Flip Visualizer

User Manual

[image: image4.png]
Anthony Savidis, John Lilis

ICS-FORTH, 2005
Table of Contents
Overview..2
GTK Library installation...2
Compilation…...2
Visualization Interface...3
Visualized Events..6
Overview

The purpose of this manual is to help you get familiar with the FLIP Visualizer. The sections that are covered are:

1) Installing the GTK library

2) Compiling the FLIP program with the visualizer

3) Visualizer Interface
4) Visualized Events

1. GTK Library Installation

In order to use the visualization features, you first have to install the GTK libraries and runtime environment.
For those working on Windows, download the required file using this link http://gladewin32.sourceforge.net/index.php. For those working on Unix, if the libraries are not installed already, ask your administrator to install them for you (they can be found here http://www.gtk.org/download/).
The required version of the GTK library needed for the visualizer is 2.6.3 or later (may work on previous versions as well but this is not tested and therefore not recommended).
2. Compilation

Write the source code for your program and save it to a main.cpp file. The beginning of the file should look like this (note that the order is important):

#define VISUAL_TYPE VisualizedEvents::X
#include <servant.h>

The include is the usual one used for all FLIP programs. The define is to state the visualization type that you want. The possible values for X are:
· GTK – Uses the Graphical Interface of the Visualizer (see visualizer interface below). This is the default mode (if the first define is omitted, this is automatically defined).
· CONSOLE – There is no graphical interface, just the console to display the various messages.

· EMPTY – No visualization at all. Just your pure FLIP program.

After having your main.cpp file, you want to continue to the compilation. On windows (visual studio) get and use the default project built for you and replace the /src/main.cpp file with your own. Then open the project and build it. Don’t change anything in the other files. On unix/linux just use the makefile provided. After the compilation, run and program and press the STEP button once to begin execution.
3. Visualization Interface
The Visualizer Interface can be seen below.

It consists of three main parts; the notebook area, the global messages and the I/O area.

1) Notebook

The notebook contains all the variables of a FLIP program. The information held for each notebook position is the name of the variable that contains, its value, its type and storage type as well as some messages regarding the specific notebook position (i.e. reads and writes performed on it).There are 300 pages in the notebook, each of one containing 60 rows. The navigation through the rows within a page can be done with the scrollbar of the notebook area and the one through the different pages can be done using the previous and next page buttons, found to the right of the notebook area.
2) Global Messages
Located in the lower left corner of the application, this area is used to display the various messages. These messages include entering or exiting blocks, functions, if, while and for statements, using operators, declaring variables, etc. More about the global messages can be found below at visualized events.
3) Input / Output (I/O)
Instead of giving input in the console and getting the output from it, the input is given in the input text field and the output is given in the output text area.

A view of the Visualizer Interface
[image: image2.jpg]
There is also a classic menu bar with the “File”, “Visualized Events”, “Visualized Step” and “Help” options. From file you can choose to save the output of the visualizer to a text file in readable form. The Visualized Events are the events that are being visualized. The Visualized Step Events are the events at which the execution halts and only resumes after pressing the STEP button. Finally, there is a status bar on the bottom of the application, which indicates the current state of the program.

 A “torn off” menu[image: image1.wmf]

The Visualized Events and Visualized Step menus consist of check boxes representing each option. The options with the (symbol are activated and those without it are not.

At the top of each menu there is an option marked with consequent dashes (- - - - - - - - -). This is the “tear off” menu option. By using it, the menu is unattached from the original window application and can be used without having to click it each time. This is quite convenient when you want to specify the events to be visualized (all checked by default) and the events to step at (none checked by default).

Finally, there are shortcuts for the various menus and menu items. The shortcuts can be found in the following table.
	Shortcut Keys
	Action Performed

	ALT + F
	Highlights and opens the File menu

	ALT + E
	Highlights and opens the Visualized Events menu

	ALT + S
	Highlights and opens the Visualized Step menu

	ALT + H
	Highlights and opens the Help menu

	CTRL + A
	Opens the About menu

	CTRL + S
	Saves the current state of the Visualizer execution

	CTRL + Q
	Quits the Visualizer application

A detailed view of the Visualizer Interface
[image: image3.png]Menu Bar

Minimize, Restore/Maximize, Close Window Buttons
 Notebook Area

Previous Page/ Next Page Buttons

Status Bar

Input Area

 Step Button
 Global Messages Area

Output Area
4. Visualized Events
The events that can be visualized are shown in the table below, followed by a sample output message that the event can produce:

	Visualized Event
	Sample output message

	Block enter
	Entering block at line 7

	Block exit
	Exiting from block at line 15

	If enter
	Entering if at line 8

	If exit
	Exiting from if at line 8

	For enter
	Entering for at line 9

	For exit
	Exiting from for at line 9

	While enter
	Entering while at line 12

	While exit
	Exiting from while at line 12

	Arithmetic operator
	Using arithmetic operator ‘+’ between positions (0, 0) and (0, 1)

	Relational operator
	Using relational operator ‘>=’ between positions (1, 2) and (2, 2)

	Unary operator
	Using unary operator ‘-’ at position (3, 0)

	Array declaration
	Declaring array with initial position at (3, 2) and size 5 at line 22

	Array destruction
	Destroying array with initial position at (3, 2) and size 5

	Array indexing
	Indexing array with initial position at (3, 2) and size 5 with index 3

	Function enter
	Entering function 'ShowMenu' at line 30

	Function exit
	Exiting from function ‘ShowMenu’ at line 35

	Function result
	Returning result of expression 'n * factorial(n – 1)' from function 'factorial' at line 40

	Function finish
	Returning from function 'ShowMenu' at line 34

	PageOf
	Getting page of variable at position (2, 5) at line 28

	RowOf
	Getting row of variable at position (2, 5) at line 29

	ContentOf
	Getting content of variable at position (2, 5) at line 30

	PositionOf
	Getting position of variable at position (2, 5) at line 31

	GrantPositions
	Granting positions with initial position at (4, 2) and size 10 at line 56

	ReleasePositions
	Releasing positions with initial position at (4, 2) at line 70

	UseRegion
	Using region (3, 0...5)

	Region indexing
	Indexing region (3, 0...5) with index 3

	Library function
	Using math library function 'sqrt' at line 80

The visualizer can also be instructed to halt execution at each of the above events as well as on Variable writing, on Variable declaration and on Variable destruction. The execution can then be resumed by pressing the STEP button.

PAGE
2

