Jet Syntax & Semantics

1. Jet Instructions

i. R Format Instructions

Most of these instructions are following in the format:

Name (Ra, Rb, Rc)
(
Rc = Ra op Rb, where op is an operator corresponding to the instruction performed. These are: 

· ADD (+)

· SUB (-)

· MUL (*)

· CMEQ (CoMpare EQual - ==)

· CMNE (CoMpare Not Equal - !=)

· CMGE (CoMpare Greater or Equal - >=)

· CMLT (CoMpare Less Than - <)

· AND (&)

· OR (|)

· XOR (^)

· SHRU (SHift Right Unsigned - >>)

· SHL (SHift Left - <<)

There are also SHRS (SHift Right Signed) that performs as SHRU but sign extends the result and GCP that performs:

if (Ra) then Rc = Rb.

ii. I Format instructions

Most of these instructions are following in the format:

Name (Ra, Rb, Imm13)
(
Rb = Ra op Imm13, where op is an operator corresponding to the instruction performed and Imm13 an immediate of 13 bits. These are: 

· ADDI (+)

· SUBI (-)

· MULI (*)

· CMEQI (CoMpare EQual Immediate - ==)

· CMNEI (CoMpare Not Equal Immediate - !=)

· CMGEI (CoMpare Greater or Equal Immediate  - >=)

· CMLTI (CoMpare Less Than Immediate  - <)

· CMLEI (CoMpare Less or Equal Immediate  - <)

· ANDI (&)

· ORI (|)

· XORI (^)

· SHRUI (SHift Right Unsigned Immediate  - >>)

· SHLI (SHift Left Immediate  - <<)

There are also SHRSI (SHift Right Signed Immediate) that performs as SHRUI but sign extends the result, SUBII (SUB Inverse Immediate) that performs Rb = Imm13 – Ra, as well as the memory instructions. The memory instructions have the following result: Rb (( MEM[(Ra + Imm) * size], where size is one for the byte instructions and 4 for the word instructions (words are aligned to addresses of 4). These are:
· LDW (LoaD Word)
· STW (STore Word)

· LDBU(LoaD Byte Unsigned)

· LDBS (LoaD Byte Signed)

· STB (STore Byte) 
iii. L Format instructions

There is only SETHI (Ra, Imm19) instruction that sets the 19 most important bits of Register Ra to the value of Imm19 (SETHI – SET HIgh bits). Imm19 is an immediate of 19 bits.
iv. Branches

These instructions have the format Name (a, b, label) and jumps to the given label if ‘a’ and ‘b’ have a relation corresponding to that of the instruction. In the place of ‘a’ and ‘b’ one can use registers, constant integer values, CONSTs (see Pseudo-instructions), VARs (see Pseudo-instructions) and ARRAY elements (see Pseudo-instructions). These instructions are:

· BREQ (BRanch if EQual - ==)

· BRNE (BRanch if Not Equal - !=)

· BRGE (BRanch if Greater or Equal - >=)

· BRLT (BRanch if Less Than - <)

v. Jumps
There is only the JUMP (label) instruction that jumps to the given label.

2. Jet Pseudo-Instructions
· CONST (name, value): Declaration of a const value attached to a symbolic name.

· VAR (name, value): Declaration of a variable with the given name, initialized to the given value. The value of a VAR can be changed using the SETVAR pseudo-instruction.

· ARRAY (name, size): Declaration of an array of variables with the given name and size. The elements of the array are initialized to zero. Access on each element of the array can be done with the indexing operator ([]). Each element of the array is a VAR and can therefore be used anywhere a VAR could be used.
· SETVAR: Used to set a value to the given variable. Can be used in the following forms:

i. SETVAR(var, R1)

ii. SETVAR(var, 5)

iii. SETVAR(var1, var2)

· INPUT: Used to get input from the user. Can be used in the following forms:
i. INPUT(R1)

ii. INPUT(var)
· OUTPUT: Used to give output to the user. Can be used in the following forms:

i. OUTPUT(R1)

ii. OUTPUT(“This is a string”)

iii. OUTPUT(var)

· PRINT_REGS(): Prints the contents of all registers.
· PRINT_REG(reg): Prints the content of the given register.

3. Jet file Format
The format of a jet file is the following:


// Area before the include statement. Nothing should be here.

#define VISUAL

GTK


// Definition of the visualization type. Can have one of the following 

// values:

//
GTK

(
Graphical User Interface

//
CONSOLE
(
Console Interface

//
EMPTY
( 
No visualization


// If this definition is omitted, its default value is GTK.

#include “jet.h”
// Include file for the necessary Jet Bindings.

// Area before program code. Can contain constant and variable 
// declarations.

PROGRAM_BEGIN
// Beginning of the program code
// Within program code. Can contain constant and variable declarations // (visible from the point of declaration and below) and the rest of the 

// pseudo-instructions, normal instructions and labels (symbolic names 

// followed by ‘:’)

PROGRAM_END
// End of the program code
// Area after program code. Nothing should be here.
