
1

&KDSWHU���

7KH�8QLILHG�8VHU�,QWHUIDFH�'HVLJQ�0HWKRG

A. Savidis, D. Akoumianakis and C. Stephanidis

Abstract
This chapter describes the Unified User Interface design method. This new user interface
design method has been developed to enable the “fusion” of different design alternatives,
resulting from the consideration of differing end-user attributes and contexts of use, into a
single unified form, as well as to provide a design structure which can be easily translated
into a target implementation by user interface developers. The Unified User Interface design
method is elaborated here in terms of its primary objective, underlying process, techniques
used, representation, and overall contributions to Human-Computer Interaction design.

1. Introduction
In its short history, Human-Computer Interaction (HCI) has accumulated a substantial body
of knowledge which provides insight into the design of user interfaces. There is an abundance
of design techniques which differ with regards to at least two dimensions, namely: (a) the
underlying science base; and, (b) the type, range and scope of design outcomes, as well as the
feedback they offer into the (re-) design process.

Regarding the science base, there are techniques, such the Hierarchical Task
Decomposition (P. Johnson, H. Johnson, Waddington & Shouls, 1988), which are influenced
by the Human Factors evaluation view of information processing psychology, and others,
such as Goals, Operators, Methods and Selection Rules - GOMS (Card, Moran & Newell,
1983), Task-Action Grammar - TAG (Payne, 1984), the User-Action Notation - UAN
(Hartson, Siochi, & Hix, 1990), etc., which adopt the methodological perspectives and
assumptions of Cognitive Science. More recently, less formal techniques, such as inspection
methods (Nielsen & Mack, 1994), have been introduced to provide more timely input and
feedback to design activities.

Regarding design outcomes, the vast majority of existing techniques are artifact
oriented. They do not explicitly record and document design rationale, thus, providing limited
(if any) account of the rationale underpinning the various design options, or the decision
making points that have shaped a particular design effort. More recently, there have been
developments offering insights into the process, notations and tools for capturing, encoding
and articulating design rationale (Moran & Carroll, 1996). These techniques focus explicitly
on the process and argumentation through which design artifacts are generated.

Unified User Interfaces encapsulate automatically adapted behaviors and provide end-
users with appropriately individualized interaction facilities. Hence, the process of designing
Unified User Interfaces does not lead to a single design outcome (i.e., a particular design
instance for a particular end-user). Rather, it collects and appropriately represents, alternative
design “facets”, as well as the conditions under which each of these should be instantiated
(i.e., a kind of design rationale). Two major challenges that can be identified in this respect
concern: (a) the process for the production of the various alternative designs; and, (b) the
organization of all potential design instances into a single design structure.

The Unified User Interface Design Method

2

Clearly, producing and enumerating distinct designs through the execution of multiple
design processes is not a practical solution. Ideally, a single design process is desirable,
leading to a design outcome that may directly be mapped to a single (i.e., unified) software
system implementation. This, however, introduces two important requirements for a suitable
design method. The first is that such a method should offer the capability to associate
alternative artifacts (depicting different contexts of use) to a single design problem. The
second requirement is that the method should preserve the hierarchical discipline of the HCI
design process, by means of a “divide and conquer” strategy, in which design problems are
incrementally broken-down and systematically addressed.

The first requirement leads to the definition of a polymorphic design artifact, as a
collection of alternative solutions for a single design problem, where each alternative
addresses different problem parameters. In this context, the problem can be in general
identified as optimally designing artifacts for end-users and contexts of use, while the
problem parameters are the various attributes characterizing the users, or the contexts of use.
The second requirement points to the fact that polymorphic design artifacts should be
hierarchically structured, thus giving rise to a polymorphic task hierarchy.

2. The Unified User Interface design method
On the grounds of the above, the Unified User Interface design method has been defined so
as to address two objectives:

(i) enable the “fusion” of all potentially distinct design alternatives into a single
unified form, without, however, requiring multiple design phases; and

(ii) produce a design structure which can be easily translated by user interface
developers into an implementation form.

Some of the distinctive properties of this method are elaborated below by addressing its
links with HCI design and by providing an overview of what the outcomes and design
deliverables are.

2.1 Links with HCI design

The Unified User Interface design method is characterized by two properties which
distinguish both the conduct of the method and its respective outcomes. First, the method
adopts an analytical design perspective, in the sense that it requires an insight into how users
perform tasks in existing task models, as well as what design alternatives and underpinning
rationale should be embedded in the envisioned and re-engineered task models. In this
context, the method links with other analytical perspectives into HCI design, such as design
rationale and ethnography, to obtain the real world insight that is required, while it extends
the traditional design inquiry by focusing explicitly on polymorphism as an aid to designing
and implementing user- and use-adapted behaviors.

Secondly, the method supports a disciplined hierarchical approach to populating and
articulating rationalized design spaces. This entails a middle-out design perspective, whereby
enumerated design alternatives are fused into design abstractions and subsequently
polymorphosed in a rational manner to facilitate automatic realization of alternative
interactive behavior. In terms of conduct, the method is related to hierarchical task analysis,
with the distinction that alternative decomposition schemes can be employed (at any point of
the hierarchical task analysis process), where each decomposition seeks to address different
values of the driving design parameters. This approach leads to the notion of design
polymorphism, which is characterized by the pluralism of plausible design options
consolidated in the resulting task hierarchy.

The Unified User Interface Design Method

3

Overall, the method introduces the notion of polymorphic task decomposition, through
which any task (or sub-task) may be decomposed in an arbitrary number of alternative sub-
hierarchies (Savidis, Paramythis, Akoumianakis & Stephanidis, 1997). The design process
realizes an exhaustive hierarchical decomposition of various task categories, starting from the
abstract level, by incrementally specializing in a polymorphic fashion (since different design
alternatives are likely to be associated with differing user- and usage-context- attribute
values), towards the physical level of interaction. The outcomes of the method include: (a)
the design space which is populated by collecting and enumerating design alternatives; (b)
the polymorphic task hierarchy which comprises alternative concrete artifacts; and, (c) the
recorded design rationale, for each design artifact produced, which has led to the introduction
of this particular design artifact.

2.2 The design space

Design alternatives are necessitated by the different contexts of use and provide a global view
of task execution. This is to say that design alternatives offer rich insight into how a
particular task may be accomplished by different users in different contexts of use. Since
users differ with regards to their abilities, skills, requirements and preferences, tentative
designs should aim to accommodate the broadest possible range of capabilities across
different contexts of use. Thus, instead of restricting the design activity to producing a single
outcome, designers should strive to compile design spaces containing plausible alternatives.

op : Open

sv : Save

sa : Save as...

qu : Quit

> op_

(b) command based (c) circular “clock”(a) selecting from a menu

Open

Quit

Save as...

Save
6DYH2SHQ

6DYH DV4XLW

Figure 1: Alternative embodiments of selection in different design languages

As an example, consider the primitive interaction task of selection. A selection may be
made either by choosing an option from a menu (see options (a) and (c) in Figure 1) or by
issuing a command (option (b)), etc. Moreover, as illustrated by options (a) and (c) in Figure
1, the menu may be conveyed in different design languages1. For example, the use of the
word “menu” in option (a) is borrowed from the “restaurant” domain of discourse; the
command in option (b) follows the typewriter’s metaphor; the circular clock in option (c),
resembles the operation of an electric device (e.g., a potentiometer). What is important to
note, however, is that none of the above alternatives, or any other visual option that one may
come up with, would be suitable for a blind user who lacks the capability to attain
information conveyed in the visual modality. Instead, (physically or situationally) blind
people would be more comfortable using alternative manifestations conveyed either through
the audio or tactile modalities (see Figure 2).

1 A design language is defined as a mechanism mediating the mapping of concepts in a source domain (e.g.,

restaurant, typewriter, electric device) to symbols in a presentation domain (e.g., interaction elements
offered by a particular toolkit).

The Unified User Interface Design Method

4

Tactile listbox

³2SHQ´

³4XLW´

³6DYH�DV���´

³6DYH´

Synthetic speechSound feedback

(())

(())

(())

(())

Figure 2: Non-visual alternatives for selection

2.3 Polymorphic task hierarchies

A polymorphic task hierarchy combines three fundamental properties: (a) hierarchical
organization; (b) polymorphism; and, (c) task operators. The hierarchical decomposition
adopts the original properties of hierarchical task analysis (Johnson et al., 1988) for
incremental decomposition of user tasks to lower level actions. The polymorphism property
provides the design differentiation capability at any level of the task hierarchy, according to
particular user- and usage-context- attribute values. Finally, task operators, which are based
on the powerful CSP (Communicating Sequential Processes) language for describing the
behavior of reactive systems (Hoare, 1978), enable the expression of dialogue control flow
formulae for task accomplishment. Figure 3 illustrates the basic set of operators provided;
designers may freely employ additional operators as needed.

Operator Explanation
before sequencing

or parallelism
xor exclusive completion

* simple repetition
+ absolute repetition

Figure 3: Basic task operators in the Unified User Interface design method

The concept of polymorphic task hierarchies is illustrated in Figure 4. Each alternative
task decomposition is called a decomposition style, or simply a style, and is given an
arbitrary name; the alternative task sub-hierarchies are attached to their respective styles. The
example polymorphic task hierarchy of Figure 4 shows how two alternative dialogue styles
for a “Delete File” task can be designed; one exhibiting direct manipulation properties with
object-function syntax (i.e., the file object is selected prior to operation to be applied) with no
confirmation; and another realizing modal dialogue with a function-object syntax (i.e., the
delete function is selected, followed by the identification of the target file) and confirmation.

Additionally, the example demonstrates the case of physical specialization. Since
“selection” is an abstract task, it is possible to design alternative ways for physically
instantiating the selection dialogue (see Figure 4, lower-part): via scanning techniques for
motor-impaired users, via 3D hand-pointing on 3D-auditory cues for blind people, via
enclosing areas (e.g., irregular “rubber banding”) for sighted users, and via Braille output and
keyboard input for deaf-blind users. The Unified User Interface design method does not
require the designer to follow the polymorphic task decomposition all the way down the user-
task hierarchy, until primitive actions are met. A non-polymorphic task can be specialized at
any level, following any design method chosen by the interface designer. For instance, in
Figure 4 (lower part) graphical illustrations are used to describe each of the alternative
physical instantiations of the abstract “selection” task.

The Unified User Interface Design Method

5

It should be noted that the interface designer is not constrained to using a particular
model, such as CSP operators, for describing user actions for device-level interaction (e.g.,
drawing, drag-and-drop, concurrent input). Instead, an alternative may be preferred, such as
an event-based representation, e.g., ERL (Hill, 1986) or UAN (Hartson & Hix, 1989).

The most common question regarding the need for a polymorphic task decomposition
approach in the Unified User Interface design method challenges the argument that it is not
sufficient to represent alternative task hierarchies by means of the traditional task-model,
employing the xor operator among alternatives.

-NONVISUALlistbox

Figure 4: The polymorphic task hierarchy concept, where alternative decomposition “styles” are supported (upper
part), and an exemplary polymorphic decomposition, for two different user groups, namely blind and motor-

impaired users (lower part)

The answer to this question requires some elaboration (see also Figure 5). Firstly, the
xor operator in the traditional task-model is interpreted as “the user is allowed to perform
any, but only one, of the N sub-tasks”. This means that the physical interaction context (i.e.,
interface components) for performing any of the sub-tasks is made available to the user,
while the user is required to accomplish only one of those sub-tasks. However, if alternative
sub-hierarchies are related via polymorphism, it is implied that “a particular end-user will be
provided with the design (out of the N alternative ones) that maximally matches the specific
user’s characteristics”. Clearly, it is meaningless to provide all designed artifacts (which are
likely to address diverse user characteristics) concurrently to end-users, and force users to

The Unified User Interface Design Method

6

work with only one of those. Hence, the xor operator is not the appropriate way for
organizing alternative dialogue patterns.

As discussed in more detail later on, design polymorphism entails a decision making
capability for context-sensitive selection among alternative artifacts, so as to assemble a
suitable interface instance, while task operators support temporal relationships and access
restrictions applied to the interactive facilities of a particular interface instance.

Polymor-
phism

Task

Style1 StyleN

Task

Task1 TaskN

xor

A B

One of those will be active for a
particular end-user

All sub-dialogues available, but may
perform only a single task

Figure 5: (a) The use of polymorphism for alternative styles (dialogue patterns), when those address different user-
and usage-context- attributes; and (b) the xor operator for various tasks, when exclusive completion has to be

imposed

2.4 Adaptation rationale

When a particular task is subject to polymorphism, alternative sub-hierarchies are designed,
each associated to different user- and usage-context- parameter values. A running interface,
implementing such alternative artifacts, should encompass decision making capability, so
that, before initiating interaction with a particular end-user, the most appropriate of those
artifacts are activated for all polymorphic tasks. Hence, polymorphism can be seen as a
technique potentially increasing the number of alternative interface instances represented by
a typical hierarchical task model. If polymorphism is not applied, a task model merely
represents a single interface design instance, on which further run-time adaptation is
restricted; in other words, there is a fundamental link between adaptation capability and
polymorphic design artifacts.

This issue will be further clarified with the use of an example. Consider the case where
the design process reveals the necessity of having multiple alternative sub-dialogues available
concurrently to the user for performing a particular task. This scenario is related to the notion
of multimodality, which can be more specifically called task-level multimodality, in analogy
to the notion of multimodal input which emphasizes pluralism at the input-device level. We
will use the physical design artifact of Figure 6, which depicts two alternative dialogue
patterns for file management: one providing direct manipulation facilities, and another
employing command-based dialogue. Both artifacts can be represented as part of the task-
based design, in two ways:

(a) through polymorphism, where each of the two dialogue artifacts is defined as a
distinct style; the two resulting styles are defined as being compatible, which
implies that they may co-exist at run-time (i.e., the end-user may freely use the
command line or the interactive file manager interchangeably);

(b) via decomposition, where the two artifacts are defined to be concurrently available
to the user, within the same interface instance, via the or operator; in this case, the
interface design is “hard-coded”, representing a single interface instance, without
needing further decision making.

The Unified User Interface Design Method

7

These two alternative approaches are illustrated in Figure 7.

t

a1.txt

a2.txtf1.txt

f2.txt

$rm a_

command
line

interactive
directory
tree

interactive
file icons

Figure 6: A design scenario for alternative concurrent sub-dialogues, in order to perform a single task (i.e., task
multimodality)

A

B

Multi-modal
 task

compatible

....

or

....

 Direct
manipulation

style
relationships

alternative
styles

task
operators

sub-tasks
in decompo-
sition

Command
 based

 Direct
manipulation

Multi-modal
 task

Command
 based

Figure 7: Two ways for representing design alternatives when designing for task-level multimodality: (A) via
polymorphism, adding run-time control on pattern activation; and (B) via the or operator, hard-coding the two

alternatives in a single task implementation

The advantages of the polymorphic approach are: (a) it is possible to make only one of
the two artifacts available to the user, depending on user parameters; (b) even if, initially,
both artifacts are provided to end-users, when a particular preference is dynamically detected
for one of those, the alternative artifact can be dynamically disabled; and (c) if more
alternative artifacts are designed for the same task, the polymorphic design is directly
extensible, while the decomposition-based design would need to be turned into a
polymorphic one (except from the unlikely case where it is still desirable to provide all
defined sub-dialogues concurrently to the user).

The Unified User Interface Design Method

8

3. Conducting polymorphic task decomposition
In this section, we provide a consolidated account of how the Unified Interface design
method can be practiced.

3.1 Categories of polymorphic artifacts

In the Unified User Interface design method there are three categories of design artifacts, all
of which are subject to polymorphism on the basis of varying user- and usage-context-
parameter values. These three categories are (see Figure 8):

User
Task

Physical
Design

System
Task

User
Task

....

polymorphism
....

polymorphism
....

polymorphism

op

Figure 8: The three artifact categories in the Unified User Interface design method, for which polymorphism may
be applied, and how they relate to each other

(a) User tasks, relating to what the user has to do; user tasks are the center of the
polymorphic task decomposition process.

(b) System tasks, representing what the system has to do, or how it responds to
particular user actions (e.g., feedback); in the polymorphic task decomposition
process, they are treated in the same manner as user tasks.

(c) Physical design, which concerns the various interface components on which user
actions are to be performed; physical structure may also be subject to
polymorphism.

System tasks and user tasks may be freely combined within task “formulas”, defining
how sequences of user-initiated actions and system-driven actions interrelate. The physical
design, providing the interaction context, is always associated with a particular user task. It
provides the physical dialogue pattern associated to a task-structure definition. Hence, it
simply plays the role of annotating the task hierarchy with physical design information. An
example of such annotation is shown in Figure 4, where the physical designs for the “Select
Delete” task are explicitly depicted.

In some cases, given a particular user task, there is a need for differentiated physical
interaction contexts, depending on user- and usage-context- parameter values. Hence, even
though the task decomposition is not affected (i.e., the same user actions are to be
performed), the physical design may have to be altered. One such representative example is
relevant to changing particular graphical attributes, on the basis of ethnographic user
attributes. For instance, Marcus (1996) discusses the choice of different iconic
representations, background patterns, visual message structure, etc., on the basis of cultural

The Unified User Interface Design Method

9

background (see also Chapter 3 “International and Intercultural User Interfaces” in this
volume).

User
Task

Physical
Design

Physical
Design-1

Physical
Design-N

polymorphism

Style-1 Style-N

User
Task

User
Task-1

User
Task-N

Style-NStyle-1

Physical
Design-1

Physical
Design-N

polymorphism

(A) (B)

Figure 9: Representation of alternative physical artifacts: (A) in the case of the same non-polymorphic task; and
(B) in the case where polymorphic task decomposition is needed

However, there are also cases in which the alternative physical designs are dictated due
to alternative task structures (i.e., polymorphic tasks). In such situations, each alternative
physical design is directly attached to its respective alternative style (i.e., sub-hierarchy).

In summary, the rule for identifying polymorphic artifacts is: if alternative designs are
assigned to the same task, then attach a polymorphic physical design artifact to this task; the
various alternative designs depict the styles of this polymorphic artifact (see Figure 9, part
A). If alternative designs are needed due to alternative task structures (i.e., task-level
polymorphism), then each alternative physical design should be assigned to its respective
style (see Figure 9, part B).

3.2 Steps in polymorphic task decomposition

User tasks, and in certain cases, system tasks, need not always be related to physical
interaction, but may represent abstraction on either user- or system- actions. For instance, if
the user has to perform “selection”, then, clearly, the physical means of performing the
selection are not explicitly defined, unless the dialogue steps to perform selection are further
decomposed. This notion of continuous refinement and hierarchical analysis, starting from
higher-level abstract artifacts, and incrementally specializing towards the physical level of
interaction, is fundamental in the context of hierarchical behavior analysis, either regarding
tasks that humans have to perform (Johnson et al, 1988), or when it concerns functional
system design (Saldarini, 1989). At the core of the Unified User Interface design method lies
the polymorphic task decomposition process, which follows the methodology of abstract task
definition and incremental specialization, where tasks may be hierarchically analyzed through
various alternative schemes.

In such a recursive process, involving tasks ranging from the abstract task level, to
specific physical actions, decomposition is applied either in a traditional unimorphic fashion,
or by means of alternative styles. The overall process is illustrated in Figure 10; the
decomposition starts from abstract- or physical- task design, depending on whether top-level
user tasks can be defined as being abstract or not. Next, follows the description of the various
transitions (i.e., design specialization steps), from each of the four states illustrated in the
process state diagram of Figure 10.

The Unified User Interface Design Method

10

abstract
task design

physical
task design

 task
 hierarchy
decomposition

 design
 alternative
sub-hierarchies

sub-task

polymorphose

sub-hierarchy

decompose decompose

sub-task

polymorphose

sub-hierarchy

Figure 10: The polymorphic task decomposition process in the Unified User Interface design method

3.2.1 Transitions from the “abstract task design” state

An abstract task can be decomposed either in a polymorphic fashion, if user- and usage-
context- attribute values pose the necessity for alternative dialogue patterns, or in a
traditional manner, following a unimorphic decomposition scheme. In the case of a
unimorphic decomposition scheme, the transition is realized via a decomposition action,
leading to the task hierarchy decomposition state. In the case of a polymorphic
decomposition, the transition is realized via a polymorphose action, leading to the design
alternative sub-hierarchies state.

3.2.2 Transitions from the “design alternative sub-hierarchies” state

Reaching this state means that the required alternative dialogue styles have been identified,
each initiating a distinct sub-hierarchy decomposition process. Hence, each such sub-
hierarchy initiates its own instance of polymorphic task decomposition process. While
initiating each distinct process, the designer may either start from the abstract task design
state, or from the physical task design state. The former is pursued if the top-level task of the
particular sub-hierarchy is an abstract one. In contrast, the latter option is relevant in case that
the top-level task explicitly engages physical interaction issues.

3.2.3 Transitions from the “task hierarchy decomposition” state

From this state, the sub-tasks identified need to be further decomposed. For each sub-task at
the abstract level, there is a sub-task transition to the abstract task design state. Otherwise, if
the sub-task explicitly engages physical interaction means, a sub-task transition is taken to
the physical task design state.

3.2.4 Transitions from the “physical task design” state

Physical tasks may be further decomposed either in a unimorphic fashion, or in a
polymorphic fashion. These two alternative design possibilities are indicated by the
decompose and polymorphose transitions respectively.

The Unified User Interface Design Method

11

3.3 An example of polymorphic task decomposition

To illustrate the process of polymorphic task decomposition (see Figure 10), we will refer to
an example which is depicted in Figure 4 (lower part). The sequence of steps is illustrated in
Figure 11 (states are mentioned with brief names).

abstract
 task

 task
hierarchy

abstract
 task

abstract
 task

 alternative
sub-hierarchies

 alternative
sub-hierarchies

physical
 task

physical
 task

poly-morphose

sub-
hierarchy

poly-
morphose

sub-
hierarchy

sub-
hierarchy

sub-
hiearchy decompose

Delete
File

-Direct
 Manipul’n
-Modal
 Dialogue

Select
File

Select
Delete

-Visual
-Non-visual

Visual
rubber-banding

Non-visual
Braille & kbd

....

....

....

....

1 2

3

4 5 6

....

Figure 11: An example of a polymorphic task decomposition process diagram

The initial state is abstract task (step 1), since “Delete File” can be defined as an
abstract task. Through the polymorphose transition, two alternative styles are defined,
resulting in two distinct sub-hierarchies (step 2). Each such sub-hierarchy is further
decomposed, by firstly deciding whether the top-level task is an abstract or a physical task, so
as to continue the process (step 3). For instance, both the “Select File” and the “Select
Delete” tasks are abstract (the rest of the tasks are not shown for clarity). Then, the steps for
the “Select Delete” task are shown; this task is polymorphosed (step 4), resulting in two
alternative sub-hierarchies (one for visual dialogue and another for non-visual dialogue). The
top-level tasks for each of the two sub-hierarchies are in this case physical (step 5), as
opposed to step 3, where all tasks are abstract. The “Visual rubber-banding” task is
subsequently decomposed (step 6) to a unimorphic task hierarchy. It should be noted that,
instead of pursuing the polymorphic task decomposition approach, we could alternatively
continue from step 6, via any other appropriate design practice, such as for example, event
modeling.

3.4 Designing alternative styles

The polymorphic task model provides the design structure for organizing the various
alternative dialogue patterns of automatically adapted interfaces into a unified form. Such a
hierarchical structure realizes the fusion of all potential distinct designs which may be
explicitly enumerated given a particular Unified User Interface. Apart from the polymorphic
organization model, the following primary issues need to be also addressed: (i) when
polymorphism should be applied; (ii) which are the user- and usage-context- attributes that

The Unified User Interface Design Method

12

need to be considered; (iii) which are the run-time relationships among alternative styles;
and, (iv) how the adaptation-rationale, connecting the designed styles with particular user-
and usage-context- attribute values, is documented.

3.4.1 Identifying levels of potential polymorphism

In the context of the Unified User Interface design method, and as part of the polymorphic
task decomposition process, designers should always assert that every decomposition step
(i.e., those realized either via the polymorphose or through the decompose transitions of
Figure 8) satisfies all constraints imposed by the combination of target user- and usage-
context- attribute values. These two classes of parameters will be referred to collectively as
decision parameters / attributes. An “accessibility gap” is usually encountered when there is
a particular decomposition (for user- or system- tasks, as well as for physical design) which
does not address some combination(s) of the decision attribute values. Such a design gap can
be remedied by constructing the necessary alternative sub-hierarchy (-ies) addressing the
excluded decision attribute values.

3.4.2 Constructing the space of decision parameters

We will discuss the definition of user attributes, which are of primary importance, while the
construction of context attributes may follow the same representation approach. In the
Unified User Interface design method, end-user representations may be developed using any
suitable formalism which can encapsulate user characteristics in terms of attribute-value
pairs. There is no predefined / fixed set of attribute categories. Some examples of attribute
classes are: general computer-use expertise, domain-specific knowledge, role in an
organizational context, motor abilities, sensory abilities, mental abilities, etc.

Computer Knowledge expert frequent average casual naive

Web Knowledge very good good average some limited none

Ability to Use Left Hand perfect good some limited none

Figure 12: An example of a user-profile, as a collection of values from the value domains of user-attributes, from
(Savidis, Akoumianakis, & Stephanidis, 1997)

The value domains for each attribute class are chosen as part of the design process (e.g., by
interface designers, or Human Factors experts), while the value sets need not be finite. The
broader the set of values, the higher the differentiation capability among various individual
end-users. For instance, commercial systems realizing a single design for an “average” user
have no differentiation capability at all. The Unified User Interface design method does not
pose any restrictions as to the attribute categories considered relevant, or the target value
domains of such attributes. Instead, it seeks to provide only the framework in which the role
of user- and usage-context- attributes constitute an explicit part of the design process. It is the
responsibility of interface designers to choose appropriate attributes and corresponding value
ranges, as well as to define appropriate design alternatives. A simple example of an
individual user-profile, complying with the attribute / value scheme, is shown in Figure 10.
For simplicity, designers may choose to elicit only those attributes from which differentiated
design decisions are likely to emerge.

3.4.3 Relationships among alternative styles

The need for alternative styles emerges during the design process, when it is identified that
some particular user- and / or usage-context- attribute values are not addressed by the various
dialogue artifacts which have already been designed. Starting from this observation, one
could argue that “all alternative styles, for a particular polymorphic artifact, are mutually

The Unified User Interface Design Method

13

exclusive to each other” (in this context, exclusion means that, at run-time, only one of those
styles may be “active”).

Exclusion Relates many styles. Only one from the alternative styles
may be present.

Compatibility Relates many styles. Any of the alternative styles may be
present.

Substitution Relates two groups of styles together. When the second is
made “active” at run-time, the first should be “deactivated”.

Augmentation Relates one style with a group of styles. On the presence of
any style from the group at run-time, the single style may be
also “activated”.

Figure 13: Design relationships among alternative styles, and their run-time interpretation

However, there exist cases in which it is meaningful to make artifacts belonging to alternative
styles, concurrently available in a single adapted interface instance. For example, in Figure 6
we have discussed how two alternative artifacts for file management tasks, a direct-
manipulation one and a command-based one, can both be present at run-time. In the Unified
User Interface design method, four design relationships between alternative styles are
distinguished (see Figure 13), defining whether alternative styles may be concurrently present
at run-time. We will now show how these four fundamental relationships reflect pragmatic,
real-world design scenarios.

Exclusion

The exclusion relationship is applied when the various alternative styles are deemed to be
usable only within the space of their target user- and usage-context- attribute values. For
instance, assume that two alternative artifacts for a particular sub-task are being designed,
aiming to address the “user expertise” attribute: one targeted to users qualified as “novice”,
and the other targeted to “expert” users. Then, these two are defined to be mutually exclusive
to each other, since it is probably meaningless to concurrently activate both dialogue patterns.
For example, at run-time a novice user might be offered a functionally “simple” alternative of
a task, where an “expert” user would be provided with additional functionality and greater
“freedom” in selecting different ways in which to accomplish the same task.

Compatibility

Compatibility is useful among alternative styles for which the concurrent presence during
interaction allows the user to perform certain actions in alternative ways, without introducing
usability problems. The most important application of compatibility is for task-multimodality,
as it has been previously discussed (see Figure 6 where the design artifact provides two
alternative styles for interactive file management).

Substitution

Substitution has a very strong connection with adaptivity techniques. It is applied in cases
where, during interaction, it is decided that some dialogue patterns need to be substituted by
others. For instance, the ordering and the arrangement of certain operations may change on
the basis of monitoring data collected during interaction, through which information such as
frequency of use and repeated usage patterns can be extracted. Hence, particular physical
design styles would need to be “cancelled”, while appropriate alternatives would need to be
“activated”. This sequence of actions, i.e., “cancellation” followed by “activation”, is the

The Unified User Interface Design Method

14

realization of substitution. Thus, in the general case, substitution involves two groups of
styles: some styles are “cancelled”, being substituted by other styles which are “activated”
afterwards.

Augmentation

Augmentation aims to enhance the interaction with a particular style that is found to be valid,
but not sufficient to facilitate the user’s task. To illustrate this point, let us assume that during
interaction, the user interface detects that the user is unable to perform a certain task. This
would trigger an adaptation (in the form of adaptive action) aiming to provide task-sensitive
guidance to the user. Such an action should not aim to invalidate the active style (by means of
style substitution), but rather to augment the user’s capability to accomplish the task more
effectively, by providing informative feedback. Such feedback can be realized through a
separate, but compatible style. It follows, therefore, that the augmentation relationship can be
assigned to two styles when one can be used to enhance the interaction while the other is
active. Thus, for instance, the adaptive prompting dialogue pattern, which provides task-
oriented help, may be related via an augmentation relationship with all alternative styles (of a
specific task), provided that it is compatible with them.

3.5 Engaging abstract interaction objects

During the task decomposition process, some sub-tasks can be directly related to user-input
actions which can be managed via interaction objects. For instance, selecting from a list of
options, interactively changing the state of a Boolean parameter, providing an arithmetic
value, etc., are all typical examples of input tasks which can be realized via the predefined
dialogues implemented by various interaction objects. In such cases, it is desirable to employ
general / abstract object classes, in order to enable alternative physical object classes to be
selected, reflecting different user-, usage-context-, and domain-properties.

It is argued that designers primarily think in terms of specific instances and physical
interface scenarios -especially if the task analysis and graphic design processes are carried
out by different teams- rather than composing interface components via abstract behaviors
and objects. In this context, we have defined a role-based model (see Figure 14) for
“filtering” already made design decisions in order to identify “points” in which abstract
interaction objects can be employed in the design representation. Three role categories for
interaction objects are identified, namely lexical, syntactic and semantic; the description of
each role follows.

3.5.1 Lexical role

In this case, the interaction object is employed for appearance / presentation needs. If such a
role can be applied independently of physical realization, then an abstraction can be
identified. For example, assume a “Message” interaction object, which has only one attribute
defining the message content (e.g., a string). The content could be verbal (i.e., the string is a
phrase), if the user understands natural language, or symbolic (i.e., the string is a file name
where a symbolic sequence is stored), if the user understands symbolic languages. The
presentation properties (e.g., emphasizing with an icon, or other visual / auditory effects)
concern the physical implementation that may have alternative realizations.

The Unified User Interface Design Method

15

interaction
object

design
role

syntactic
properties

lexical
properties

semantic dialogue lexical

inherited from toolkit

decided by interface designer

Figure 14: Role-based model of interaction objects

3.5.2 Syntactic role

The interaction object serves a specific purpose in the design of dialogue sequencing. If the
role can be applied independently of physical realization, then an abstraction can be
identified. For example, a “continue” button, a “confirm” button, or a button to initiate an
operation, all play the role of a “Command” given by the user, in the particular dialogue
context. Such a “Command” class may be used to support, for instance, execution,
confirmation, or cancellation tasks, and may be applicable under various interaction
metaphors. It could be physically realized as a conventional push-button for the desktop
windowing interaction metaphor, as a voice-input command object for non-visual interaction,
and as a particular symbol structure for language-impaired users. The abstract interaction
object “Command” may have only one Boolean attribute to control, whether it is accessible
or not, while the presentation feedback for indicating accessibility status could be different,
depending on its physical realization.

3.5.3 Semantic role

In this case, an interaction object interactively realizes a domain object. For instance, an
interaction object may present a domain object’s content, or provide the means to enable
“editing” of the content by the user. In such cases, it is always possible to transform the role
into a proper abstract class. A typical example is the provision of a numeric value by the user.
A “valuator” abstract object could be defined for this purpose, having various properties
related to the type of numeric value required (e.g., range, discrete or real).

3.6 Re-engineering designs through the role-based model

The role-based model can be applied on an existing physical design, in order to produce a
higher-level design scenario. Such a scenario will serve as an abstract design representation,
which may form the basis for deriving further alternative physical design scenarios. This
notion of “filtering” physical scenarios via the role-based model, so as to subsequently
construct a higher-level design representation, is illustrated in Figure 15. We will
demonstrate the power of such a design re-engineering process through an example.

Figure 16 depicts a form-based dialogue, typically found in Web documents, for
providing credit card information. In Figure 17, the physical design scenario is analyzed in
order to identify object roles. The resulting higher-object model is depicted in the diagram of

The Unified User Interface Design Method

16

Figure 18. Figure 19 and Figure 20 illustrate two alternative physical realizations which can
be derived and which comply with the abstract scenario of Figure 17. The realization
depicted in Figure 18 indicates one potential option for graphical interaction, while the
corresponding depiction of Figure 19 presents a non-visual scenario which conveys the same
information in an alternative metaphoric representation, namely that of the room.

filter via
role-based
model

physical
scenario

1

abstractions
 identified

2

 higher-level
design scenario

3

instance of

 roles
assigned

Figure 15: Producing higher-level design scenarios through the role-based model

Credit Card No:^_______________

Expires: ^__/__

VISA MasterCard Access

Other ^___________

Submit

Figure 16: The physical design scenario which will be re-engineered

The Unified User Interface Design Method

17

logical grouping
(abstract syntactic)

number
(abstract
semantic)

check-boxes
(exclusive
choice -
abstract
semantic)

label associated
to domain object
(abstract syntactic)

command
(abstract
syntactic)

group
separator
(generalized
syntactic)

name
(abstract
semantic)

Figure 17: Assigning roles to physical interaction objects

grouping

label - valuator

label - valuator

exclusive choice - labels

command

1

2

3

4

4 groups,
4 digits /
group

title

month,
year

Figure 18: The resulting higher-level object model

The Unified User Interface Design Method

18

Window

ComboBox

VISA

VISA
MasterCard

Access

"Expires"

1997 1998 1999 20001999

11

Radio Groups

 Label
"CardNo:"

TextEntry
^_______________

Submit

PushButton

1 2 3 4 5 6 7 8 9 10 12

Figure 19: An alternative graphical design derived on the basis of the abstract object model

front
wall
entry
sound

left
wall

entry
sound

right
wall
entry
sound

textfield

"card no"

Room

"card info"

"expires"

textfield

toggle

"VISA"‘ toggle

"MasterCard"

"Access"

toggle

button

"Submit"

Figure 20: An alternative non-visual Rooms design, derived from the higher-level object model

4. Discussion and conclusions
This chapter has presented the Unified User Interface design method in terms of primary
objective, underlying process, representation, and design outcomes. Unified User Interface
design is intended to enable the “fusion” of potentially distinct design alternatives, suitable
for different user groups, into a single unified form, as well as to provide a design structure
which can be easily translated into a target implementation. By this account, the method is
considered to be especially relevant for the design of systems which are required to exhibit
adaptable and adaptive behavior, in order to support individualization to different target user

The Unified User Interface Design Method

19

groups. In such interactive applications, the design of alternative dialogue patterns is
necessitated due to the varying requirements and characteristics of end-users.

In terms of process, the method postulates polymorphic task decomposition as an
iterative engagement through which abstract design patterns become specialized to depict
concrete alternatives suitable for the designated situations of use. Through polymorphic task
decomposition, the Unified User Interface design method enables designers to investigate and
encapsulate adaptation-oriented interactive behaviors into a single design construction. To
this effect, polymorphic task decomposition is a prescriptive guide of what is to be attained,
rather than how it is to be attained, and thus it is orthogonal to many existing design
instruments.

The outcomes of Unified User Interface design include the polymorphic task hierarchy
and a rich design space which provides the rationale underpinning the context-sensitive
selection amongst design alternatives. A distinctive property of the polymorphic task
hierarchy is that it can be mapped into a corresponding set of specifications from which
interactive behaviors can be generated. This is an important contribution of the method to
HCI design, since it bridges the gap between design and implementation, which has
traditionally challenged user interface engineering.

The main conclusion from this chapter is that interaction design becomes increasingly a
knowledge-intensive endeavor. Designers should, therefore, be prepared to cope with large
design spaces to accommodate design constraints posed by diversity in the target user
population and the emerging contexts of use. To this end, analytical design methods, such as
Unified User Interface design, will become necessary tools for capturing and representing the
global execution context of interactive products and services in the emerging Information
Society. Moreover, adaptation is likely to predominate as a technique for addressing the
compelling requirements for customization, accessibility and high quality of interaction.
Thus, it must be carefully planned, designed and accommodated into the life-cycle of an
interactive system, from the early exploratory phases of design, through to evaluation,
implementation and deployment.

The Unified User Interface Design Method

20

References
Card, S.K., Moran, P.T., & Newell, A. (1983). The psychology of Human Computer Interaction.

Hillsdale, NJ: Lawrence Erlbaum Associates.
Hartson, R., & Hix, D. (1989). Human-Computer Interface Development: Concepts and Systems for its

Management. ACM Computing Surveys, 21 (1), 241-247.
Hartson, H.R., Siochi, A.C., & Hix, D. (1990). The UAN: A User-Oriented Representation for Direct

Manipulation Interface Design. ACM Transactions on Information Systems, 8 (3), 181-203.
Hill, R. (1986). Supporting Concurrency, Communication and Synchronisation in Human-Computer

Interaction - The Sassafras UIMS. ACM Transactions on Graphics, 5 (3), 289-320.
Hoare, C.A.R. (1978). Communicating Sequential Processes. Communications of the ACM, 21 (8), 666-

677.
Johnson, P., Johnson, H., Waddington, P., & Shouls, A. (1988). Task-related knowledge structures:

analysis, modeling, and applications. In D.M. Jones, & R. Winder (Eds.), People and computers:
from research to implementation - Proceedings of HCI ’88 (pp. 35-62). Cambridge University
Press.

Marcus, A. (1996). Icon Design and Symbol Design Issues for Graphical Interfaces. In E. Del Galdo,
& J. Nielsen (Eds.), International User Interfaces (pp. 257-270). New York: John Wiley and
Sons.

Moran, T.P. & Carroll, J.M. (1996). Design Rationale: Concepts, Techniques, and Use. Hillsdale, NJ:
Lawrence Erlbaum Associates

Nielsen, J. & Mack, R.L. (Eds.) (1994). Usability Inspection Methods. New York: John Wiley & Sons.
Payne, S. (1984). Task-action grammars. In Proceedings of IFIP Conference on Human-Computer

Interaction: INTERACT ’84 (Vol. 1), London, England (pp. 139-144). Amsterdam: North-
Holland, Elsevier Science.

Saldarini, R. (1989). Analysis and Design of Business Information Systems. Structured Systems
Analysis (pp. 22-23). New York: MacMillan Publishing.

Savidis, A., Akoumianakis, D., & Stephanidis, C. (1997). Software Architectures for Transformable
Interface Implementations: Building User-Adapted Interactions. In Proceedings of HCI
International ’97, San Francisco, California (pp. 453-456). Amsterdam: Elsevier, Elsevier
Science.

Savidis, A., Paramythis, A., Akoumianakis, D., & Stephanidis, C. (1997). Designing user-adapted
interfaces: the unified design method for transformable interactions. In Proceedings of the
ACM conference in Designing Interactive Systems (DIS ’97), Amsterdam, The Netherlands
(pp. 323-334). New York: ACM Press.

