
The Development of Web-based Services

N. Partarakis
1
, C. Doulgeraki

1
, M. Antona

1
, C. Stephanidis

1,2

1
Foundation for Research and Technology – Hellas (FORTH)

Institute of Computer Science

Heraklion, Crete, GR-70013, Greece

cs@ics.forth.gr
2
 University of Crete, Department of Computer Science

Abstract: This Chapter presents an overview of widely available methods and

tools for developing web-based services. In this context, modern

programming languages, popular user interface (UI) toolkits and Integrated

Development Environments (IDEs) are briefly reviewed, taking into account

the facilities offered to software developers for producing more advanced

web-based services. The main drawback of these development approaches

comes out to be their inability to cope with the diversity of the target user

population. A potential solution is proposed through a novel approach to the

development of inclusive Web-based interfaces (web content), capable to

adapt to multiple and significantly different profiles of users and contexts of

use. To this purpose, an advanced toolkit called EAGER is proposed. EAGER

allows Microsoft® .NET developers to create interfaces that conform to the

World Wide Web Consortium (W3C) accessibility guidelines, and which are

able to adapt to the interaction modalities, metaphors and user interface

elements most appropriate to each individual user, according to profile

information (user and context). The process of employing EAGER is

significantly less demanding in terms of time, experience and skills required

from the developer than the typical process of developing Web interfaces for

the “average” user. Ultimately, EAGER offers significant benefits to

developers, and ensures the delivery of widely accessible, usable and

satisfying Web-based interfaces.

1. Introduction

The World Wide Web serves as an unprecedented resource for knowledge,

communication, and data and services acquisition, and plays a key role in an

increasing number of aspects of everyday life, including commerce, information,

education and training, job searching and remote collaboration, entertainment, social

participation, and interaction with public administrations. The Web, thanks to its

universality and the evolving usefulness (if not necessity) of its content, holds an

unprecedented potential of reaching an enormous number of individuals; a population

of potential users significantly characterized by diverse interaction skills, abilities,

preferences, and access equipment (personal computers, mobile phones and other

small display devices, web-TV, kiosks, assistive technology, etc.).

Admittedly, development of Web applications and services that meet the needs and

requirements of as many diverse users as possible is a difficult and demanding task.

The development frameworks available to modern software developers (such as

ASP.NET, JavaServer Faces, Ajax based frameworks, PHP toolkits and the traditional

HTML syntax) are designed to offer complex artifacts for building advanced

interaction scenarios. Unfortunately, little has been done for incorporating into these

development frameworks knowledge regarding the user and the context of use, in

order to support not only usability, but also access to anyone and in particular people

at risk of exclusion. The task of embedding these features in modern web based

applications is put in the hands of developers that are supported with powerful

development environments for achieving their goal (Microsoft Visual Studio .NET,

NetBeans IDE, Eclipse, etc). The vast majority of them, by “tradition” (if not as a

compromise), design and develop their artifacts for the typical or so-called “average”

user, trusting this as the best solution to cater the needs of the broadest possible

population. Unfortunately, this approach leads to excluding numerous categories of

users, such as non-expert IT users, the very young or the elderly, people with

disability, etc. [21]. However, specialized designs for one user group often constrain

the capabilities of another still important group. As a result, developers, eventually

pushed by social or market needs towards broadening their user base, are often

required to further “improve” their artifacts so that these adhere to generalized (i.e.,

average - again) usability and accessibility guidelines. Ultimately, this way of

practice, usually also accompanied by limited user testing, often leads to end-products

that fail to justify their underlying effort investments.

Contemporary users increasingly desire and expect the delivery of interfaces that are

highly tailored to their own needs, and hardly compromise on rigid solutions for some

imaginary “average” users. To this end, the main challenge faced today by designers

and researchers of Web User Interface (WUI) is to elaborate and deploy approaches

that can meet effectively, in various contexts, as many diverse needs and requirements

as possible. An indicative list of dimensions of diversity to be considered is presented

in Table 1. As a result, design - or better saying design needs to be equally targeted

towards all potential users [21].

Table 1. Dimensions of diversity – some examples

Recent approaches to Universal Access and Design for All emphasize the central role

of user interface adaptation towards satisfying, equally, the needs and requirements of

diverse target user groups, including of people with disability [20]. So far however,

adaptation has been explored mainly in the context of independent applications. In the

Web environment, adaptation techniques have been applied mainly at the level of user

agents (e.g., the AVANTI browser [22]). However, such approaches are limited by the

fact that the user must have the actual product installed on the computer used to gain

access to Web content. On the other hand, intermediary agents acting as filtering and

transformation tools have been proposed and used to build alternative and often called

“more accessible” versions of web pages taking into account a collection of

accessibility guidelines that can be checked against a web page automatically. The

deployment of this later concept (e.g., [2]) has highlighted a number of practical

issues putting the universality of the approach under question, as a posteriori

developments of specialized intermediary agents are required almost from scratch for

each website.

2. Development methods and tools

This section provides an overview of facilities currently available to developers for

addressing the increasing need for more versatile and powerful applications that can

cope not only to the transition from the traditional computer aided work environment

to the trend of collaborative web-based work places but also to the need of providing

seamless access to this facilities regardless of age disability and context of use. To this

end, development methods in terms of programming languages and UI toolkits are

presented together with the modern Integrated Development Environments (IDEs)

that are envisioned to support the majority of development activities.

2.1 Programming languages

Traditional web based development was carried out through the development of

simple HTML pages [5] that were later enriched by scripts for allowing a richer

interaction with a web page. This approach was quickly found not sufficient, since

more aspects of everyday work needed to be transferred on the web, such as mail

browsing, communication, collaboration and project administration and management.

The need for these applications leaded to the need of employing general purpose

programming languages (such as C# and java) and advanced scripting languages

(such as PHP) for supporting their development.

2.1.1 Microsoft C#

C# is a simple, modern, object-oriented, and type-safe programming language [3]. C#

has its roots in the C family of languages and will be immediately familiar to C, C++,

and Java programmers. C# is standardized by ECMA International as the ECMA-334

standard and by ISO/IEC as the ISO/IEC 23270 standard. Microsoft’s C# compiler for

the .NET Framework is a conforming implementation of both of these standards [3].

C# together with the available powerful web development toolkits (such as ASP.NET

[12] and AJAX.NET [1]) can be used to build advanced web-based services.

2.1.2 SUN java

The Java programming language is a general-purpose concurrent class-based object-

oriented programming language, specifically designed to have as few implementation

dependencies as possible. It allows application developers to write a program once

and then be able to run it everywhere on the Internet [6].

2.1.3 php

PHP is a widely-used general-purpose scripting language that is especially suited for

Web development and can be embedded into HTML [18]. What distinguishes PHP

from something like client-side JavaScript is that the code is executed on the server,

generating HTML which is then sent to the client. The client receives the results of

running that script and not the script itself. The main advantage of using PHP is that it

is extremely simple for a newcomer, but offers many advanced features for a

professional programmer. Although PHP development is focused on server-side

scripting, it can also be used for other purposes [19].

2.2 UI toolkits and web application development libraries

In the previous section an overview of the programming languages offered to

developers for developing modern web application were highlighted. Unfortunately,

the existence of these languages alone cannot solve all the problems faced, mainly in

relation to the limited functionality of elements provided by traditional HTML syntax.

The main drawback introduced by HTML was the inability to deal with HTML

elements in an object oriented manner, as well as the lack of facilities for creating

more rigid and powerful HTML that would ensure code reusability, reduced

programming time and flexibility. These drawbacks made clear that the development

of special purpose UI toolkits, which could cooperate in an object oriented manner

with general purpose languages, was essential. This section focuses on these UI

toolkits, mainly presenting the innovations they introduced.

2.2.1 Microsoft ASP.NET

Microsoft ASP.NET is a free technology that allows programmers to create dynamic

web applications. ASP.NET can be used to create anything from small, personal

websites through to large, enterprise-class web applications [12]. More specifically,

ASP.NET is a unified Web platform that provides all the services necessary for

building enterprise-class applications. ASP.NET is built on the .NET Framework, so

all .NET Framework features are available to ASP.NET applications. Applications

can be written in any language that is compatible with the common language runtime

(CLR), including Visual Basic and C# [13]. ASP.NET includes [14]:

 A page and controls framework

 The ASP.NET compiler

 Security infrastructure

 State-management facilities

 Application configuration

 Health monitoring and performance features

 Debugging support

 An XML Web services framework

 Extensible hosting environment and application life cycle management

 An extensible designer environment

2.2.2 Java server faces

JavaServer Faces technology is a server-side user interface component framework for

Java technology-based web applications. The main components of JavaServer Faces

technology are as follows [7]:

 An API for representing UI components and managing their state; handling

events, server-side validation, and data conversion; defining page navigation;

supporting internationalization and accessibility; and providing extensibility

for all these features.

 Two JavaServer Pages (JSP) custom tag libraries for expressing UI

components within a JSP page and for wiring components to server-side

objects.

The well-defined programming model and tag libraries of JSP significantly ease the

burden of building and maintaining web applications with server-side UIs, making it

possible with minimal effort to wire client-generated events to server-side application

code, bind UI components on a page to server-side data, construct a UI with reusable

and extensible components, and save and restore UI state beyond the life of server

requests.

2.3 Integrated Development Environments (IDEs)

An Integrated Development Environment is a set of tools that aids application

development. Most IDEs have tools that allow developers to [9]:

 Write and edit source code

 See errors while typing

 See highlighted code syntax

 Automate repetitive tasks

 Compile code

 Browse class structures

 View Documentation

 Use drag-and-drop utilities for easy building of features, such as graphic

objects or creating database connections

In addition, some advanced IDEs [9]:

 Provide templates for quick creation of web components

 Provide code-completion while typing

 Automatically create classes, methods, and properties

 Integrate with source code repositories

 Integrate with web application servers

 Integrate with build utilities

 HTTP monitoring for debugging web applications

 Unified UI for debugging code

 Macros and abbreviations

 Refactor code

 Provide UML support.

This sections provides an overview of the specific features offered by the most

popular IDEs (such as Microsoft Visual studio, Net Beans IDE and Eclipse)

2.3.1 Microsoft Visual studio

Visual Studio is the standard Development Environment provided by Microsoft for

building applications using .Net technologies. Visual Studio provides a developer

friendly environment together with a vast number of facilities such as syntax

highlighting, advanced debugging facilities, etc. Microsoft® Visual Studio delivers on

Microsoft’s vision of smart client applications by enabling developers to rapidly

create connected applications that deliver the highest quality, rich user experiences.

According to Microsoft Visual Studio offers facilities for [10]:

 Developing Smart Client Applications.

 Creating Microsoft Office Applications.

 Building Windows Vista Applications.

 Handling Data More Productively.

 Enabling New Web Experiences

 Gaining an Improved Overall Developer Experience.

 Improving Application Lifecycle Management (ALM)

More specifically, in the context of web applications through Microsoft® Visual

Studio, Microsoft developers are offered with [11]:

 a robust, end-to-end platform for building, hosting, and exposing applications

over the Web.

 easy creation of Web applications with more interactive, responsive, and

efficient client-side execution

 creation of new Web experiences by empowering Web developers through

simplifying Web development

 effective collaboration and faster results by integrating the advanced designers

and editors of

 the tools required to create compelling, expressive, Web applications with

“AJAX-style” interactive Web user interfaces.

2.3.2 Net Beans IDE

NetBeans is a free, open-source Integrated Development Environment for software

developers [15]. It provides all the tools needed to create professional desktop,

enterprise, web, and mobile applications with the Java language, C/C++, and Ruby.

The NetBeans IDE is easy to install and use straight out of the box and runs on many

platforms including Windows, Linux, Mac OS X and Solaris [16]. Latter releases

provide several new features and enhancements, such as rich JavaScript editing

features, support for using the Spring web framework, and tighter MySQL integration.

Some of the key features introduced by NetBeans include:

 Easy-To-Use Java GUI Builder

 Visual Web and Java EE Development

 Visual Mobile Development

 Visual UML Modeling

 Ruby and Rails Support

 C and C++ Development.

2.3.3 Eclipse

Eclipse Foundation’s Eclipse IDE [4], originally designed and implemented by IBM,

aims to offer a comprehensive service platform for integrating development and

deployment tools for a variety of programming languages. The Eclipse platform,

however, mainly constitutes a complete IDE for the language it is written in – Java.

Eclipse employs a component framework based on the OSGi [17] specification in

order to provide all of its functionality on top of its platform. Through that

mechanism, Eclipse can be fully extended in the Java language, as it essentially

allows programmers to access the platform’s components and replace them by

implementing their Java abstract interfaces.

Lastly, Eclipse’s editor for the Java programming language utilizes the compiler to

validate the edited program’s syntax. By using the compiler’s internal representation

of the program, the editor provides refactoring tools and automatic symbol completion

for Java objects.

2.4 Case Study: Developing a simple web based service using Microsoft C#, the

ASP.NET UI toolkit and Visual Studio 2003 IDE

The aim of this section is to elucidate the benefits of employing a subset of the

facilities presented in the previous sections for developing a simple web based service

in terms of the developer’s performance and efficiency. To this end, the technologies

used are Microsoft C# programming language ASP.NET UI toolkit and Visual Studio

2003 IDE and the case study is a simple web-based service for posting messages. The

facilities that are highlighted include the usage of a modern IDE with design time

support together with a general purpose programming language and a specialized web

base UI toolkit.

In order to develop a Web application using the ASP.NET, the following are

considered as minimum prerequisites:

 An operating system supporting ASP .NET: Windows 2000 (Professional,

Server, and Advanced Server) or Windows XP Professional or Windows

Server 2003

 Internet Information Services

 .NET Framework version 1.1

 Microsoft Visual studio 2003

 Microsoft SQL Server.

For providing an overview of the tasks involved in developing a web application

using the aforementioned facilities, this sections addresses how to create, build and

run a simple web page, for example a page that supports posting a topic on a message

board. The development language used to build the aforementioned example is C#

along with the standard ASP .NET Web UI controls Library.

The first step introduced in the development process is the creation of a new web

application. This is achieved by selecting File New Project in the Visual Studio

2003 IDE. This brings up the ‘New project’ dialog that is presented in Figure 1, where

the developer clicks on the ‘Visual C#’ node in the tree-view on the left hand side of

the dialog box and choose the ‘ASP.NET Web Application’ icon. Next, the developer

types the name of the project and hits the button OK.

Figure 1: Visual studio: The New Project dialog

Visual Studio will then create and open a new web project within the solution

explorer. By default, it will have a single page (WebForm1.aspx), an AssemblyInfo.cs

file, a Global.asax file, as well as a Web.config file (see Figure 2). All project file-

meta-data is stored within an MSBuild based project file.

Figure 2: Visual studio: New project solution explorer

2.4.1 Using the Designer

Step 1. Design the User Interface

Firstly, a mockup of the page to be developed is designed. Figure 3 presents a

mockup that includes a title and a description field along with the date entry

module and a module for attaching files to topic. Files are attached using the

browse button in order to locate the file, and the attach button to upload the

located file. The field-set topic files are used to present the uploaded files. If a

file was uploaded by mistake, the user can delete it by checking it and then by

pressing the delete button.

Figure 3: Mock-up of the page

Step 2. Writing ASP. Net Markup

When the web page has been designed, the next step is the process of writing

ASP .Net markup that renders the controls that have been designed. Figure 4

includes the mockup fields for title, description, file uploader and date along

with their ASP .Net representation. Figure 5 presents the ASP .Net markup, that

is required in order to render the field ‘Topic files’, the list of uploaded files and

the buttons ‘Next’ and ‘Cancel’.

Step 3. Adding functionality to the controls

Subsequently, functionality has to be added to the controls in order for them to

function properly. This functionality may vary and includes assigning text to

labels, setting visibility to controls, filling repeater of files, deleting files, storing

data to database, etc. In Figure 6 an example of the functionality that is required

in order to upload files (topic attachments) is presented. Figure 7 includes the

necessary code in order to fill in the repeater representing the uploaded files, and

Figure 8 includes the code to delete undesired files.

Step 4. Building and running the project

When the developer has incorporated all the appropriate functionality, the web

application can be run by hitting the button ‘F5’, and the results are viewed in

the browser.

Figure 4: Writing HTML (1)

Figure 5: Writing HTML (2)

Figure 6: Code for uploading file

Figure 7: Code for presenting uploaded files

Figure 8: Code to remove uploaded files

2.5 Discussion

The previous sections presented an overview of the widely available development

facilities and tools used today for creating the majority of web-based services,

including the programming languages used, the UI toolkits offered and the IDEs

employed during development. Additionally, a case study of the process followed for

building a web-based service was presented, illustrating how the aforementioned

facilities can be used. Unfortunately, however, little has been done so far for

incorporating in these development frameworks knowledge regarding the user and the

context of use for supporting not only usability but also access to anyone, and in

particular people at risk of exclusion. The task of embedding these features in modern

web based applications is put in the hands of web developers. The vast majority of

web-based applications and services today, however, are developed for the so-called

“average” users, trusting this as the best solution to cater the needs of the broadest

possible population. Unfortunately, this approach leads to excluding numerous

categories of users, such as non-expert IT users, the very young or the elderly, people

with disability, etc.

3. EAGER: A development toolkit for supporting user interface

adaptation of electronic services

This section presents a development toolkit that aims at overcoming the limitations

discussed above. The approach followed by this toolkit builds on the facilities offered

by modern programming languages and UI toolkits, and furthermore employees

features offered by modern IDEs (such as design time support), and at the same time

provides output that can be adapted to various user profiles and contexts of use.

3.1 Adaptive and Adaptable behavior

The support for adaptive and adaptable behavior has been recognized as a trustful

medium for supporting the needs of the broadest possible user population in various

contexts. In the context of web applications providing seamless access to web-based

services demands solutions able to cope with a wide range of user and context

requirements for facilitating the interaction needs of potentially all citizens. In this

context, web user interface adaptations must take into account a wider collection of

parameters, such as context and user specific attributes (e.g., input-out devices,

disabilities, user attitude towards technology etc). The adaptation of an application

can occur in different ways and can cover a number of aspects of the application or its

environment.

The adaptation of an application can be classified according to which aspects of the

application are adapted. Generally, Web application model described in [8]

distinguishes five orthogonal aspects of an application:

(1) Content: Adaptation of content affects the content such as text, graphics or any

other media type or data used or displayed by the application. This type of

adaptation is most common on the Web. EAGER supports adaptations which

automatically modify the presentation and conceived behavioral attributes of

interactive elements. As an example images can be transformed as normal

images, as simple text containing image’s alternative text and as a hyperlink that

downloads the image and has as text the image’s alternative text.

(2) Navigation: Adaptation of navigation adapts the navigational structure of a web

application hiding or modifying links. EAGER supports navigation adaptations.

Some examples include the linearization of the whole navigation of the portal in

a top navigation bar in order to facilitate blind users or the step by step

navigation which reduces the number of links that motor-impaired user has to

scan.

(3) Layout: Adaptation of layout changes the way information is presented to a

user visually. This can be done to accommodate different types of displays or to

satisfy preferences of aesthetic, cultural or other nature a user may have. The

proposed framework supports layout adaptations, as long as it offers alternative

templates layouts depending on screen resolution, disability etc.

(4) User-interaction: Adaptation of user-interaction changes the way the user

interacts with the application. An application might adapt offering a wizard

based interface to less experienced users and a single page form to other users.

EAGER supports conditional activation and deactivation of multiple interaction

modalities based on the user profile including alternative task structures,

alternative syntactic paradigms, task simplification and adaptable and adaptive

help facilities - runtime task guidance.

(5) Processing: Adaptation of processing changes the way user-input is processed.

For example, a product request of a person that has placed many large orders in

the past might be processed differently than that of a previously unknown

person. EAGER doesn’t support such adaptations. These kinds of adaptations

cannot be address by a generic framework and rely solely on the implementation

of each web application.

3.2 The EAGER toolkit

EAGER1 is a development toolkit for supporting user interface adaptation of

electronic services. EAGER is targeted to support the application of the Unified Web

Interfaces methodology which in turn is derived from the architectural structure

proposed for enabling the development of Unified User Interfaces [20]. EAGER

supports the development of web user interfaces which can adapt to interaction and

accessibility requirement of the broadest possible end user population (see also the

Chapter on “Designing web-based services” of this book) taking into account user

profile information such as:

1 EAGER stands for “toolkit for embedding accessibility, graceful transformation and ease of use in Web–based products”.

 language

 input device used (mouse, switches, game pad, etc)

 disability (e.g., blind, motor impaired, etc)

 device used for accessing the web (e.g., pc, pda, tablet pc, etc)

 assistive technology used (e.g., screen reader, screen magnifier, etc)

 web familiarity (e.g., novice, expert user, etc)

Using these basic user profile parameter EAGER decides upon the conditional

activation of the available interaction elements and accessibility characteristics

allowing at the same time end users to manually override the default decision making

process by making specific selections to fine tune their interface. In this context some

of the basic adaptations supported by means of EAGER in various contexts include:

 Accessibility:

o Alternative table linearization styles

o Alternative chart presentation schemes

o Alternative image presentation schemes

o Alternative font sizes

o Alternative color setting schemes

o Alternative text entry styles

o Alternative links and buttons presentation styles

o Alternative field sets presentations

o Alternative text editing styles

o Rendering of quick access links

o Rendering of section breaks

o Enabling template linearization

o Enabling support for dynamic adaptation (adapting to context change)

o Enabling text to speech

 Interaction:

o Alternative file uploading styles

o Alternative file displaying styles

o Alternative paging styles

o Alternative date selection styles

o Alternative image uploading styles

o Alternative image displaying styles

o Alternative styles for module functions

o Alternative styles for module options

o Alternative tab presentation styles

o Alternative Font Families

o Alternative search styles

o Alternative styles for presenting commonly used options

o Alternative navigation styles

o Alternative skins

From a technical point of view, EAGER is a prototype development toolkit of the core

UWI architecture components: User Information, Context Information, Decision

Making, Dialogue Controls (activation/deactivation), of the primitive UI elements

with enriched attributes (e.g., buttons, links, radios, etc.), of the structural page

elements (e.g., page templates, headers, footers, containers, etc.), and of the

fundamental abstract interaction dialogues in multiple alternative styles (e.g.,

navigation, file uploaders, paging styles, text entry). The EAGER toolkit has been

developed in Microsoft® Visual C# .NET and according to the UWI framework. The

technologies that were used for the development of the EAGER toolkit include:

 Microsoft Visual C# .NET for the implementation of the UI modules.

 Microsoft Visual C# .NET and XML for Business Logic and Web Services.

 Microsoft SQL server 2000 for the database implementation.

For the development of EAGER, a number of UI elements were designed and

implemented in various forms (polymorphic task hierarchies) according to specific

user and context parameters values. This phase provided input to the actual

development process of EAGER, which involved the implementation of the

alternative interaction elements and of the mechanisms for facilitating the dynamic

activation - deactivation of interaction elements and modalities based on individual

user interaction and accessibility preferences.

In brief, EAGER is an advanced library of: (a) the core UWI architectural

components; (b) primitive UI elements with enriched attributes, e.g., buttons, links

and radios; (c) structural page elements, e.g., page templates, headers, footers and

containers; and (d) fundamental abstract interaction dialogues in multiple alternative

styles, e.g., navigation, file up-loaders, paging styles and text entry.

3.3 EAGER vs. traditional development approaches

In section 2.4, the process followed for developing a simple web application using the

Microsoft ASP.NET development platform together with the Microsoft Visual Studio

2003 environment was presented. The aim of this section is to elucidate the benefits of

employing the EAGER toolkit together with Microsoft’s Visual Studio, in terms of

the developer’s performance and efficiency. Toward this end, an example of how to

redevelop the simple webpage for posting messages presented in section 2.4 using the

EAGER toolkit is presented, focusing on the expected empowerment of the developer,

together with the support provided for developing web user interfaces capable of

automatic adaptation behavior.

3.3.1 Using EAGER in combination with .Net

As discussed in the previous sections, the EAGER framework supports the

development of web applications that adapt their UI elements to meet the

requirements set by user and context specific attributes. In this section, the methods

and techniques used for building a post topic page using the EAGER framework are

presented.

Step 1. Design the User Interface

The design of a web page for posting topic demands a different logic when it is

intended to be developed with the EAGER toolkit. The design of such a web

page is task oriented, since the DCC discussed in section 3.2 includes several

alternative User Interface components which encapsulate functionality for

several tasks. Figure 9 includes two text entry components, a date entry

component, multiple files entry component and a component for functions to be

applied.

Step 2. Writing EAGER Markup

Following the design phase of the web page, the subsequent step includes the

process of writing EAGER markup that renders the components that have been

designed. Figure 10 includes all the components included in the mockup, along

with their EAGER markup code. As an example, ‘ics:icsDatePicker’ defines a

date entry control which may be transformed to alternative user interfaces such

as dropdowns which contain year, month, day or textboxes for filling in year,

month and day or a graphical calendar for clicking on date.

Figure 9: Task oriented mock-up of the page

Figure 10: Writing EAGER Markup

Step 3. Adding functionality to the controls

At this stage, functionality has to be added to the controls in order for them to

function properly. The functionality that is needed to be added to EAGER

controls is radically reduced compared to the code that is required for the ASP

.Net controls. Figure 11 represents all the code that is required in order for the

module to support uploading - presenting files and deleting files. To configure

the component for file uploading four variables are used, ‘sourcePath’ is used

along with the ‘sourceID’ to combine the temporary location where the files will

be saved and the ‘fPath’ along with the ‘destID’ to combine the final location

where the files have to be saved. The source path and the final path can be the

same.

Figure 11: Code for uploading file

Step 4. Building and running the project

When the developer has incorporated all the appropriate functionality, the web

application can be run by hitting the button ‘F5’ and the results are viewed in the

browser. In Figure 12, some of the alternative representations that may appear

when the web application runs, depending on end user characteristics and the

context of use, are presented.

In the first alternative representation, simple textboxes appear along with a

graphical calendar and field-set and a simple file up loader. In the second option,

the textbox changes color on focus and is offered along with a virtual keyboard.

Date entry uses three dropdowns for year, month and day respectively. Finally,

the functions ‘Next’ and ‘Cancel’ are provided with a small description next to

each of them.

Figure 12: Post topic the alternative representations

3.4 Porting EAGER into an existing web-based service

The EAGER toolkit is not only a versatile tool for developing UWI from scratch. In

the case of a portal developed by means of Microsoft’s Visual Studio, EAGER can be

ported in order to incorporate adaptation and improve the user-experience of end-

users. This transformation can bring great benefits in a number of directions including

accessibility, usability and the ability to serve diverse user requirements. It is worthy

noticing that when the EAGER toolkit was ported into an existing web-based module

which was originally developed using Visual Studio, the resulting total number of

code lines was significantly reduced by 50% (see Figure 13).

Figure 13: Comparison between developing with Visual Studio alone and with the EAGER toolkit

The process of porting EAGER into existing Web portals typically requires the

following steps:

 EAGER setup: Involves the process of setting up the database schemes – Web

services used by the EAGER toolkit for storing and retrieving user and context

specific parameters.

 Import EAGER UI toolkit: Add a new reference to the EAGER toolkit to each

project contained in the old portal.

 Import EAGER administrative facilities: Add the EAGER Profile Selection UI

Module, Profiles Administration UI module and Statistics UI Module projects

to the solution.

 Analyze existing application interfaces and identify functionality that can be

abstracted and therefore replaced by the EAGER equivalents (such as file

uploading code snippets, paging facilities, etc).

 Use the EAGER toolkit primitive controls instead of the build in ASP.NET

controls (for example use the EAGER label instead of the ASP.NET label).

3.5 Benefits of using EAGER

The benefits gained by using the EAGER toolkit lie on a number of dimensions,

including:

 The time required for designing a web application and the detail of design

information needed.

 The time required for designing the front end of the application to be used by

end users.

 The developer effort for setting up the application.

As discussed above, in the process of designing a simple form for posting topics, the

complexity of the UI design effort is radically reduced due to the flexibility provided

by the EAGER toolkit for designing interfaces at an abstract task-oriented level.

Using EAGER, designers are not required to be aware of the low level details

introduced in representing interaction elements, but only of the high level structural

representation of a task and its appropriate decomposition into sub tasks, each of

which represents a basic UI and system function.

On the other hand, the process of designing the actual front end of the application

using a mark-up language is radically decreased in terms of time, due to the fact that

developers initially have to select among a number of interface components each of

which represents a far more complex facility. Additionally, developers do not have to

spend time for editing the presentation characteristics of the high level interaction

element, due to the internal styling behavior.

The actual process of transforming the initial design into the final Web application

using traditional UI controls introduces a lot of coding. On the contrary when using

EAGER the amount of code required is significantly reduced due to the fact that

developer has the option to use a number of plug and play controls each of which

represent a complex user task. These controls are contained in the advance UI library

of EAGER consisting of a total number of 55K pure code lines (see Figure 14).

Furthermore, the incorporation of EAGER’s higher level elements make a portal’s

code more usable, more readable and especially safe, due to the fact that each

interaction component introduced is designed separately, developed and tested

introducing a high level of code reuse, efficiency and safety.

Figure 14: Total number of lines of pure code constituting the EAGER toolkit

Finally, the UIs developed with the EAGER toolkit can adapt according to specific

user and context parameters, and therefore are rendered in a number of variations. It is

therefore clear that using a standard UI toolkit a monolithic interface is created,

whereas using the EAGER toolkit dynamically adaptable interfaces are generated.

4. Case Study: A prototype web-based service developed by

means of EAGER

4.1 The portal of the European Design for All e-Accessibility Network (EDeAN)

As a proof-of-concept, a prototype portal was developed by means of the EAGER

toolkit. In order to elucidate the benefits of EAGER, an already existing portal was

selected and redeveloped from scratch. In this way, it was possible to identify and

compare the advantages of using EAGER, both at the developer’s site, in terms of

developer’s performance, as well as at the end-user site, in terms of user-experience

improvement. In particular, the original portal of the European Design for All e-

Accessibility Network (EDeAN) was redesigned and re-implemented using the

EAGER development framework.

The new EDeAN portal2 disseminates information about the scope, objectives and

outcomes of the EDeAN networking activities. Through the portal public area (Figure

15) a number of facilities can be accessed, such as information about EDeAN,

resources from a dedicated resource centre, news and announcements, frequently

Asked Questions, statistics regarding the networking activities and surveys for

2 http:www.edean.org

collecting user feedback. The portal area for subscribed users is intended to support

the actual networking activities, and therefore provides a number of communication

and collaboration facilities.

Figure 15: The EDeAN portal (various skins)

4.2 Adaptation based on user and context specific parameters

The users of the portal have the option to access the portal settings and alter them in

order to match their personal characteristics and the characteristics of the context of

use. A number of parameters can be set, such as Language, Device & display

resolution, Assistive technology, Input Device, Disability and Web familiarity.

Additionally, in order to allow users to quickly alter their settings, the quick settings

option can be used, offering a number of predefined user profiles (see Figure 16).

Figure 16: General Settings

4.3 Adaptation based on specific interaction preferences

Interaction preferences represent settings that affect the way the user interacts with the

portal. More specifically, these settings can alter the interaction elements used for

performing fundamental operations, such as browsing content and images or

uploading files. The changes made to these settings are propagated to all portal

modules. By manually altering these setting the default adaptation logic that occurs

based on the user basic setting is enriched. The administration interface provided to

portal users for altering these settings is presented in Figure 17.

Figure 17: The interaction preferences administration interface

4.4 Adaptation based on specific accessibility preferences

Custom Accessibility includes all the settings that can be altered to enhance the

accessibility characteristics of the final user interface. This is very important for

offering personalized experience from an accessibility perspective. Although each

user interface is already compliant with the W3C accessibility guidelines, theses

settings can further enhance the actual system accessibility and the perceived quality

of interaction. The main administration interface provided to end users for editing

these setting is illustrated in Figure 18. Each setting is presented graphically together

with the currently selected value, and the option to alter the selected values is

provided.

Figure 18: The Accessibility preferences administration interface

4.5 Adaptation examples

This section presents some examples of the resulting portal UIs using a number of

alternative predefined profiles, in order to provide a quick overview of the possible

transformation at the user’s end. As a first example, activating the “Blind with no

Assistive Technology and High Expertise” profile results in the interface presented in

Figure 19, which highlights the following adaptations:

(1) Text to Speech output is enabled for coping with the lack of assistive

technologies. This adaptation is therefore used to mimic the functionality

offered by screen readers.

(2) Quick access links are presented on the top right and bottom right section of

the page allowing blind users to quickly accesses the most important areas

without the need to repeatedly scan the whole page

Figure 19: Profile of blind user with no Assistive Technology and High Expertise

(3) Section breaks are displayed on each page region allowing users with high

expertise to skip page sections while navigating resulting to reduced

navigation time

(4) Images are displayed as text enabling blind users to access their alternative

descriptions and furthermore reduce the portal loading time

(5) Tables are linearized in order to provide meaningful information to blind

users following the appropriate scheme for representing table data together

with row and column information.

(6) Image Buttons are transformed to links enabling blind users to access links

with their alternative image descriptions and furthermore reduce the portal

loading time

General adaptations that affect the overall look and feel of the page include the

linearization of templates, the absence of graphics, and the color scheme introduced

(white background and black foreground).

Activating the “Motor Impaired, two Switches, Low Expertise” profile results in the

layout presented in Figure 20.

Figure 20: Profile of Motor Impaired user with two Switches and Low Expertise

In this figure, the following adaptations are highlighted:

(1) Various quick access links are presented at the top and bottom of the page

allowing in the case of motor impaired users to quickly access various parts of a

page reducing the overall scanning effort

(2) Links are displayed as buttons for providing visual clues about the currently

focused item

(3) Section breaks are displayed on each page region allowing users with high

expertise quickly skip through page sections

(4) Text boxes provide feedback on focus enabling users to quickly identify whether

text insertion elements are focused

(5) A software keyboard is provided for text entry for improving the pour text

insertion rates resulting from the use of traditional QWERTY based virtual

keyboards (reference AUK)

(6) A window with the favorite navigation options is displayed providing access to

novice users to their most commonly used navigation options.

Activating the “Colour Blind (Protanope) with Low Expertise” profile results in the

interface presented Figure 21.

Figure 21: Colour Blind (Protanope) with Low Expertise

In the figure above, the following adaptations are highlighted:

(1) Links are displayed with pink color while the page background is set to black.

These transformations are made for supporting the appropriate

background/foreground scheme (the one that maximizes contrast) for the

selected color blindness.

(2) Buttons use yellow color for background, red for border and black for text. This

transformation is also employed for maximizing contrast and therefore making

buttons easy to spot on the screen

(3) Charts are rendered using an appropriate color palette in order for color blind

users to be able to distinguish chart data mainly because their separation is based

on color coding.

5. Conclusions and Future Work

This Chapter has presented an overview of popular development methods and tools

that support the development of web-based services. In this context, modern

programming languages, popular UI toolkits and IDEs were presented, focusing on

highlighting their significance in developing more robust and versatile web-based

services. At the same time, the main drawbacks of these approaches were also

discussed, highlighting the rapidly increasing need to enable seamless access to web-

based applications and services to numerous categories of users who face today the

risk of exclusion, such as non-expert IT users, the very young or the elderly, people

with disability, etc. In this context, this Chapter has proposed a novel approach to the

development of web user interfaces that are able to automatically adapt to various user

profiles and contexts of use. The proposed approach, intended as an alternative to

traditional design for the ‘average’ user aims to ensure accessibility and usability for

users with diverse characteristics. The EAGER toolkit further facilitates Web

developers in effectively following the proposed approach in practice. In this context,

a number of alternative UI elements were designed and developed addressing specific

user- / context- parameter values.

Another key feature of the EAGER toolkit is its ability to be extended and include an

unlimited number of alternative interaction modalities and elements. This process

mainly entails the design and coding of the alternative interactions styles. Then, they

can be easily incorporated in the existing toolkit, simply by modifying the logic for

supporting the dynamic instantiation and use. Additionally, existing Web applications

or parts of applications implemented with .NET can be easily altered to encapsulate

the EAGER toolkit attributes and, thereby, rendered accessible and usable for various

user categories, including novice users, users of Assistive Technologies or portable

devices, etc. Notably, it has been estimated that applications implemented from

scratch using the EAGER toolkit may contain up to 50% less lines of pure code in

total when compared to traditionally developed applications, showing that EAGER

generates shorter, more robust and comprehensive source code.

Concerning additional enhancements of the EAGER toolkit, several advanced and

intelligent techniques have been identified which can improve its effectiveness and

efficiency such as:

 facilities that allow the developer to easily alter the presentation characteristics

of a selected UI module (e.g. module skinning);

 incorporation of components written using other programming languages in

the context of a task hierarchy (e.g. introduce module styles written in action

script)

 extension of the UI library to support new abstract tasks as identified in the

context of future case studies

 extension of UI library to address the needs set by new web standards

Overall, the EAGER toolkit is considered as a significant contribution towards

supporting the development of WUI that can support the diversity of the target user

population in the context of the information society.

References

[1] Ajax.NET - The free library for .NET (C#): http://ajax.schwarz-

interactive.de/CSharpSample/

[2] Alexandraki, C., Paramythis, A., Maou, N., & Stephanidis, C. (2004). Web

accessibility through adaptation. In Proceedings of the 9th International

Conference on Computers Helping People with Special Needs (ICCHP 2004),

Paris, France, 7-9 July (pp. 302-309). Berlin Heidelberg: Springer-Verlag.

[3] C# Language Specification Version 3.0

[4] Eclipse Foundation: Eclipse Project. http://www.eclipse.org

http://www.eclipse.org/

[5] HTML 4.01 Specification: http://www.w3.org/TR/REC-html40/

[6] The Java™ Language Specification Third Edition

[7] JavaServer Faces Technology: http://java.sun.com/javaee/javaserverfaces/

http://ajax.schwarz-interactive.de/CSharpSample/
http://ajax.schwarz-interactive.de/CSharpSample/
http://www.eclipse.org/
http://www.eclipse.org/
http://www.w3.org/TR/REC-html40/
http://java.sun.com/javaee/javaserverfaces/

[8] Gaedke, M., Schempf, D., Gellersen, H. 1999. WCML: An enabling technology

for the reuse in object-oriented Web Engineering, in: Poster-Proceedings of the

8th International World Wide Web Conference (WWW8), Toronto, Ontario,

Canada.

[9] Getting Started with an Integrated Development Environment

(IDE):http://java.sun.com/developer/technicalArticles/tools/intro.html

[10] Microsoft (2007), An Overview of Microsoft® Visual Studio® 2008, White

Paper

[11] Microsoft Visual Studio on MSDN: http://msdn.microsoft.com/en-

us/vstudio/default.aspx

[12] Microsoft ASP.NET Site: http://www.asp.net/get-started/

[13] Microsoft ASP.NET Web Applications: http://msdn.microsoft.com/en-

us/library/ms644563.aspx

[14] Microsoft ASP.NET Overview: http://msdn.microsoft.com/en-

us/library/4w3ex9c2.aspx

[15] NetBeans IDE 6.1: http://www.netbeans.org/

[16] NetBeans IDE – Features: http://www.netbeans.org/features/index.html

[17] OSGi Alliance: OSGi Service Platform – Release 4. (2005)

[18] PHP Introduction – Manual: http://www.php.net/manual/en/introduction.php

[19] PHP Hypertext Preprocessor: http://www.php.net/

[20] Savidis, A., & Stephanidis, C. (2004). Unified User Interface Development:

Software Engineering of Universally Accessible Interactions. Universal Access

in the Information Society, 3 (3), 165-193. (Managing Editor: Alfred Kobsa,

University of California, Irvine, USA).

[21] Stephanidis, C. (Ed.), Salvendy, G., Akoumianakis, D., Bevan, N., Brewer, J.,

Emiliani, P.L., Galetsas, A., Haataja, S., Iakovidis, I., Jacko, J., Jenkins, P.,

Karshmer, A., Korn, P., Marcus, A., Murphy, H., Stary, C., Vanderheiden, G.,

Weber, G., & Ziegler, J. (1998) Toward an Information Society for All: An

International R&D Agenda. International Journal of Human-Computer

Interaction, 10 (2), 107-134.

[22] Stephanidis, C., Paramythis, A., Sfyrakis, M., Savidis, A. (2001). A Case Study

in Unified User Interface Development: The AVANTI Web Browser. In User

Interfaces for All, Stephanidis, C. (Ed), Lawrence Erlbaum, NJ, 525-568.

http://java.sun.com/developer/technicalArticles/tools/intro.html
http://msdn.microsoft.com/en-us/vstudio/default.aspx
http://msdn.microsoft.com/en-us/vstudio/default.aspx
http://www.asp.net/get-started/
http://msdn.microsoft.com/en-us/library/ms644563.aspx
http://msdn.microsoft.com/en-us/library/ms644563.aspx
http://msdn.microsoft.com/en-us/library/4w3ex9c2.aspx
http://msdn.microsoft.com/en-us/library/4w3ex9c2.aspx
http://www.netbeans.org/
http://www.netbeans.org/features/index.html
http://www.php.net/manual/en/introduction.php
http://java.sun.com/javaee/javaserverfaces/

