuals from the
other species. Since brain modelling efforts aim at the cooperative performance of
partial structures, in the following we only consider cooperative coevolution.

Despite the increased number of applications of cooperative coevolutionary al-
gorithms, the significance of collaborator choice is usually overlooked54,53. The
majority of existing applications consider only the ability of species to cooperate
with the best individuals from the other species22,38, or a randomly selected set of
cooperators3,15. Evidently, the coevolutionary process could be supported by the
maintenance of successful assemblies of cooperators33.

We have introduced a two level evolutionary scheme26,29 which aims at the
successful selection of cooperators among species, as a means to improve the perfor-
mance of coevolutionary algorithms. Besides species evolution, our method employs
an additional evolutionary process, to select the proper individuals from each species
that cooperatively are able to construct a good problem solution. The present work
extends this method to a hierarchical multi-level architecture, developing a powerful
Hierarchical Cooperative CoEvolutionary (HCCE) scheme. In the past, a hierarchi-
cal cooperative approach has been also presented by others6. However, compared
to previous work6, our approach is capable to coevolve groups of system compo-
nents, and additionally address their specialized characteristics by utilizing multiple
criteria to guide partial evolutionary processes.

In the following we present the proposed architecture, emphasizing its employ-
ment in brain modelling tasks.

3.1. Hierarchical Organization

The HCCE scheme is properly drawn to facilitate the design of systems consisting of
partial components, organized in groups with complexity that gradually varies, from
simple to more complex ones. Specifically, two different kinds of species encoding
the configurations of either a Primitive agent Structure (PS) or a Coevolved agent
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Fig. 2. The design of agents by cooperative coevolution. Part (a) represents a hypothetical con-
nectivity of agents. Cortical agents are illustrated with blocks, while link agents are illustrated with
double arrows. Part (b) represents the hierarchical coevolutionary scheme used to evolve partial
structures. CGs are illustrated with rounded boxes, while PSs are represented by free shapes.

Group (CG) are employed. PS species specify partial elements, encoding the exact
structure of either cortical or link agents. A CG consists of a group of cooperating
PSs with common objectives. Thus, CGs specify configurations of partial solutions
by encoding individual assemblies of cortical and link agents. Additionally, a CG can
also be a member of another CG. Thus, several CGs are organized hierarchically in
a tree-like architecture, with the higher levels enforcing the cooperation of the lower
ones (Fig 2). However, different CGs can have different objectives, and consequently
their evolution can be driven in different directions.

The details of the HCCE can be made clear by means of a specific example.
Let us assume the existence of two cortical agents and two link agents representing
their afferent projections (Fig 2(a)). We assume that agents L1,C1, have to support
the fulfillment of task T1, while agents L2,C2, have to support the fulfillment of
task T2. Thus, coevolutionary groups CG1 and CG2 are properly defined, each
one classifying the structures supporting a respective task. At the same time, we
assume that all structures have to cooperate to serve a third task T3. Thus, CG3
is also defined to enforce the cooperation among the groups CG1, CG2, aiming at
the accomplishment of T3. This assumption is typical for mammalian CNS organi-
zation (e.g. different brain areas serve visual or motor competencies, which further
cooperate to form advanced real life behaviors). The corresponding HCCE process
which designs the structures of the current example, is illustrated in Fig 2(b). Four
PS species are employed to evolve agent structures, while three CG species search
for assemblies of cooperable individuals among PS species.

Following the HCCE approach, evolutionary exploration is performed concur-
rently in different spaces. The evolution of PS species facilitates search in the pa-
rameter space of sub-components. At the same time, the evolution of CG species
searches within PS populations to identify suitable individuals in order to formu-
late successful assemblies of cooperators. Furthermore, CG species memorize good
configurations of cooperating individuals across consecutive evolutionary genera-
tions. These configurations can be used as a basis to drive coevolution, since PS
individuals are more likely to be members of good cooperating assemblies.
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A snapshot of the HCCE process described above is illustrated in Fig 3. All
individuals in all species are assigned an identification number which is preserved
during the coevolutionary process. The identification number serves the definition
of assemblies among different species. Each variable on the genome of a CG spec-
ifies the identification number of a partial solution at the lower level. The arrows
connecting individuals among species illustrate how the HCCE builds the proposed
compound solutions. For example individual with id = 7 of species CG3 specifies a
solution consisting of partial assemblies with id = 19 at CG1 and id = 3 at CG2.
Analyzing further the first assembly, it consists of the individual with id = 14 at
C1 species, and individual with id = 21 at L1 species. In the same way, analyzing
the assembly of CG2, it consists of the individual with id = 4 at species C2, and
individual with id = 5 at species L2. It is clear that individuals at CG species
might select some agents (or some assemblies of agent structures) multiple times.
Following this mechanism, the cooperator selection process performed by the evo-
lution of CG species, allows agents to participate in various assemblies aiming at
the identification of a successful set of cooperators.

In order to test the performance of a complete problem solution, populations
are sequentially accessed starting with the higher level. The genome values of CG-
individuals at various levels are used as guides to select cooperators among PS
species. Then, PS individuals are decoded to specify the structure of cortical and
link agents, and the performance of the proposed overall solution is tested on the
desired task.

3.2. Lesion Simulation

The proposed HCCE is also able to consider the performance of the model at lesion
conditions, by deactivating appropriate nodes in the tree hierarchy. Similar lesion
conditions are typical in biological experiments related to the performance of mam-
malian CNS. Lesion simulation is performed in the level of CGs, since all lower level
species share common objectives, and thus they are deactivated as a group. This is
not restrictive to our model, since the deactivation of a single PS can be simulated,
if necessary, by defining a CG with only one lower level PS species. As a result, the
HCCE design process is able to consider the functionality of both the composite
model, and any desired partial configuration, according to the needs of the brain
modelling task.

Turning back to the example of Fig 2, a CG3 individual specifies the structure
of the composite model which is tested on the accomplishment of task T3. Then, in
order to simulate C2 lesion, the agents under CG2 are deactivated, and the remain-
ing structures are tested on the accomplishment of task T1. Next, the respective
agents from CG2 are isolated (lesion of CG1) and tested on the accomplishment of
task T2. Fitness values are assigned in the respective individuals as it is described
below.



April 16, 2007 21:9 WSPC/INSTRUCTION FILE HCCE˙AIJ

10 M. Maniadakis and P. Trahanias

19 14 21

6 2 4

167 21

4 14 5

16

17

8

3

1 5

1 9

1 12

4 5 CG2,T2

CG2,T2

CG2,T2

CG2,T2F            = max{2}

F            = max{3}

F            = max{14}

F            = max{20}

F            = max{16}

F            = max{4}

F            = max{0}

CG2,T3

CG2,T3

CG2,T3

CG2,T3

F            = max{7,15}

C2,T3F          = max{0} C2,T2F          = max{20}

C2,T3F          = max{7,15,16,4} C2,T2F          = max{2,14,3} Encoded Cortical Agent

Encoded Cortical Agent

1

4

C2

Encoded Cortical Agent

Encoded Cortical Agent

2

14

C1

L2,T2F          = max{3}

L2,T2F          = max{2,20}

L2,T3F          = max{16}

L2,T3F          = max{7,15,0}

Encoded Link Agent

Encoded Link Agent

9

5

L2

Encoded Link Agent

Encoded Link Agent

L1

4

21

3 6 16

8 19 8

12 167

23 4 17

7 319

CG3,T3F            = max{7}

CG3,T3F            = max{4}

CG3,T3F            = max{16}

CG3,T3F            = max{0}

CG3,T3F            = max{15}

CG3

CG1 CG2

Fig. 3. A snapshot example of the hierarchical coevolution of species. The arrows illustrate defi-
nition of individual assemblies. See text for details.

3.3. Fitness Assignment

Although the majority of existing cooperative coevolutionary methods assume that
all species share a common fitness function3,22,54, the proposed approach allows the
employment of separate fitness functions for different species. This is in accordance
to the coevolution of agent structures, because different objectives can be defined
for each agent.

When an assembly of cooperators is tested, the cooperative performance of all
agent structures is evaluated. The fitness function of each agent species evaluates
subjectively the overall performance, that is it evaluates the performance according
to the objectives it is designed for. The fitness function is formulated to evaluate
the performance of the model in different conditions, which corresponds to the pre-
and post- lesion state of the model. For each species s, a fitness function fs is
designed to drive its evolution. Specifically, fs is based on partial fitness functions
fs,t evaluating the ability of a candidate solution to serve task t. The fitness values
for the accomplishment of each task are combined in a multiplicative manner to
estimate the global fitness value:

fs =
∏

t

fs,t (2)
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For the agents which are not participating in the accomplishment of a task, the
respective fs,t can be either omitted, or set equal to unity.

Since all PS species under a CG share common objectives, they also share the
same fitness functions. For the example at hand the latter means that the fitness
function of species L1, C1 on a task t, is equal to the fitness function of CG1 (e.g.
fL1,t = fC1,t = fCG1,t). The same is also true for species L2, C2 and CG2 (e.g.
fL2,t = fC2,t = fCG2,t). However the fitness functions of CG1, CG2 and CG3, do
not have to be related in general.

The cooperator selection process at the higher levels of hierarchical coevolution
will potentially select a component individual from the lower levels to participate in
more than one complex assemblies. Similarly to most existing approaches, individ-
uals of the coevolved species are assigned for each task the maximum of the fitness
values achieved by all the solutions formed with their membership. Specifically, an
individual of the s-th species is assigned for task t the value:

fs,t = maxk{fk
s,t} (3)

where fk
s,t is the fitness value of the k-th solution formed with the membership of

the individual under consideration.
The fitness assignment mechanism described by Eqs. (2) and (3), intuitively

works as follows. First, Eq. (3) estimates the suitability of a component structure
to support the accomplishment of a given task, by taking the maximum of the
fitness values obtained with its membership. Then, based on the ability of a can-
didate solution to support each task, Eq. (2) calculates the overall fitness of the
individual representing its aptness to all given tasks. We utilize multiplication to
combine partial results, because it handles effectively measures of different ranges,
and additionally penalizes sufficiently those individuals that perform poorly in at
least one task.

The fitness assignment process is further explained by means of the example illus-
trated in Fig 3. We remind that according to the employed scenario, the composite
model should accomplish task T3, the partial model of C1,L1 should accomplish
task T1 (lesion of CG2), and the partial model of C2,L2 should accomplish task
T2 (lesion of CG1). As a result, individuals of CG3 are evaluated for the accom-
plishment of task T3, individuals of CG1 and lower level PS species are evaluated
for the accomplishment of both tasks T3 and T1, while individuals of CG2 and
lower level PS species are evaluated for the accomplishment of both tasks T3 and
T2. The assigned fitness values are illustrated in Fig 3, following the formulation
introduced in Eqs. (2) and (3). For the sake of brevity, we present fitness assignment
only on CG2 and its lower level species. For the same reason we also assume that
FCG3,T3 = FCG2,T3, while in general they can be different.

The top level species CG3 is sequentially accessed and fitness values are esti-
mated regarding the accomplishment of T3. Let us now examine the individual of
CG2 with id = 16, which participates in two cooperator assemblies of CG3. Its abil-
ity to serve task T3 will be evaluated with the maximum of the respective fitness
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values. Additionally, CG2 individuals are assigned separate fitness values for the
task T2 that they also serve. The same is also true for the individuals of lower level
species C2, L2. For example, C2 individual with id = 1, has multiple participation
in the accomplishment of tasks T3 and T2 and its partial fitness values regarding
the two tasks are estimated by the maxima of the respective values.

We also note the fitness assignment of the individual with id = 4 of C2. Al-
though it receives a high score for its participation in task T2, it receives zero for its
participation in T3, and consequently its aggregative score according to Eq. (2) will
be also zero. There are also individuals which receive a high aggregative score, even
if none of the assemblies they participate perform successfully in all tasks. This is
the case for individual with id = 5 of species L2. One of its cooperating assemblies
receives a high score in T1 and a low score in T2, while the other receives a high
score in T2 but a low score in T1. However, the individual under consideration is
finally assigned two high scores, because according to the partial performances, it is
able to successfully serve both tasks. At the snapshot of the HCCE scheme shown in
Fig 3, individual 5 of species L2 does not participate in overall effective assemblies,
since none of them accomplishes both tasks. However, its high aggregative score
increases the probability of participating in better assemblies in the next genera-
tion. Additionally, by means of genetic operators, parts of its genotype will also be
transferred in the following generations, producing even better offsprings.

3.4. Encoding

A general purpose genotype is employed for both the evolution of PS species, and
the cooperator selection process at CG species. The genotype is designed in an
abstract form, able to handle a variety of computational structures (Fig 4). Thus,
neural agents of any level of biological plausibility can be encoded and evolved.

Each individual is assigned an identification number and encodes two different
kinds of variables. The first kind is allowed to get a value from a set of unordered
numbers (e.g. {1,5,7,2}, with the ordering of the elements being of no use). These
variables are called SetVariables and they are employed to store identification num-
bers, encoding the relationship between various elements of the model. The second
kind of variables is allowed to get a value within a range of values (e.g. [0,1]); there-
fore, they are called RangeVariables and they are employed to search the domain
of parameters in partial structures. The values of SetVariables and RangeVariables
are encoded in the genome by an integer and a real number, respectively, and they
are graphically represented with dashed and solid boxes (Fig 4(a)).

Appropriately modified instances of the genotype are employed to encode the
detailed structure of cortical and link agents. Following the description of link agents
in section 2.1, their structure is specified by the (x, y) coordinates of axon projec-
tions. Thus, for a cortical structure with Ne excitatory neurons which employes a
link agent to project on another cortical structure, 2Ne RangeVariables are nec-
essary to encode the coordinates of link axons. The genotype used to encode link
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Fig. 4. A schematic representation of (a) the general genome structure, (b) link agent’s genome
structure, (c) cortical agent’s genome structure, (d) CG genome structure.

agent structure is illustrated in Fig 4(b).
In accordance to the description of cortical agents in section 2.2, their structure

is completely specified by 6 SetVariables encoding the identifiers of the learning rules
employed to adjust synapse weights, 6 RangeVariables to encode neighborhood radii
employed for synapse definition, and 6 RangeVariables to encode neural parameters
(µ, α, β) separately for excitatory and inhibitory neurons. Thus, the genotype used
to encode cortical agent structure is formulated as shown in Fig 4(c).

CG species encode assemblies of PSs (cortical or link agents) or other CGs
(groups of cortical and link agents) located at the lower levels of the coevolutionary
hierarchy. Thus, for the coevolution of S lower level species an equal number of
SetVariables has to be utilized. Each SetVariable is joined with one lower level
species, and its value can be any identification number id of the individuals from
the species it is joined with. A graphical illustration of the genotype employed by
CG’s species is given in Fig 4(d).

3.5. Genetic Operators

Based on the genome structure, we have implemented crossover and mutation
operators which perform seperately on each kind of variables. During the mate
process, the usual single-point crossover is applied independently to SetVariables
and RangeVariables. Moreover, different mutation operators are implemented for
each kind of variables. Mutation corresponds to additive noise in the case of
RangeVariables. Mutation of SetVariables is different for PS and CG individuals. As
it has been described in section 3.4, in the case of PS, SetVariables encode learning
rule identifiers. Thus, mutation corresponds to random assignment of a new learning
rule. In the case of CG, SetVariables encode identifiers of individuals at the lower
species. Thus, mutation corresponds to probabilistic selection of a new individual,
based on the accumulative probabilities at the lower level species. Following this
approach, the best fitted individuals are most probably selected to participate in
assemblies of cooperators.
Replication Operator. Because of the probabilistic nature of the process, some
individuals of the species at the lower level are multiply selected to participate in
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many assemblies. However, having a large number of multiple cooperations is gener-
ally a drawback for the coevolutionary process. This is due to the fact that different
cooperators would demand evolution of the same individual in different directions.
At the same time, some individuals in the same species might exist, which are
not offered any cooperation (termed non-cooperative henceforth). Non-cooperative
individuals can be utilized to decrease the multiplicity of cooperations for those
which are heavily reused. This is achieved by employing a new genetic operator
termed “Replication” (introduced in our previous work29). In short, for each non-
cooperative individual x of a species, replication identifies the fittest individual y

with more than maxc cooperations. The genome of y is then copied to x, and x

is assigned maxc − 1 cooperations of y, by updating the appropriate individuals of
the population at the higher level. After replication, individuals x and y are allowed
to evolve separately following different evolutionary directions. Thus, Replication
enforces the evolutionary process to exploit the whole population of individuals in
each species. We note that the application of Replication operator has no meaning
for the species at the top level since there is no higher evolutionary process to select
its individuals multiple times.
Evolutionary Step. In order to produce a new generation, each species is evolved
independently. Initially, the individuals of a species are sorted according to their
fitness values. Then, starting from the higher levels, each species is sequentially
applied all genetic operators, as described above. At first, replication reduces the
very large number of cooperations for individuals. Then, a predefined percentage of
individuals are probabilistically crossed over. Finally, mutation is applied in a small
percentage of the resulted population to subserve diversity.

4. Experimental Methodology

The effectiveness of the proposed approach is illustrated by modelling four modules
of the mammalian central nervous system (CNS), namely posterior parietal cortex
(PPC) - prefrontal cortex (PFC) - primary motor cortex (M1) - spinal cord (SC),
addressing their role in the development and exploitation of working memory (WM).
The implemented model is embedded in a simulated mobile robot that is furnished
with cognitive abilities, proving the validity of results.

The aforementioned modules of the mammalian central nervous system are rep-
resented by 4 cortical agents which are appropriately connected via link agents
(Fig 5). The connectivity of agent structures follows the organization of the brain
prototype. Sensory stimuli are projected to both M1 and PPC. M1, SC are located
in the lower levels of the motor hierarchy, encoding and expressing respectively ba-
sic motor commands. PPC-PFC reciprocal interaction operates in a higher level, in
order to develop motor plans. PFC activation is passed to M1 which modulates its
performance according to the higher level. SC is represented only by its descending
pathway, specifying the details of motor actions. We note that the proposed model
does not aim to be a detailed replica of the biological prototype (e.g. premotor areas
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Fig. 5. A schematic overview of the model consisting of four cortical agent structures to represent
posterior parietal cortex (PPC), prefrontal cortex (PFC), primary motor cortex (M1), and spinal
cord (SC). Link agents are illustrated with double arrows.

are not represented). It is a rather simplified version which demonstrates how the
agent-based coevolutionary framework can be employed to support brain modelling
tasks.

Several biological experiments highlight the behavioral organization of the brain
areas under discussion. These experiments are usually based on Delayed Response
(DR) tasks which require animals to retain memory relative to a sample cue for a
brief time period37. The trial begins by presenting to the animal a sample cue. After
a brief delay period, the animal has to decide upon its behavioral response, according
to a rule associated with the sample cue. A large number of PFC lesion studies in
mammals (e.g. rats16,39, monkeys11) have shown that animals with prefrontal lesions
had significantly decreased scores in DR tasks, compared to pre-surgery levels. As
a result neuroscientists conclude that PFC is responsible for the formation of WM,
and its successful projection to the lower level motor structures.

Two different coevolutionary approaches are followed for modelling the interac-
tions of the brain areas under discussion. First, an incremental process is followed.
It starts by implementing separate computational models of both M1-SC and PFC-
PPC interactions. These two models are further integrated by means of an additional
coevolutionary scheme that operates on top of their results. In the second approach,
a single coevolutionary process is employed to design from scratch the composite
model illustrating the ability of HCCE to design complex models, consisting of
independent but cooperating modules.

4.1. Agent’s Structure

Each one of PPC, PFC, and M1 structures are represented by a cortical agent with
16 excitatory and 9 inhibitory neurons. SC is represented by another cortical agent
with 4 excitatory motor neurons and 9 inhibitory neurons. The model is embed-
ded in the YAKS environment, that simulates Khepera mobile robot functionality,
facilitating environmental interaction51. The robot is equipped with uniformly dis-
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Fig. 6. A graphical representation of the experimental environment. Walls are illustrated with
solid lines. Dashed circles illustrate the existence of two light sources employed for tasks T2, T3.
Double circles represent the goal points for the two different cases of task T3.

tributed distance and light sensors. Each sense is supported by 8 sensors. Thus, link
agents L1, L2, L6, L7 (Fig 5) are represented by the coordinates of 8 projecting
axons. It is also reminded that for each projecting cortical agent only excitatory
neurons formulate efferent axons to the receiving cortical agent. Thus L3, L4, L5,
L8 are all represented by the coordinates of 16 projecting axons.

The motion of the mobile robot is supported by means of two wheels. We assume
that a pair of agonist and antagonist muscles moves each robot wheel to the desired
direction. Each excitatory motor neuron of the spinal cord activates either an agonist
or an antagonist muscle. Wheel speed is specified by the activation difference within
a pair of muscles. Thus, 4 excitatory motor neurons are utilized in SC (see above)
to define muscle’s activation, and by consequence the speed of the robot.

4.2. Behavioral Tasks

The design process aims at enforcing the behavioral similarity of the model with the
biological prototype. The experimental environment is demonstrated in Fig 6. We
have formulated a robot-based DR task and a lesion scenario which is in accordance
to biological observations. Three different tasks serve the process of modelling PPC-
PFC-M1-SC interactions enforcing the emergence of the desired functionality in each
substructure. In the following we present the tasks and the brain area representing
modules responsible for their accomplishment.

The first task T1, accounts for primitive motion abilities without purposeful
planning. For mobile robots, a task with the above characteristics is wall avoidance
navigation. Since M1-SC are the modules of the mammalian CNS which serve basic
motor commands and they are operative after lesion of the higher level structures20,
it is assumed that in the robotic task they are relevant for the accomplishment of
wall avoidance navigation. Other models of M1 have been also developed2,50, which,
however, do not emphasize on the self-organized understanding of environmental
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characteristics.
The second task T2 aims at the development of WM-like performance, related

to the spatial presence of a light cue. Working memory (WM), is the ability to hold
for a short time period input information in order to guide forthcoming actions.
The prefrontal cortex (PFC) is the brain structure most closely linked to WM 8.
There are also more areas of the mammalian brain involved in WM, formulating
a distributed network. One of the main components of this network is the poste-
rior parietal cortex (PPC)4, that is particularly relevant in accomplishing spatial
tasks35. Thus, in the current model, PPC-PFC interaction aims at developing WM-
like activation. More specifically, a light cue is presented to the left or right side of
the robot (see Fig 6). WM functionality aims at encoding and memorizing the side
of light appearance. In other words, T2 task is successfully achieved if persistent
activity is observed in PFC, related each time to the side of the light cue. A large
variety of WM computational models have been presented in the literature mod-
elling PFC activity by means of recurrent circuits4,8,18. However, these models have
been developed in isolation, in the sense that they are not linked to lower motor
structures to affect their performance.

The third task T3, integrates the above behaviors to a more complex one where
all substructures of the model are active, and WM-based orders guide the activity at
the lower motor levels. Similar to the hierarchy of the mammalian motor brain areas,
the memory held by PFC activation modulates M1 performance to develop goal
directed motion20,12. The successful interaction of substructures is demonstrated
by means of a delayed response (DR) task. Specifically, a light cue is presented
on the left or right side of the robot. The robot has to move at the end of a
corridor memorizing the side of sample cue presence, and then make a 90o turning
choice approximating the goal position specified by the side of the light cue (Fig 6).
Different WM models have been also presented in the literature32,43,55. Some of
them43,55, have been tested in tasks similar to T3. However, they all employ compact
artificial neural network structures, without specifying any relationship with brain
areas.

The accomplishment of the tasks presented above simulates the interactions
of the brain areas under discussion, due to the following reasons. First, the overall
computational structure performs similarly to animals in pre-lesion conditions, solv-
ing the DR task T3. Second, WM-like activation is developed in PPC-PFC. This is
demonstrated by PPC-PFC performance in task T2. Finally, according to biological
experiments shown that PFC lesion results to significantly reduced motion-planning
ability, the robot navigates in a purposeless mode in task T1.

4.3. Evaluation

The successful accomplishment of the above tasks is measured by three evaluation
functions E1, E2, E3. In the following we present both the experimental setup of
each task, and the quantitative measures evaluating their accomplishment.
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Task T1. The wall avoidance navigation task, T1, is related to M1-SC interactions
which account for robot motion avoiding crash on the walls. The robot is allowed
to interact with the environment for M simulation steps, where its performance
is observed. In the present study, experiments for M = 1500 simulation steps are
performed. The successful accomplishment of the task is evaluated by the function:

E1 =

(∑

M

(sl + sr − 1) · (1.0− p2)

)
·
(

1− 2
M

∣∣∣∣∣
∑

M
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)3

·
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)3
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where sl, sr ∈ [0, 1] are the instant speeds of the left and right wheel, p ∈ [0, 1] is
the maximum instant activation of distance sensors, and B is the total number of
robot bumps. The first term seeks for forward movement far from the walls, the
second supports straight movement without unreasonable spinning, and the last
term minimizes the number of robot bumps on the walls. The largest the value of
E1 the best the performance of the robot in wall avoidance navigation.
Task T2. The WM task involves interactions of PPC-PFC structures. The ex-
periment proceeds as follows. The robot is located to a predefined position of the
environment when a light source is turned on, either on its left or its right side, for
50 simulation steps. Then, the light source is turned off, and the robot interacts
with the environment for M = 300 simulation steps. During this period, the robot
has to memorize the side that the light source appeared.

We specify two different states l, r associated to the left or right side of light
source appearance. For each state, separate activation-averages over the time of M

simulation steps, al
j , a

r
j , are computed, with j identifying one of the Ne excitatory

neurons at PFC. The activation of inhibitory neurons at PFC is not considered, since
only excitatory neurons encode efferent information. The formation of separate WM
patterns each one related to a side of light cue appearance, is evaluated by measuring
the persistency of activation in PFC agent:
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The first term of Eq. (5) supports the representation of the states l, r by a different
set of active neurons at PFC. Furthermore, the second term enforces the consistency
of PFC activation, with ml, vl, mr, vr being the mean and variance of average
activation at the respective states:
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If persistently few, but the same, neurons are activated during the observed period,
the second term of Eq. (5) will get a high value. If activation is not consistent,
different neurons are activated in different simulation steps, and the term under
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discussion will get a low value. Overall, high values of E2 indicate successful per-
formance in the WM task.
Task T3. The experimental process of T3 describes a delayed response (DR) task,
that has to be accomplished by the interaction of PPC-PFC-M1-SC structures. The
robot is standing in a predefined position of the environment, when a light source
is turned on for 50 simulation steps either on its left or its right side. Then, the
light source is turned off, and the robot is allowed to move for M = 300 simulation
steps. When the robot approximates the end of the corridor, it has to decide which
side to turn. The DR task is completed successfully if the robot turns to the same
side that the light source appeared.

Assuming a proper WM-like performance at PFC, different target locations are
defined in corridor sides depending each time on the position of the initial light cue
(Fig 6). During the response of the robot, it has to approximate one of the two target
locations without crashing on the walls. The robot acts freely in the environment
for M = 300 simulation steps, and then the euclidian distance d to the target is
measured. The successful approximation to a target location x, is measured by:

Gx =
(

1 + 3
(

1− d

D

))3

·
(

1− 2

√
B

M

)2

(6)

where D is the euclidian distance between the target and the starting location of
the robot, and B is the total number of robot bumps. The first term of Eq. (6)
enforces target reaching, while the second addresses robot motion without bumps.

The accomplishment of T3 is evaluated by two subtasks which test separately
robot turning regarding the right or left side of light cue presence. Thus, two eval-
uation measures Gl, Gr are obtained based on Eq. (6), employing each time the
appropriate target location. The total accomplishment of the memory-guided be-
havioral task T3, is evaluated according to:

E3 = Gl ·Gr (7)

which implies high scores for both subtasks. The largest the value of E3, the best
the accomplishment of the DR task by the robot.

Having introduced the experimental procedure, we now turn to the distinct co-
evolutionary approaches followed to model the brain areas under discussion. Specif-
ically, an incremental and a compound approach are demonstrated in the following
two sections. In this presentation, the distinct features of the two approaches are
highlighted.

4.4. Incremental Modelling

It is generally hard to accomplish large scale brain modelling by developing from
scratch a very complicated model. An alternative approach could be based on im-
plementing separate models of partial brain areas which are further integrated in



April 16, 2007 21:9 WSPC/INSTRUCTION FILE HCCE˙AIJ

20 M. Maniadakis and P. Trahanias

Task: T1 Task: T2CG2

L2 L3 L4PPC PFC L1

Task: T3

CG1 CG2L5

M1 SC L6 L7 L8

(a)

(c)

(b)

CG1

CG3

Fig. 7. A schematic overview of the incremental coevolutionary process. Part (a) illustrates the
process employed to design the model of M1-SC interaction, part (b) illustrates the process design-
ing the model of PPC-PFC interaction, and part (c) illustrates the coevolutionary process which
serves their integration.

gradually more complex ones. Hence, the ability to proceed by means of an incre-
mental approach, is a desirable feature for a successful brain modelling method.
The proposed computational framework is capable of facilitating the incremental
modelling process. Specifically, the agent-based representation of brain areas sup-
ports the decomposition of the problem to small tractable tasks. Additionally, the
HCCE scheme can be utilized to attain each separate task, designing partial brain
models. Then, the results of partial processes should be further integrated to de-
velop a combined solution. Fortunately, the HCCE scheme can be employed again
to support the integration process27.

The incremental modelling approach is demonstrated by implementing a compu-
tational model of the brain areas illustrated in Fig 5. Two coevolutionary processes
are performed independently, to design partial models of M1-SC, and PPC-PFC in-
teraction (Fig 7). Each process is responsible to design the cortical and link agents
involved in the respective partial model. When both processes are finished, a third
coevolutionary scheme commences to design the intermediate link structure which
integrates the two partial models in a composite one.

Specifically, the first coevolutionary process aims at the accomplishment of the
wall avoidance navigation task T1, by M1-SC interactions. The hierarchical scheme
coevolves five lower level species, each one encoding an agent structure (Fig 7(a)).
Populations of 200 individuals evolve all component species, while a population of
300 individuals evolves the higher-level cooperator selection process. The fitness
function of the present process evaluates the success on wall avoidance navigation.
This is achieved by means of the E1 measure. Following the formulation introduced
in Eqs. (2), (3), the fitness function is defined by:

fCG1 = fCG1,t1 with fk
CG1,t1 = E1 (8)

where k represents each membership of an individual in a proposed solution. After
70 epochs, the coevolutionary process converged successfully, and the robot could
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Fig. 8. A sample result of robot wall avoidance navigation.

Left Light Pos Right Light Pos

Fig. 9. The average activation of 16 excitatory neurons at PFC. The dark activation values
indicate that the cell remain active during all the observed period, while light values indicate low
activity in the same period. It is clear that each side of light cue presence is encoded in a different
activation pattern.

be driven without bumping on the walls. A sample result is illustrated in Fig 8.
The second coevolutionary process aims at the accomplishment of T2 WM task,

by PPC-PFC interactions (Fig 7(b)). Populations of 200 individuals evolve agent
species, while a population of 300 individuals evolves the higher level species select-
ing cooperating agents. The employed fitness function equals to E2, evaluating the
success on WM-task, T2:

fCG2 = fCG2,t1 with fk
CG2,t1 = E2 (9)

where k is as above. After 80 evolutionary epochs we got many computational
models able to simulate WM performance. A sample result is illustrated in Fig 9.

The third coevolutionary process aims at the accomplishment of T3 delayed
response task by the composite model. The third hierarchical scheme performs on
the results of the previous two processes evolving the link agent L5 that supports
their connectivity (Fig 7(c)). The ten best individuals of CG1 and CG2 species
are used as candidate partial models, formulating a basis for the construction of
the global model. The species of CG1 and CG2 are not evolved, and thus the ten
best individuals of CG1 and CG2 remain unchanged. As a result, only two species
need to be evolved. The first species, consisting of 200 individuals, is evolved at the
lower level encoding the structure of L5 link agent. The second species addresses the
formulation of succesfull assemblies. CG3 is evolved at the higher level employing
300 individuals. The coevolutionary process is driven by a fitness function that
equals E3, evaluating the success on T3 delayed response task:

fCG3 = fCG3,t1 with fk
CG3,t1 = E3 (10)
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Fig. 10. A sample result of robot performance in the delayed response task. PFC activation
successfully modulates M1 performance to drive the robot to the desired goal.

where k is as above. After 40 evolutionary epochs we got many computational
schemes able to accomplish the memory guided behavioral response task. A sample
result is illustrated in Fig 10.

In a last validation experiment, we test the performance of M1-SC model in
the DR task (simulating PFC lesion functionality). The performance observed was
unsuccessful as expected, and it looked very much like the first simulation steps of
wall avoidance navigation (Fig 8). The robot moves without a tendency to turn. In
particular, it moves straight, unless a wall is sensed. This makes the robot turn in
the direction that avoids crash with the wall, irrespective of the side that the light
cue appeared.

4.5. Compound CoEvolutionary Modelling

Following the incremental modelling approach, the partial models designed first,
bias the implementation of those designed in the subsequent phases. As a result,
there could be cases where the constraints imposed by the initial models can be
too hard, harming the forthcoming integration processes. There could be also cases,
where the interactive relationship among partial structures can be too complex to
be modelled by separate phases. All these factors imply that many times complex
models will be necessary to be designed in a single step.

The computational framework introduced in the present work is appropriately
formulated to address such design considerations. The employment of neural agents
representing brain areas, together with the HCCE scheme that utilizes different
fitness functions to evolve each species, support the design of composite models,
highlighting both the cooperative and the individual characteristics of substructures.
The employment of a compound coevolutionary process for modelling the brain
areas illustrated in Fig 5, is discussed below.

A three level hierarchical coevolutionary scheme is utilized. Agent structures are
classified in CGs according to the artificial lesion scenario described in section 4.2.
The specification of CGs, is illustrated graphically in Fig 11. The tasks served by
each group of agents are illustrated at the right side of each CG. Specifically, the
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Tasks: T1, T2, T3
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Fig. 11. A graphical illustration of the compound coevolutionary process.

structures under CG1 are related to M1-SC interactions, and they need to serve
both the wall avoidance and the delayed response task. The structures under CG2
are related to PFC and its afferent and efferent projections. They need to serve
WM persistent activation, and the delayed response task. The structures under
CG3 are related to PPC and its afferent projections which have to support WM
activation only (CG2 structures are responsible for the proper formulation of WM
and its projection to M1). Finally, a top level CG is employed to enforce cooperation
within partial configurations supporting the accomplishment of all the three tasks30.

The evaluation of candidate solutions starts by sequentially accessing the indi-
viduals of the top level species, which guides cooperator selection among its lower
level CG and PS species. Individuals of PS species are decoded to detailed agent
structures. The composite model is tested on the accomplishment of DR task T3.
Next, PPC-PFC interaction is isolated by deactivating the agents under CG1. The
remaining structures are tested on WM task T2. Finally, CG1 agents are activated
back, and now CG2 structures are deactivated to simulate PFC lesion. The remain-
ing agents are tested on the accomplishment of wall avoidance navigation.

The fitness functions which guide the evolution of species support the accom-
plishment of different sets of tasks. According to the lesion scenario, the agent
structures grouped under CG1 need to serve the success on tasks T1, T3. Thus,
the fitness function employed for the evolution of CG1 and its lower level species is
based on the measures evaluating the success of the respective tasks. Following the
formulation introduced in Eqs. (2), (3):

fCG1 = fCG1,t1 · fCG1,t2 with fk
CG1,t1 = E1, fk

CG1,t2 =
√

E3 (11)

where k represents each membership of an individual in a proposed solution.
Similarly, CG2 design aims at supporting the accomplishment of tasks T2 and

T3. The fitness function which guides the evolutionary process is defined by means
of the respective evaluation measures:

fCG2 = fCG2,t1 · fCG2,t2 with fk
CG2,t1 = E2

2, fk
CG2,t2 =

√
E3 (12)

where k is as above.
The structures under CG3 need to serve only the development of WM-like ac-

tivation. Thus, the fitness function employed for the evolution of CG3 is defined
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Fig. 12. A sample result of robot performance, driven by M1-SC. The robot moves in a purposeless
mode without bumping on the walls.

Left Light Pos Right Light Pos

Fig. 13. The average activation of 16 excitatory neurons at PFC, for each light position. Activa-
tion is demonstrated with levels of grey.

by:

fCG3 = fCG3,t1 with fk
CG3,t1 = E2 (13)

where k is as above.
Additionally, the top level evolutionary process CG4, enforces the integration of

partial configurations in a composite model, aiming at the successful accomplish-
ment of all three tasks T1, T2, and T3. The fitness function is defined accordingly,
following the formulation introduced in Eqs. (2), (3), by:

fCG4 = fCG4,t1 · fCG4,t2 · fCG4,t3 with fk
CG4,t1 =

√
E1, fk

CG4,t2 = E2
2, fk

CG4,t3 = E3 (14)

where k is as above.
It is easily observed from Eqs. (11) - (14), that the formulation of fitness functions

is based on the measures evaluating the performance of each task. Specifically,
different species enforce the accomplishment of each task with a different weight.
For example, compared to CG1, the fitness function which guides the evolution of
CG4 enforces more the accomplishment of T3 than the accomplishment of T1 (see
definitions of fk

CG1,t1 - fk
CG1,t2 and fk

CG4,t1 - fk
CG4,t3).

The coevolutionary process described above employed populations of 200 indi-
viduals for all PS species, 300 individuals for CG1, CG2, CG3, and 400 individuals
for CG4. Additionally, an elitist evolutionary strategy was followed in each evolu-
tionary step with the 7 best individuals of each species, copied unchanged in the
new generations, supporting the robustness of the evolutionary process. After 200
evolutionary epochs the process converged successfully.
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Fig. 14. A sample result of robot performance in the delayed response task, for two different sides
of light cue presence.

Sample results of the performance on each task are illustrated in Figs 12, 13, 14.
As it is indicated by the lesion scenario, M1-SC are able to drive the robot in a
purposeless manner, following the wall avoidance policy (Fig 12). At the same time,
PPC-PFC interaction encodes the side of light cue appearance, and memorize it for
a short future period (Fig 13). Moreover, the composite model combines successfully
the performance of partial structures to accomplish the DR task (Fig 14).

In a last validation experiment, the functioning of the model after PFC lesion is
tested on the DR task. The performance observed is similar to the first simulation
steps of wall avoidance navigation (Fig 12). The robot moves forward unless a wall
is sensed, which makes it turn in the proper direction to avoid crash. This is a
predicted performance since M1-SC agents adjust their functioning based only on
the directly incoming sensory information, without considering higher level plans.

4.6. Incremental vs Compound Modelling

The previous paragraphs demonstrated how the proposed Hierarchical Cooperative
CoEvolutionary (HCCE) scheme specifies the structure of neural agents, develop-
ing computational models of brain areas. The modelling can be achieved by follow-
ing two different approaches, either by performing partial coevolutionary processes
whose results are incrementally integrated, or by means of a compound coevolu-
tionary process which designs in a single step the composite model. The qualitative
differences among the two approaches can be revealed by close inspection of Figs 7
and 11, both of them related to Fig 5. In the following, we compare the two ap-
proaches in order to conclude regarding their usability.

First, we note that both approaches are capable of successfully modelling the
areas under consideration. For example, examining the performance in task T2
(Fig 9 and Fig 13), we may conclude that in both cases, distinct activation patterns
emerge to encode the side of light cue. Still, distinct characteristics may emerge in
the solutions derived by the two design approaches, without however eliminating
the effectiveness of the result. Specifically, with respect to wall avoidance navigation
(Fig 8 and Fig 12), we observe that motion without unreasonable spinning is more
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likely observed with the first approach. This is because in the incremental case,
the design of M1-SC model aims only at the accomplishment of T1, while in the
compound process the objective is more complicated aiming at the accomplishment
of both T1 and T3. Similar motion patterns are observed in the delayed response
task, as it is illustrated in Figs 10 and 12. This is because PFC has to exploit the
performance of M1, which has its own spinning dynamics described just above. Thus,
the re-usability of M1 affects the performance of the composite model. However, it
is clear that PFC projection successfully adapts the performance of M1-SC, driving
the robot according to the DR task.

Let us now proceed by examining the practical issues of the two approaches.
From a designer’s point of view, the incremental coevolutionary approach seems
easier and rather preferable, because the objectives of partial processes are simple
and well defined. Consequently, the fitness functions guiding the evolution of each
species can be easily formulated. On the contrary, the design of the compound co-
evolutionary scheme is a rather complicated process since each species must serve
more than one objectives. This is a critical design factor, since the evolution of
species with largely independent fitness functions will prevent their ability to coop-
erate, and the compound coevolutionary process will not converge satisfactorily. In
order to formulate the fitness functions, the relative weight of the objectives have to
be identified for all CGs (hence the square roots and power of two in Eqs. (11)-(14)).
Still, a carefully designed compound coevolutionary process is able to highlight both
the cooperation among the components of the model, and their autonomous roles
in the performance of the composite system.

An important issue concerns also the usage of computational resources. Similar
to the majority of evolutionary applications, the brain modelling process by means of
HCCE is performed off-line. Following the incremental modelling approach, partial
coevolutionary processes are completed in a relatively short time. This is because
each of them has a very specific objective to satisfy (accomplishment of only one
task), and a small set of agents to tune. Thus, only few generations are enough for a
successful design. In contrast, following the compound coevolutionary scheme, more
evolutionary epochs are necessary to accomplish the global objective. This is be-
cause the interactions within different species (each one having separate objectives),
delay the convergence of the total hierarchical coevolutionary scheme. At the same
time, following the compound coevolutionary approach, each epoch requires more
computational resources, because individuals are tested in the accomplishment of
many different tasks. As a result, the compound HCCE approach is computationally
more expensive compared to the incremental one.

Based on the above comments, we can formulate guidelines on the usability of
each approach. The employment of the incremental approach is suggested whenever
the decomposition of the model is possible. This is because the incremental steps are
more easily designed. In the case where the model consists of densely connected brain
areas, then the specification of partial incremental tasks is difficult. Additionally,
it is possible that the incremental integration process will get stalled, due to the
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biases of initial models. In both cases, the compound approach should be followed,
which however requires more experimental effort by the designer.

Additionally, a mixed approach can be followed. The designer can start with
an indicative problem decomposition designing partial models which will be tem-
porarily stored. Then, the results of these processes can be reloaded and used as
a starting point of a compound coevolutionary process. This approach is different
from the incremental one since partial results do not remain unchanged, but they
can be further refined. At the same time, it is also different from the compound
coevolutionary approach since the design process does not start from scratch, but
by a meaningful set of parameter values, which speeds up coevolution. Due to the
nearly-global search performed by evolutionary methods, the reloaded species do
not harm the compound coevolutionary process which is not likely to get trapped
in a local optimum. Along this line, our previous work28 discusses how existing
models can be redesigned based on the HCCE design mechanism.

5. Conclusions and Future Work

The computational framework introduced in the present work to support brain mod-
elling bears a twofold contribution. First, appropriate agent structures are designed
to represent brain areas and their connectivity. The agent-based representation is in
accordance to the distributed nature of the biological prototype. Additionally, due
to the inherent autonomy of agent components, it supports problem decomposition
to small tractable and progressively solved tasks. Second, a distributed design mech-
anism is employed to specify the details of the model. We introduce a Hierarchical
Cooperative CoEvolutionary (HCCE) scheme that designs autonomous substruc-
tures by utilizing separate fitness functions for their evolution. Furthermore, the
coupled functioning of system components enforces their successful integration in
a composite structure. We note that HCCE has been proved to outperform other
coevolutionary and unimodal evolutionary procedures in designing complex distrib-
uted systems24.

Overall, the agent-based coevolutionary framework facilitates the implementa-
tion of complex brain-like cognitive systems for robotic applications. More specifi-
cally, it accomplishes:

• the successful design of distributed partial brain models, by specifying the struc-
ture of their components,

• the integration of partial models to gradually more complex ones,
• the construction of complex behaviors from simple components,
• the implementation of large scale brain models by means of an incremental ap-

proach,
• the replication of biological lesion results.

It should be noted that the hierarchical design mechanism does not enforce the
model to perform in a hierarchical mode. This can be easily deduced by comparing
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Fig 5, with Figs 7 and 11. The performance of partial brain structures can be
either hierarchical or completely parallel. Hence, the hierarchical coevolutionary
design approach does not impose any constraints on simulating the connectivity
of brain areas. In contrast, it facilitates significantly their modelling. Along this
line, the HCCE design mechanism has been recently utilized to design a much
larger distributed cognitive system for a humanoid robot, modelling overlapping
observation/execution brain pathways25.

The formulation of appropriate neural agents (improved versions of the ones
presented in our previous work29, as discussed in section 2) has an important con-
tribution in designing successful models. Specifically, the ability of link structures
to project their axons on any desirable position of the receiving cortical plane, has
a considerably positive impact on modelling competencies of agents, emphasizing
their re-usability. To verify this, we performed experiments similar to those demon-
strated in the present work, by employing the previous computational modules29.
These experiments were not successful due to the fact that the employed computa-
tional modules utilize axon projections at predefined locations.

Despite the successful accomplishment of the tasks described here, we empha-
size that the existing computational structures are designed to support primarily
abstract CNS modelling for robotic applications, than detailed modelling of mam-
malian brain areas. In the future, additional constraints can be integrated to the
agent structures, enhancing the biological reliability of the model. This does not
contradict in any sense with HCCE -based design, which is capable of encoding any
desirable structure.

The similarity of the model with the biological prototype is further enforced by
replicating the results of biological lesion experiments. This is achieved by exploiting
the ability of HCCE to consider the performance of the model in pre- and post-lesion
conditions, and additionally specify properly its operation in both cases. The results
obtained in the current work are biologically plausible, but additional experiments
are necessary to support their biological reliability. This constitutes one direction
of our future work. The more biological data the model is able to reproduce, the
more reliable the roles of agents in the composite model become.

Finally, the proposed coevolutionary approach can also be utilized in contexts
different from brain modelling, such as the design of cooperating robot teams, or
the research on economic and social behaviors. Thus, HCCE can be potentially em-
ployed as a general purpose method for investigating complex distributed systems.
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