FLIP Visualizer Report

Abstract

This is a report regarding the Visualizer of the FLIP Programming Language. The purpose of the FLIP language is to introduce programming to beginners using a notebook as a simple memory model. The Visualizer helps achieving this purpose by showing the actual notebook during the execution of the program, as well as tracing the execution itself, thus improving the beginner’s understanding of the way programs work, initiating him to programming.
Contents Page

List of figures, List of tables..2
Introduction..3
Additions to the pure FLIP…..4
Visualizer Class Overview..7
GTK Visualization Interface..9
Problems Faced ...11
Reference Page..13
List of figures
Figure 1: A view of the Visualizer Interface................................5
Figure 2: A “torn off” menu...5
List of tables
Table 1: C++ definitions of some of the FLIP keywords...........4
Table 2: List of the visualized events along with a sample output message ...8
Introduction
When one is firstly introduced to programming, there are various things that can be difficult to understand. Two of the most difficult problems are the usage of variables and the memory model of the programming language. FLIP uses the approach of viewing the memory as a notebook, where each position of the notebook can represent a variable. The variable’s name is also associated to its position in the notebook so that when its name is used, the “servant” knows the position in the notebook where he should search for this variable. This helps the beginner understand these rather difficult concepts better, using the correspondence to an actual notebook. Nevertheless, getting familiar with programming is still difficult for the beginner and therefore we should give him all the help we can.

A more experienced user can use the debugger to trace the exact control flow of the program, watch each variable’s value at all times, step into each statement and function and generally have a really good overview of the program’s execution. A user that doesn’t know how to use a debugger is only limited to using debug messages (the classic printf style) at various points of his program. While this is useful and can provide important information and experience to the user, these messages have to be written by the programmer (extra code), can only be used for the specific program, must be removed from the final code anyway and still they don’t give all possible information to the user.

The purpose of the visualizer is to deal exactly with this problem. It has a friendly and easy to learn user interface while providing almost every information the novice (and even a bit more experienced) user might need. The user can know the type and value of each variable at each time, know when a function is being called, when an arithmetic operation just occurred and so on. This gives the user a really good understanding of the flow of the program and helps the debugging process quite a lot.
Additions to the pure FLIP

The visualizer is a run-time expansion of the FLIP language. The FLIP native code, which is transformed to C++ code according to the “servant” bindings, is enriched with various callbacks that take care of the event taking place. For instance, the BEGIN keyword that was defined to just be the opening bracket (‘{‘) in the pure FLIP version is now defined to the opening bracket followed by a call to the “block enter” event. A table with most of these definitions can be found bellow. VisualizedEvents is a singleton class that contains function pointers (callbacks) for the corresponding event. The type LineNameInfo is just a class that contains line and name information for the position and region (a class overview can be found later in this paper). Due to the FLIP syntax, these are the only occasions at which we have name information (the visualizer uses the run time information, so generally we can’t know the variable names at that time). There are also additions for the rest of the visualized events, a complete list of which can be found bellow also. The most important of them is in the Object constructor/destructor where after creating/destroying the object in the FLIP notebook we send the necessary information to the visualized notebook for it to perform the corresponding action thus keeping both notebooks consisted.

Another change made for most of the events was the usage of definitions for built-in function (cos, sqrt, curr_month, etc) and operators (GetRow, GrandPositions, PositionOf, etc) in order to have line information. For instance, the curr_date function that didn’t take an argument was transformed to the following:

#define curr_date()
_curr_date(__LINE__)

const INTEGER _curr_date (unsigned line);
The same technique was followed for most of the functions and operators.

Finally, the array template has changed so that it has a third argument to specify the line at which the array was declared.
	FLIP Keyword
	C++ definition

	BEGIN
	{

 VisualizedEvents::onBlockEnter(__LINE__);

	END
	 VisualizedEvents::onBlockExit(__LINE__);

}

	IF
	if (TrueIfExpression(__LINE__),

	FOR
	for (ForExpression(__LINE__),

	WHILE
	while (TrueWhileExpression(__LINE__),

	FUNC_BEGIN
	{

 VisualizedEvents::onFunctionEnter(
 __FUNCTION__,

 __LINE__
);

	FUNC_END
	 VisualizedEvents::onFunctionExit(
 __FUNCTION__,
 __LINE__
);

}

	RESULT(x)
	return(
 VisualizedEvents::onResult(
 #x,
 __FUNCTION__,
 __LINE__
),
 x

)

	FINISH
	do {
 VisualizedEvents::onFinish(
 __FUNCTION__,
 __LINE__
);
 return;
} while(false)

	USEPOSITION(x)

	LineNameInfo __##x(__LINE__, #x);

Object& x = POSITION

	USEREGION(x)

	LineNameInfo __##x(__LINE__, #x); Region x

	CONTENTOF
	ContentOfLine::recordline(__LINE__).ContentOf

Table 1: C++ definitions of some of the FLIP keywords
	Visualized Event
	Sample output message

	Block enter
	Entering block at line 7

	Block exit
	Exiting from block at line 15

	If enter
	Entering if at line 8

	If exit
	Exiting from if at line 8

	For enter
	Entering for at line 9

	For exit
	Exiting from for at line 9

	While enter
	Entering while at line 12

	While exit
	Exiting from while at line 12

	Arithmetic operator
	Using arithmetic operator ‘+’ between positions (0, 0) and (0, 1)

	Relational operator
	Using relational operator ‘>=’ between positions (1, 2) and (2, 2)

	Unary operator
	Using unary operator ‘-’ at position (3, 0)

	Array declaration
	Declaring array with initial position at (3, 2) and size 5 at line 22

	Array destruction
	Destroying array with initial position at (3, 2) and size 5

	Array indexing
	Indexing array with initial position at (3, 2) and size 5 with index 3

	Function enter
	Entering function 'ShowMenu' at line 30

	Function exit
	Exiting from function ‘ShowMenu’ at line 35

	Function result
	Returning result of expression 'n * factorial(n – 1)' from function 'factorial' at line 40

	Function finish
	Returning from function 'ShowMenu' at line 34

	PageOf
	Getting page of variable at position (2, 5) at line 28

	RowOf
	Getting row of variable at position (2, 5) at line 29

	ContentOf
	Getting content of variable at position (2, 5) at line 30

	PositionOf
	Getting position of variable at position (2, 5) at line 31

	GrantPositions
	Granting positions with initial position at (4, 2) and size 10 at line 56

	ReleasePositions
	Releasing positions with initial position at (4, 2) at line 70

	UseRegion
	Using region (3, 0...5)

	Region indexing
	Indexing region (3, 0...5) with index 3

	Library function
	Using math library function 'sqrt' at line 80

Table 2: List of the visualized events along with a sample output message

Visualizer class overview
The classes used in the Visualizer project are the following ones: Configuration, Visual, GtkVisual, ConsoleVisual, Notebook, Content, VisualizedEvents, IfExpression, ForExpression, WhileExpression, LineNameInfo and ContentOfLine. In more detail, we have:
· Configuration: Used for configuring the output messages of the visualized events. Given a file with the appropriate format (consequent lines in the form of VisualizedEvent = “Corresponding string for this event”) this assigns the given output messages to the specified events.

· Visual: The base class for all visualization types (the default – empty visual). This is used to dispatch the calls of the general events to the ones of the derived classes. Any further visualization type (for instance a visualization using MFC) should derive from this class. This class also holds the information of which of the events should be visualized and also the ones that should be step into. When this is the visualization type chosen, the output is the one of the pure FLIP program.
· GtkVisual: The visualization type that uses the GTK toolkit for the user interface. It derives from the Visual class and creates a new thread to take care of the interface interaction while the main thread continues the program execution. The interface of this visualization type can be found later in this paper. This is the default visualization type.
· ConsoleVisual: The visualization type that uses just the console as an interface. Deriving from the Visual class as well, this visualization type resembles the original FLIP, while still showing the global messages in the output of the program.

· Notebook: This is used for visualizing the contents of the notebook. Contains a map of Contents each one represents a position in the actual FLIP notebook.
· Content: The contents of the notebook used for the visualization.

· VisualizedEvents: The class containing all the callbacks for the visualized events. The various callbacks can be set according to the visualization type. The supported visualization types are EMPTY (pure FLIP), CONSOLE (just console global messages) and GTK (full visualizer interface, with notebook representation, global messages, I/O though the interface, etc).

· IfExpression, ForExpression, WhileExpression : Used to visualize the corresponding events, with these classes we create a temporary object at the beginning of the event while indicating it at the constructor of the class. Symmetrically, when the event ends, the temporary object is destroyed this is indicated at the destructor of the class.
· LineNameInfo: This is used for getting the line and name information for the USEPOSITION(x) and the USEREGION(x) keywords. The unique identifier x lets us define an also unique instance of the LineNameInfo class that can be used to retrieve the information we need about the line and name of the specified position or region using the macros shown in table 1.

· ContentOfLine: In the original FLIP, the ContentOf operator was a pair of overloaded functions that could either take a page & row pair, or a FLIP object. In order to have line information, this had to be done using the definitions of the preprocessor, but there are no overloaded definitions. Thus we use this trick, using a function call that records the line information and returns an instance that can indeed have overloaded function that behave like the original ones. The actual macro can also be found in table 1.
GTK Visualization Interface
The Visualizer Interface, seen below, consists of three main parts; the notebook area, the global messages and the I/O area.

1) Notebook

The notebook contains all the variables of a FLIP program. The information held for each notebook position is the name of the variable that contains, its value, its type and storage type as well as some messages regarding the specific notebook position (i.e. reads and writes performed on it).There are 300 pages in the notebook, each of one containing 60 rows. The navigation through the rows within a page can be done with the scrollbar of the notebook area and the one through the different pages can be done using the previous and next page buttons, found to the right of the notebook area.

2) Global Messages

Located in the lower right corner of the application, this area is used to display the various messages. These messages include entering or exiting blocks, functions, if, while and for statements, using operators, declaring variables, etc. More about the global messages can be found below at visualized events.

3) Input / Output (I/O)

Instead of giving input in the console and getting the output from it, the input is given in the input text field and the output is given in the output text area.

[image: image1.png]
Figure 1: A view of the Visualizer Interface

There is also a classic toolbar with the File, Visualized Events and Visualized Step and Help options. From file you can choose to save the output of the visualizer to a text file in readable form. The Visualized Events are the events that are being visualized. The Visualized Step Events are the events at which the execution halts and only resumes after pressing the STEP button. Finally, there is a status bar on the bottom of the application, which indicates the current state of the program.

 [image: image2.jpg]
The Visualized Events and Visualized Step menus consist of check boxes representing each option. The options with the (symbol are activated and those without it are not.

At the top of each menu there is an option marked with consequent dashes (- - - - - - - - -). This is the “tear off” menu option. By using it, the menu is unattached from the original window application and can be used without having to click it each time. This is quite convenient when you want to specify the events to be visualized (all checked by default) and the events to step at (none checked by default).
Figure 2: A “torn off” menu
Problems Faced

One problem was the knowledge of the name of the function being called. It sure is different to tell the user “Entering function at line 10” and “Entering function factorial at line 10”. The name of the function, though not absolutely necessary, helps a lot understanding the flow of control. And since the function name of the FLIP program was not defined through a macro but was actually written by the programmer in the form of ‘FUNCTION(INTEGER) my_fun ARGUMENTS (INTEGER x, INTEGER y)’ there is no knowledge of the name at run time. A possible but difficult solution would involve creating a functor class out of the function definition with the body of the function as the code being called, but that would require two passes by the preprocessor (in any other case we would have incomplete macros). The solution chosen here was to use the __FUNCTION__ and the __func__ compiler implicit declarations for the function names. Most of the compilers support at least one of these declarations. In case they actually support none of these, we just define the __FUNCTION__ to a message showing to the user that the function name feature is not supported.

The only basic problem that is not solved is the naming of the variables. The declaration style of ‘INTEGER x, y, z;’ is easily transformed to “IntObject x, y, z;” but gives no information for the variable names. A definition of ‘INTEGER(x)’ would do the trick and would even allow multiple declarations like INTEGER(x, y, z) through an appropriate macro with multiple arguments. The problem that would still remain would be the usage of such a macro at the formal arguments of a function, since the formal arguments are not declarations. A workaround on this matter is still being sought and is a really important addition to the visualizer at this point, since again it’s easier for the user to understand the message ‘Adding variable x and variable y’ then ‘Adding variable at position (0, 0) and variable at position (0,1)’.
