
Using WSDL/UDDI and DAML-S
in Web Service Discovery

Thomi Pilioura1, Aphrodite Tsalgatidou1, Alexandros Batsakis2
1 University of Athens, Dept. of Informatics, Panepistimiopolis, TYPA Buildings

Ilisia, 157 84, Athens, Greece
{thomi, afrodite}@di.uoa.gr

2 Johns Hopkins University, Computer Science Department
3400 N. Charles Street, Baltimore, MD. 21218

abat@cs.jhu.edu

Abstract. Web services enhance current web functionality by altering its nature
from document to service oriented. These services are self-describing, self-
contained, modular applications accessible over Internet. They can be used by
humans or programs in order to accomplish a particular task. To benefit from
them, an efficient discovery mechanism for locating and selecting the
appropriate web services is required. In contrast to common search engines, this
mechanism should be based on required/offered service capabilities rather than
on mere keywords. This paper presents the basic requirements for such a
mechanism and evaluates current web service technology (WSDL, UDDI,
DAML-S) that is used to address these requirements.

1 Introduction
The web service3 paradigm is transforming the Web from a provider of static pages to
a provider of interactive, automated and intelligent services that interact via the
Internet. Multiple web services will interoperate to perform tasks, provide
information, transact business and generally take action for users, dynamically and on
demand. The web service paradigm brings a number of advantages to application
developers and end-users. The web service model simplifies business application
development and interoperation, as it entails code reuse and loose coupling between
services thanks to the adoption of widely accepted standards. Additionally, it may
serve end-user needs by providing an intuitive, browser-based interface that enables
users to choose, configure and assemble their own web services.

However, in order to employ its full potential, the web service paradigm must be
supported by an appropriate discovery mechanism. The keyword-based techniques
used in common search engines are not suitable as they are prone to low precision and
recall. Many irrelevant services may include in their description the query keywords,
leading to low precision. Also, the query keywords may be semantically equivalent
but syntactically different from the words in the offered services, leading to reduced
recall. The key underlying problem is that keywords are a poor way to capture the
semantics of a service request or service advertisement. Thus a different mechanism is
needed, one that entails locating web services on the basis of the capabilities they

3 The terms “web service”, “service” and “WS” are used interchangeably in the text.

provide. This consists of finding the services that provide the capabilities described in
the service request.

 The discovery mechanism should enable the location of services by both humans
and machines. Humans can be either end-users looking for a service to use it as it is or
developers who want to find a service at design-time and to incorporate it in their
program. Machine-understandable services will be able to locate each other and
interoperate.

There are several initiatives in the web service discovery area. The most prevalent
is a combination of Web Services Description Language (WSDL) [2] and Universal
Description, Discovery and Integration (UDDI) [3] standards. These are supported by
major industry companies and are already implemented in many tools. Another
initiative called DAML-S [9] comes from the research community and is based on the
semantic web initiative [10].

The goal of this paper is to identify requirements related to service discovery and
to assess WSDL/UDDI as well as DAML-S against these requirements. WSDL and
UDDI can be easily tested as they are currently supported by many software tools. On
the other hand, DAML-S is still immature and not supported by current tools. Thus,
we decided to build a DAML-S matchmaker that is used as a case study for
identifying problems regarding the adequacy and maturity of DAML-S in Web
Service Discovery. The rest of the paper is structured as follows. In section 2, we
present the requirements for service description and discovery. In section 3 we briefly
describe and assess WSDL and UDDI against these requirements. In section 4, we
present and assess DAML-S against the requirements presented in section 2. Finally,
we give our conclusions and we outline our future work plans. A brief description of
our DAML-S aware Matchmaker is given in the Appendix of the paper.

2 Requirements for Web Service Discovery
Discovery is one of the major challenges of the web service technology [11]. An
effective and automated search and selection of relevant services is essential both for
human users (developers or non-technical persons) and programs (such as software
agents).

Service discovery is the process of finding an appropriate service provider for a
service requestor through a service matchmaker. The basic steps of this process are
(Fig. 1):

1. Providers describe their services (Service Description)

2. Brokers4 classify and publish these service descriptions (Service Publishing),

3. Requestors ask some broker if there are providers offering services with desired
capabilities (Description of Requestor’s Needs),

4 The terms “matchmaker” and “broker” are used interchangeably in the text

4. The broker matches the request against the stored service descriptions and returns a
result, which is a subset of the stored descriptions (Service Matchmaking).

Fig. 1.The WS Interaction pattern

Then, service requestors can invoke services based upon the discovered service
descriptions. This process must adhere to a number of requirements in order to be
effective and efficient. In the following we identify a number of basic requirements
for each of the four aforementioned steps of the service discovery process. Basic
requirements need to be supported by any discovery mechanism that promises
efficiency. There are also some value-added requirements that bring better
performance to a discovery mechanism such as availability, scalability, billing,
security and monitoring, but these are out of the scope of this paper.

Service Description5 Requirements:

The description of web service capabilities is essential for classifying, discovering
and using a service. Some of the main desiderata of service description are presented
in the following paragraphs. Thus, web service description:

• needs to contain functional (e.g. what a service does, sequencing of messages) as
well as non-functional attributes of the service (e.g. service taxonomy, security,
authentication and privacy issues related to the information exchange). An
analytical list of non-functional service properties and their uses is given in [7].
Behavioural information (e.g. with what entities the service is interacting in order
to produce the desired result, what the service states are etc.) is also required.

• needs to be understandable by humans as well as by machines. This means that
each service attribute must be described at both syntactic and semantic level.
Syntactic information is concerned with the implementation aspects of a service
and thus tailored towards the programmers’ requirements. Semantic information is
concerned with the conceptual aspects of a service aiming to facilitate end-users by
shielding off the lower level technical details, as well as to facilitate developers to
find services that best match their needs and to enable automatic service selection
and composition. Let us consider a stock quote service, which takes as input a
string denoting the stock symbol and returns the stock quote as a number. The
syntactic information denotes that the input parameter is a string and the output is a
number, whereas semantic information conveys the real world meaning of the

5 The terms “service description” and “service advertisement” are used interchangeably in the

text

string and the number in the context of stock quote markets. Depending on whether
the service requestor is an end-user, a developer or a machine, different kinds of
service description are required. For the end-user, only semantic description is
needed whereas developers or machines need both semantic and syntactic
information.

Thus, the language used for service description needs to provide constructs that
enable the description of functional, non-functional and behavioural information in a
semantic as well as in a syntactic form of representation. The description language
should also support inferences on descriptions. This means that automated reasoning
and comparison on descriptions should be possible and efficient. For example, when
we require a Booking service we expect our request to be matched against anyone
providing Hotel Booking services. One way to achieve this is by using ontologies
[12]. Ontologies include computer-usable definitions of basic concepts in a domain
and the relationships among them. Ontologies are used by people, databases, and
applications that need to share domain information, where a domain is just a specific
subject area, like medicine, real estate and financial management. There are several
languages for representing ontologies such as Resource Description Framework
(RDF) [13], DAML+OIL [14] and the newly proposed Web Ontology Language
(OWL) [4]. These languages are very expressive and are based on a class system
much like many object-oriented programming and modelling systems. Classes are
organized in a hierarchy and offer extensibility through subclass refinement. This
enables automated reasoning on taxonomies of concepts.

Service Publishing Requirements:

Publishing is one of the basic activities as it makes a service known and available to
be used. The published service may be either a user-facing service targeting the
business user or a technical service targeting the developer or a program.

The publishing of services needs to be performed either via a programmatic
interface or via a web interface. Furthermore, given the increasing number of services
that require to be published, automated publishing mechanisms are needed. These
mechanisms will facilitate the building of a crawler to pull Web Service
advertisements off the Web, without people having to push service advertisements to
the matchmaker.

It is clear that, the effective publishing of services depends on effective
categorization that in turn depends on effective information provided in service
descriptions and on appropriate taxonomies built by matchmakers. Services may be
registered in multiple categories, provided that they function according to the
requirements of each of these categories. Categorization of services is not an easy task
and depends on both the service provider and the matchmaker. The matchmaker is
mainly responsible for the offered taxonomies, while the service provider is
responsible for classifying the service into the appropriate taxonomy, unless the
provider prefers to assign this task to the service matchmaker. Service matchmakers
may compete on the merits of their choice of taxonomy, on the up-to-date accuracy of
their listings and on auxiliary information, such as quality-of-service data, statistical
information for the use of the service and comments/evaluation results by service
users. The latter can be an important factor for building trust on a specific service.

Requirements for the Description of Requestor’s Needs:

An important aspect of the discovery process is the description of requestor’s needs.
The language used for this description must adhere to the same requirements as the
one describing the capabilities of the service.

Service Matchmaking Requirements:

The matchmaking process matches existing web service descriptions with requestor’s
needs. As it is aforementioned, the matching should not be based on keyword search
only. Instead, semantic and syntactic information about each attribute in the service
request and advertisement must be taken into consideration. This is essential, as
equality of concept names (i.e. syntactic information) does not necessarily mean the
equality of their semantics. Depending on whether the service requestor is an end-
user, a developer or a machine, different information is used to describe requestor
needs and different kinds of service description are taken into account. An end-user
searches for the service by specifying only semantic information and once s/he finds
the appropriate service s/he will use it as it is, without further elaboration. On the
other hand a developer or a program are interested in both syntactic and semantic
information. The matchmaking process should first examine semantic compatibility
between service capabilities and requestor’s needs and then syntactic compatibility.
Semantic matching has to precede syntactic matching, as it is necessary to assure that
both request and advertisement address the same subject area. Then an optimisation
must take place in order to return the most highly rated matches and present them in
an appropriate way depending on the user.

Matchmaking has to support both early (design time) and late (runtime) binding to
web services. This means that both a programming and web interface are needed. In
case of early binding, the matchmaker can be queried at design time in order to locate
the appropriate service and the located service is then statically bound with the
application being developed. In case of late binding, there is no "hard-wired" function
call in the program code but instead a "syntactic and semantic description" of what
kind of operation to use, which will be dissolved just in time before execution.

The matchmaking process should support both volatile and persistent queries. In
case of a volatile query the matchmaker immediately returns matching advertisements
that are currently present in the repository. On the other hand, the persistent query is a
query that will remain valid for a predefined period. Within the validity period of the
query, whenever an advertisement that matches the query is added or updated, the
matchmaker will notify the requestor.

The matchmaking process must also support service composition. Service
composition is an important issue since it is very likely that the offered services will
not satisfy user needs and therefore the combination of basic web services (possibly
offered by different companies) into value-added services is needed. In order to
automate service composition, the service description must provide declarative
specifications of the preconditions and effects of service use.

In the following section we assess the combined use of UDDI and WSDL in web
service discovery. This is followed by a short description and assessment of DAML-

S (in section 4) that is proposed by many researchers [20] [21] [22] [23] as an
approach that could help overcome the problems of WSDL and UDDI.

3 Using WSDL and UDDI in WS Discovery

In this approach the service is described using WSDL. WSDL is an XML grammar
for specifying properties of a Web Service such as what it does, where it is located
and how it is invoked, i.e., it describes only the functional and syntactic aspects of a
service. WSDL does not support non-functional information of services. For example,
it is not possible to indicate the geographic region that a weather service is provided
for or the charge associated with the service. Furthermore, it does not provide
behavioural information for a service. For this, another language such as Web
Services Flow Language (WSFL) [17], XLANG [16] or Business Process Modelling
Language (BPML) [15] must be used.

In this approach there is no formal way of expressing requestor’s needs. Instead, a
service requestor retrieves advertisements out of the UDDI registry based on keyword
search (exact pattern matching) on some fields such as name, taxonomy,
tModel or identifier.

The service publishing process is based on UDDI, which defines a directory for the
publication and discovery of businesses and services. The UDDI XML schema
defines six data structures: businessEntity, businessService,
bindingTemplate, tModel, publisherAssertion and
operationalInfo. The businessEntity structure describes information
about businesses, including their name, description, services offered and contact
information. The businessService structure provides more detail on each
service being offered. Any kind of service can be registered in the UDDI, such as
user-facing services and technical services. Each service can have multiple
bindingTemplates, each describing a technical entry point for a service (e.g.,
mailto, http, ftp, etc.). tModels describe what particular specifications or standards
a service uses. A publisherAssertion structure allows the declaration of
relationships between business entities. Finally, the operationalInfo structure is
used to convey the operational information of the other data structures. Such
operational information includes the date and time that the data structure was created
and modified, the identifier of the UDDI node at which the publish operation took
place and the identity of the publisher. UDDI also provides identifiers and categories
to mark businesses, services and service types using various standard taxonomies
(related industry, products or services offered and geographical region).

The service publishing can be performed either through the web interface or via the
UDDI Publishing API. Furthermore, UDDI can be complemented by the Web
Services Inspection Language (WSIL) [18]. A WSIL document is essentially an
aggregation of pointers to service description documents. This means that it defines
the locations on the service provider’s web site where one could look for web service
descriptions. Thus WS-Inspection specification could facilitate in the future the

building of a crawler (analogous to those currently used by keyword-based search
engines) to pull Web Service advertisements off the Web, without people having to
push advertisements for their services to the UDDI registry.

As already mentioned, the matchmaking process is based on keyword search on
some fields such as name, identifier or taxonomy. The latter is the only
field conveying semantic information as it enables users to search the registry by
industry, product category or geographic location. However, this is not enough for
achieving automated discovery as two identical service registrations in the UDDI
could mean totally different things, depending on the context in which they are used.
Thus UDDI only provides a first level filter in the discovery process. Further
discrimination is done by manual inspection of the service descriptions.

An inquiry for a service can be performed either at design time via a web-based
user interface or at runtime via the UDDI Inquiry API. At design time, the UDDI
registry can be searched by a programmer for suitable services and can be used to
locate the appropriate WSDL file. After the programmer has studied the specifications
for the Web Service described in the retrieved WSDL documents, s/he generates
client proxies so that the application can access the service. Alternatively
development tools can be used to generate the required client proxies. At run time, the
application does not have to use UDDI if the target web service is always available
and always the same. However, if the web service becomes unavailable, the
application can query the UDDI registry to determine if the service has been moved to
another location. This capability is useful when service providers have to re-host their
services. Furthermore, UDDI enables the selection of the appropriate service at run
time. For example, in the case of a financial portal providing a “News” service among
others, all stock market agencies offering a “News” Web Service could be located and
queried by the portal application at runtime to find the one that provides the latest
financial news.

UDDI supports both volatile and persistent queries. Persistent queries are possible
through the subscription API introduced in UDDI version 3. This API enables users to
establish a subscription based on a specific query or on a set of entities (businesses,
services, etc.) that the user is interested in. In the case of a query-based subscription,
if the result set changes within a given time span, the user is notified. In the case of
entity-based subscription, the user is notified whenever the contents of one of those
entities change.

Some of the use cases enabled by subscription include notification of new
businesses or services that are registered; monitoring of existing businesses or
services; obtaining registry data for use in a private registry; and obtaining data for
use in a marketplace or portal registry.

As far as service composition is concerned, there is a Technical Note [6] that
describes how UDDI, WSDL, and Web Services Conversation Language (WSCL)
[19] can be used to create an environment in which services can spontaneously
discover each other and then engage in complicated interactions.

4 Using DAML-S in WS Discovery

DAML-S is a DAML+OIL ontology for describing the aim and usage of a web
service. DAML-S describes what a service can do and not just how it does it. It
provides three essential types of knowledge about a service:

ServiceProfile: it defines "what the service does"; that is, it gives the type of
information needed by a service requestor to determine whether the service meets its
needs. Service profiles consist of three types of information:

• the provider information that consists of contact information about the entity which
provides or requests a service.

• the functional description of the service that is expressed in terms of the
information and state transformation produced by the service. The information
transformation is represented by input and output properties. The input property
specifies the information that the service requires to proceed with the computation.
The output property specifies what is the result of the operation of the service. For
example a stock quote service would advertise itself as a service that, given a stock
symbol, will return the stock quote. The state transformation produced by the
execution of the service is specified through the precondition and effect properties
of the profile. Precondition presents logical conditions that should be satisfied prior
to the service being requested. Effects are the results of the successful service
execution.

• a number of features that specify non-functional characteristics of the service (such
as what guarantees of response time or accuracy it provides, or the cost of the
service). These features assist when reasoning about several services with similar
capabilities.

ServiceModel: it defines "how the service works"; that is, it describes the
workflow and possible execution paths of the service. For non-trivial services (those
composed of several steps), this description may be used by a service-seeking agent in
at least four different ways: (1) to perform a more in-depth analysis of whether the
service meets its needs; (2) to compose service descriptions from multiple services to
perform a specific task; (3) during the course of the service enactment, to coordinate
the activities of the different participants; (4) to monitor the execution of the service.

ServiceGrounding: it specifies the details of how to access a service. Typically
service grounding will specify a communications protocol (e.g., RPC, HTTP
GET/POST, CORBA IDL, SOAP, Java RMI), and service-specific details such as
port numbers used in contacting the service.

In the remaining of this section, we focus on assessing DAML-S against the
requirements presented in section 2. This assessment was partially based on a DAML-
S aware Μatchmaker which we have implemented for this purpose. This
matchmaker is presented briefly in the appendix of this paper. A number of
challenges that affected both the usefulness and the efficiency of the matching

algorithm were encountered. The sources of these technical issues are mainly located
in the specification of the language and emerge in the following paragraphs.

It is obvious that the DAML-S approach supports discovery requirements at a
higher level than WSDL/UDDI. Through the tight connection with DAML+OIL,
DAML-S supports the need for syntactic and semantic representation of services.
DAML-S classes may draw properties from other DAML-S classes through
inheritance and other relationships. Thus, DAML-S provides a richer representation
of an individual service and of the relationships between services. However, there is a
problem that derives from the generality of the descriptions. Service providers are
allowed to describe their services too vaguely in order to improve their relative
position among the search results. A service, advertising itself as capable of doing
almost everything (e.g. takes as input an object and returns an object), without being
accurate and honest, acts as a source of mislead and degrades the usefulness of the
search by spamming the results with junk false positive hits. Thus, special attention
must be given to the design of the matchmaking algorithm used by the DAML-S
aware matchmaker. The matchmaking algorithm we have implemented partially
addresses this problem by calculating the matching degree between inputs (outputs)
on the basis of the number of hierarchy levels that intervene between the input
(output) of the advertisement and the input (output) of the request.

The behaviour of a service can be represented in DAML-S by using the
ServiceProfile and the ServiceModel. Both of them describe the inputs,
outputs, preconditions and effects of a service although from a different perspective:
the ServiceProfile for enabling the discovery of the service and the
ServiceModel for mainly controlling the interaction with the service. The two
chief components of the ServiceModel are the Process Ontology and the Process
Control Ontology. The Process Ontology describes a service in terms of its inputs,
outputs, preconditions, effects, and, where appropriate, its component subprocesses.
The Process Control Ontology describes each process in terms of its state, including
initial activation, execution, and completion. A version of the Process Ontology is
released in the current version of DAML-S (version 0.7) and can be used to support
automated Web Service invocation, composition and interoperation. The Process
Control Ontology, which is useful for automated execution monitoring, has not yet
been released. DAML-S’ strength of defining a service as a process is very important
for web service composition because it enables higher-level reasoning about how
services may be aggregated to achieve a particular goal. However, the
ServiceModel is still very immature as only the Process Ontology is defined.

Besides the maturity problem, a very important security issue originates from the
possible inconsistency between the ServiceProfile and the ServiceModel.
DAML-S allows the ServiceProfile to describe the service in a totally different
way than the ServiceModel and consequently than the actual service behaviour.
As a result, a malicious provider could advertise its service insidiously in order to take
advantage of prospecting users. Imagine, a ServiceProfile document claiming
to take as input a credit card number and return the cardholders name. There is
absolutely no guarantee that the service will use the credit card number in the
described way, without e.g. charging the credit card. This lack of consistency control

requires that the service requestor disposes a security mechanism which guarantees
consistency between ServiceModel and ServiceProfile.

The ServiceProfile is used by both service providers and service requestors
to describe respectively their services and their needs. For instance, a provider might
advertise a service that provides quotes for a given ticker symbol, whereas a requestor
may look for a service that reports current market prices and stock quotes. Thus,
DAML-S enables the description of requestor’s needs. However, as it is difficult to
compose the DAML-S description of a requested service, special assistance provided
by tools is needed for both developers and non-technical persons. These tools will
enable the definition of all three aspects of a DAML-S description, i.e.
ServiceProfile, ServiceModel and ServiceGrounding. Tools should
also help requestors to express needs for composite services.

When the discovery is performed by a developer or a program that also needs
technical information (contained in the ServiceGrounding) and behavioural
information about the service (expressed in the ServiceModel), then it is clear that
the information contained in the ServiceProfile is not enough. As already
stated, a DAML-S ServiceProfile describes a service as a function of three
basic types of information: provider information, functional description and non-
functional service attributes. The functional description describes what the functions
of the service are, e.g. what the input arguments are and what the service returns as
output. It is merely a summary of the grounding and process model, divided in four
segments: input parameters, output parameters, preconditions and effects.

Input and output parameters are used in our matchmaker for semantically
comparing the service request and the advertisement. The search results do not
depend on the parameter name, which is only a symbolic name hopefully helping the
reader to guess its actual use. Instead they are based on subsumption reasoning and
this is the great value of DAML-S. However, this necessitates that the inputs/outputs
are accompanied with semantic information. This information is described by a
resource pointing to an element of ontology. Unfortunately, the current state of
ontologies is in total lawlessness, by having much different ontologies to describe the
exact same thing.

The comparison of preconditions and effects fields is not applicable. Both of those
fields are totally dependant on the rule representation. However, the current release of
DAML-S does not support rule representation. Therefore, the representation of the
preconditions and effects fields is carried by using a generic DAML-S construct
(daml:thing resource). This means that both preconditions and effects could represent
anything, vigorously refusing to follow any formalism. Consequently, the matching
engine is not able to comprehend and compare these values.

The third part of the ServiceProfile contains a number of non-functional
service attributes. These attributes are described using three classes:
ServiceCategory, QualityRating and ServiceParameter.

• ServiceCategory: it is used to specify how the service is classified within a
taxonomic scheme. This field can be used as a first filter in the matchmaker for

determining whether the service request and advertisement refer to the same
service category. However, such a comparison may not produce safe conclusions,
as it is difficult to constrain a service to belong to a single service category. And
even if this is achieved, it must also be possible to define queries using query
mutation operators in order to potentially retrieve services belonging to different
service categories.

• QualityRating: this is a very important issue in the selection of services.
Although the comparison of the corresponding field in the requested/offered
services appears easy, it is nevertheless tricky. The first problem stems from the
difficulty of establishing some kind of authority, which will objectively rate the
vast, and constantly changing set of services according to their quality. The second
problem derives from the the fact that this field can take one of the available values
such as Excellent, Poor etc. but there is no place where the relation among the
various values is denoted. It is therefore impossible for the matchmaker to
understand that the qualityRating_Excellent is better than qualityRating_Poor.

• ServiceParameter: there are numerous properties that can be associated with
a service. This class provides an extension mechanism for defining new
parameters. These parameters are arbitrary at the moment but hopefully ontologies
of parameters will be developed in the future.

From what we analysed above, it becomes obvious that it is really difficult for a
matching engine to make safe conclusions about the compatibility of services based
on these non-functional attributes. The lack of formalism, the intense dependency on
the ontology type and content and the non-deterministic behaviour exclude inevitably
this part of the ServiceProfile from the matchmaking process. The functional
attributes might be examined in a higher level by a human inspector or by an
automated agent with loose semantics.

In all, this paper ranks the DAML-S open issues into two categories:

• Issues related to the languages specification:

The lack of rules and the failing to preserve consistency among different DAML-S
sections are some examples in this category. This could be addressed by coupling
DAML-S with RuleML [8]. RuleML can describe constraints related to input and
output, and also preconditions and effects for planning. Currently, a DAML-S
working group is trying to specify rules in DAML, but no proposal has been put
forward.

• Issues inherited from the DAML-S mental ancestor, namely the semantic web:

It is extremely important for every reference to web resources or objects to use the
same ontology. If every service description used its own private ontology, probably
it would lead to a more precise description of the service, but the aggregation and
composition of more than one service would be practically impossible, since every
member would use an “incompatible” private language. One obvious solution is to
limit the allowed ontologies, but this would generate a series of critical cascading
problems, questioning the value of the whole idea of the semantic web. Who (and

how) would decide and guarantee the correctness of ontology? Seeing that human
knowledge is infinite, it seems almost impossible to publish all of this knowledge
to a set of documents.

As far as the requirements related to publishing and matchmaking are concerned, it
depends on the implementation of each matchmaker. Concluding we can say that
DAML-S enables the creation of an efficient discovery mechanism but there is
considerable work to be done to enjoy its full potential.

5 Conclusions and Future Work
Web service discovery is an important aspect in web service oriented technology. The
discovery mechanism must adhere to a number of requirements in order to be
efficient. These requirements are not supported by currently available industry
standards such as UDDI and WSDL. The semantic web initiative at W3C is gaining
momentum and generating technologies (such as DAML-S) and tools that may help
bridge the gap between the current standard solutions and the requirements for
advanced web service discovery. However, DAML-S is still in its infancy and a lot of
work has to be done in order to overcome its limitations and problems.

The work reported here outlines our first attempt to deal with issues related to web
service discovery. An important part of our follow-up work is the investigation of
ways for overcoming the problems identified in the previous section. We would also
like to extend our matchmaker in order to address all the requirements presented in
section 2 as well as several value-added requirements such as availability and
scalability.

The merging of the UDDI/WSDL and DAML-S activities is another important
issue. First attempts towards this direction are manifested by the use of WSDL in
ServiceGrounding and the effort described in [20]. Our future work will focus
on this issue too.

Acknowledgement

This work has been partially supported by the Special Account of Research Grants
of the National and Kapodistrian University of Athens (ELKE) under contract
70/3/5362

References
1. Bernstein, A., Klein, M.: Discovering Services: Towards High Precision Service

Retrieval. In: Proceedings of the CaiSE workshop on Web Services, e-Business, and the
Semantic Web: Foundations, Models, Architecture, Engineering and Applications.
Toronto, Canada, 2002

2. Web Services Description Language. http://www.w3.org/TR/2002/WD-wsdl12-
20020709/

3. Universal Description, Discovery and Integration. http://www.uddi.org.

4. Web Ontology Language (OWL) Guide. http://www.w3.org/TR/2002/WD-owl-guide-
20021104/

5. DAML-S 0.7, http://www.daml.org/services/DAML-S/0.7/

6. Beringer, D., Kuno, H., Lemon, M.: Using WSCL in an UDDI Registry 1.02.
http://uddi.org/pubs/wscl_TN_forUDDI_5_16_011.pdf

7. O'Sullivan, J., Edmond, D. ter Hofstede, A: What's in a service? Towards accurate
description of non-functional service properties. In: International Journal of Distributed
and Parallel Databases, Special Issue on E-Services, 12(2), Kluwer, Sep 2002

8. The Rule Markup Initiative. http://www.dfki.uni-kl.de/ruleml/

9. Ankolekar, A., Burstein, M., Hobbs, J.R., Lassila, O., Martin, D.L., McDermott, D.,
McIlraith, S.A., Narayanan, S., Paolucci, M., Payne, T.R., Sycara, K.: DAML-S: Web
Service Description for the Semantic Web. In: Proceedings of the 1st International
Semantic Web Conference (ISWC), 2002

10. Berners-Lee, T., Hendler J., Lassila, O. The Semantic Web. Scientific American, 284(5),
2001, 34-43

11. Tsalgatidou, A., Pilioura, T.: An Overview of Standards and Related Technology in Web
Services. In: International Journal of Distributed and Parallel Databases, Special Issue on
E-Services, 12(2), Kluwer, Sep 2002, 135-162

12. Uschold, M., Gruninger, M.: Ontologies: Principles, Methods and Applications. In: The
Knowledge Engineering Review, 11(2), 1996, 93-136

13. Resource Description Framework. http://www.w3.org/RDF/

14. DAML+OIL. http://www.daml.org/2000/12/daml+oil-index

15. Business Process Modeling Language. http://www.bpmi.org

16. XLANG. http://xml.coverpages.org/XLANG-C-200106.html

17. Web Services Flow Language. http://www-
3.ibm.com/software/solutions/webservices/pdf/WSFL.pdf

18. Web Services Inspection Language. http://www-
106.ibm.com/developerworks/webservices/library/ws-wsilspec.html

19. Web Services Conversation Language. http://www.w3.org/TR/wscl10/

20. Paolucci, M., Kawamura, T., Payne, T. R., Sycara, K.: Importing the Semantic Web in
UDDI. In: Proceedings of Web Services, E-business and Semantic Web Workshop
(WES), 2002

21. Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.: Semantic Matching of Web
Services Capabilities. In: Proceedings of the 1st International Semantic Web Conference
(ISWC), 2002

22. Sollazzo, T., Handschuh, S., Staab, S., Frank, M., Stojanovic, N.: Semantic Web Service
Architecture - Evolving Web Service Standards towards the Semantic Web. In:

Proceedings of the 15th International FLAIRS Conference. Pensacola, Florida, May 16-
18, 2002 AAAI Press

23. Dogac, A., Cingil, I., Laleci, G., Kabak, Y.: Improving the Functionality of UDDI
Registries through Web Service Semantics. In Proceedings of Technologies for E-
Services, Third International Workshop, Hong Kong, China, August 23-24, 9-18

24. Batsakis, A.: Semantic Description and Discovery of Web Services, Diploma
Dissertation, University of Athens, July 2002

APPENDIX: A DAML-S aware Matchmaker
DAML-S does not include the role of a matchmaker into its schemes. Therefore, we
have implemented a DAML-S aware Matchmaker that is used as a case study for
evaluating DAML-S in Web Service Discovery. The CMU group of the DAML-S
Coalition has also developed such a matchmaker [21]. Our goal is not to develop a
more sophisticated matchmaker, but to use our matchmaker for assessing DAML-S.

Ideally all three parts of DAML-S must be used for effective service discovery by
developers and programs. However, when the discovery is performed by end-users
the information of the ServiceProfile is enough. In any case, a matchmaking
algorithm that takes into account all three parts of DAML-S is infeasible at the
moment due to the incompleteness of DAML-S specification. Therefore, our
Matchmaker uses only the DAML-S ServiceProfile. Service providers use
the ServiceProfile to advertise their services, while service requestors use the
profile to specify what service they need and what they expect from such a service.

The Matchmaker is a web service itself that performs two basic activities:
service publishing and service matchmaking (implemented as two different web
services). The service matchmaking web service implements a matchmaking
algorithm that takes as parameters the web service advertisement and the request, it
parses and compares the DAML-S documents, and returns the matching degree. The
service supports two types of queries: simple queries and persistent queries. Persistent
queries remain valid for a predefined period; within the validity period of the query,
the Matchmaker notifies the requestor whenever an advertisement that matches the
query is added or updated. The service matchmaking web service is composed by two
other web services:

• The Parser that is responsible for representing a DAML-S profile document in
the computer memory. It parses the DAML-S documents and creates objects that
represent the corresponding parts of the DAML-S document.

• The Comparer, which takes as parameters two ProfileDocument objects
(one representing the request and the other the advertisement) and returns the
degree of matching.

Our matchmaker, although at preliminary stages, provided useful feedback for an
initial assessment of DAML-S. More details about the design and implementation of
the Matchmaker may be found in [24].

