
An Active Splitter Architecture for Intrusion
Detection and Prevention

Konstantinos Xinidis, Ioannis Charitakis, Spiros Antonatos, Kostas G. Anagnostakis, and

Evangelos P. Markatos

Abstract—State-of-the-art high-speed network intrusion detection and prevention systems are often designed using multiple intrusion

detection sensors operating in parallel coupled with a suitable front-end load-balancing traffic splitter. In this paper, we argue that,

rather than just passively providing generic load distribution, traffic splitters should implement more active operations on the traffic

stream, with the goal of reducing the load on the sensors. We present an active splitter architecture and three methods for improving

performance. The first is early filtering/forwarding, where a fraction of the packets is processed on the splitter instead of the sensors.

The second is the use of locality buffering, where the splitter reorders packets in a way that improves memory access locality on the

sensors. The third is the use of cumulative acknowledgments, a method that optimizes the coordination between the traffic splitter and

the sensors. Our experiments suggest that early filtering reduces the number of packets to be processed by 32 percent, giving an

8 percent increase in sensor performance, locality buffers improve sensor performance by 10-18 percent, while cumulative

acknowledgments improve performance by 50-90 percent. We have also developed a prototype active splitter on an IXP1200 network

processor and show that the cost of the proposed approach is reasonable.

Index Terms—Network-level security and protection, network processors, intrusion detection and prevention.

�

1 INTRODUCTION

THE increasing importance of networked services along
with the high cost of enforcing end-system security

policies has resulted in a growing interest in complemen-
tary, network-level security mechanisms, as provided by
firewalls and network intrusion detection and prevention
systems. Firewalls are network elements that filter undesir-
able traffic between two networks based on policies
typically expressed as a set of rules to be checked against
packet headers. Network Intrusion Detection Systems
(NIDS) passively monitor traffic on a network and perform
more advanced checks, including protocol and content
inspection, to determine indications of possible attacks.
Network Intrusion Prevention Systems (NIPS) combine the
functionality of NIDS and firewalls, performing in-depth
inspection and using this information to block possible
attacks.

Firewalls are relatively easy to scale up for high-speed

network links because their operation involves relatively

simple operations, e.g., matching a set of Access Control

List-type policy rules against fixed-size packet headers.

Unlike firewalls, detection and prevention systems are

significantly more complex and, as a result, are lagging

behind routers and firewalls in the technology curve. The

complexity stems mainly from the need to analyze not just

packet headers but also packet content and higher-level
protocols. Moreover, the function of these systems needs to
be updated with new detection components and heuristics,
considering the progress in detection technology as well as
the continuously evolving nature of network attacks.

Both complexity and the need for flexibility make it hard
to design a high-performance NIDS or NIPS. Application-
Specific Integrated Circuits (ASICs) lack the needed flex-
ibility, while software-based systems are inherently limited
in terms of performance. One design that offers both
flexibility and performance is the use of multiple soft-
ware-based systems behind a hardware-based load bal-
ancer. Although such a design can scale up to edge-network
speeds, it still requires significant resources, in terms of the
number of software-based systems, required rack-space,
etc. It is therefore important to consider ways of improving
the performance of such systems.

This paper details our experience with examining the
role of network processors (NPs) in building a high-speed
NIDS/NIPS. We focus on ways for exploiting the perfor-
mance and programmability of NPs for making a NIDS/
NIPS more efficient. We consider an overall system
structure similar to many commercial products [35], [34],
that consists of a traffic splitter (implemented using NPs)
that distributes the incoming traffic to sensors (implemen-
ted on general purpose PCs) for analysis.

We argue that splitters should be actively involved in
analyzing traffic rather than just passively providing load-
balancing functionality, with the goal of reducing the
workload of the sensors and increasing the overall capacity
of the system. There are different types of operations that can
be performed on the splitter. First, it is possible to move part
of the detection functionality to the splitter. Second, it is
possible to implement optimizations and preprocessing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 3, NO. 1, JANUARY-MARCH 2006 31

. K. Xinidis, I. Charitakis, S. Antonatos and E.P. Markatos are with the
Institute of Computer Science, Foundation for Research and Technology,
PO Box 1385 Heraklion, GR-711-10 Greece.
E-mail: {xinidis, haritak, antonat, markatos}@ics.forth.gr.

. K.G. Anagnostakis is with the Institute for Infocomm Research, 21 Heng
Mui Keng Terrace, Singapore 119613. E-mail: kostas@i2r.a-star.edu.sg.

Manuscript received 31 Aug. 2004; revised 2 Nov. 2005; accepted 10 Jan.
2006; published online 3 Feb. 2006.
For information on obtaining reprints of this article, please send e-mail to:
tdsc@computer.org, and reference IEEECS Log Number TDSC-0127-0804.

1545-5971/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

functions on the splitter, with the goal of reducing sensor
load. Finally, it is possible to optimize the structure of the
mechanisms used for splitter-sensor coordination. Although
there are differences in the types of operations that can be
performed, the overall approach applies to both detection
(NIDS) and prevention (NIPS).

To illustrate our argument, we describe an active splitter
architecture and analyze three mechanisms that can be
implemented as part of the system. The first is based on the
observation that a significant fraction of packets only
require header processing. Given that header processing is
relatively cheap (and can be easily performed in hardware
or a network processor) we can implement an early filtering
function (in the case of a NIDS) or an early forwarding
function (in the case of a NIPS) as part of the splitter. The
main benefit of this method is that the amount of traffic that
needs to be transmitted and processed by the sensors can be
reduced.

The second mechanism is based on the observation that
different types of packets trigger different subsets of the
NIPS rule set, placing a significant burden on the sensor
memory architecture (i.e., reducing memory access locality).
We present an algorithm for locality buffering, so that packets
of the same type are grouped together on the splitter before
being forwarded to the sensors. The benefit of this method
is that it increases performance without altering the
semantics of the traffic stream and without requiring
changes on the sensors. We argue that the algorithm
requires a reasonable amount of additional buffer memory
and a small number of operations on each packet and can
thus be efficiently implemented as part of the splitter.

The third mechanism, which only applies to prevention
(NIPS) and not detection (NIDS), is based on the observation
that coordination between the traffic splitter on the NP and
the software-based sensors in a NIPS is inefficient, since it
requires the transmission of every legitimate packet from the
sensors back through the splitter. We demonstrate a more
efficient coordination mechanism, using cumulative acknowl-
edgments, that offers substantial performance benefits.

We must note that for the purposes of this paper, the
proposed architecture and the specific mechanisms have
only been examined in the context of detection and
prevention that relies heavily on the string-matching model.
As such, the mechanisms and the performance results
presented in this work may not always be meaningful in a
more general NIDS/NIPS context. For instance, while the
cumulative acknowledgment scheme is independent of the
detection components implemented on the sensors, its
performance benefit is relative to the sensor processing
workload. Similarly, the early filtering mechanism depends
on the detection components as well as the incoming traffic.
As the sophistication and complexity of detection increases
(e.g., through the introduction of additional detection
heuristics), designers many need to reexamine the effec-
tiveness and the specific form of each mechanism. In
particular, more fine-grained protocol analysis (as per-
formed in systems such as Bro [27]) is likely to lead to
higher gains in early filtering. One could, for example,
completely filter out Web server response traffic, assuming
it is trusted not to contain anything relevant to detection.

This, however, would involve some additional processing
as well as state tracking on the splitter.

Considering these observations, the main contribution of
this paper is not the specific set of techniques, but the
architectural argument on the choice and placement of
functions in a high-performance, multilevel processing
system, such as the splitter-sensor setting discussed here.
To the best of our knowledge, current systems use the
splitter simply as a dumb load balancer. In contrast, we
have suggested that the splitter should be enhanced to be
more actively involved in the detection process. This is
made easier, yet not trivial, by the use of programmable
NPs. However, because the (NP-based) splitter is hard to
program (e.g., it has to be programmed in a low-level
microassembly-like language) and can easily become a
bottleneck, we were fundamentally restricted in how
complex and heavyweight the functions to be implemented
could be. Indeed, the functions we implemented on the
splitter all turned out to be lightweight and (perhaps
disappointingly) simple. Nevertheless, our results suggest
that they offer significant performance benefits (e.g.,
roughly between 2x and 10x in throughput) at reasonably
low cost. As NIDS and NIPS technology continues to
evolve, the existing functions can be adapted and additional
mechanisms can be added to further improve performance.
Finally, as NPs mature and their programming tools
improve, it will become easier to develop more sophisti-
cated functions on the splitter.

1.1 Paper Organization

The rest of this paper is organized as follows: In Section 2,
we provide a brief overview of how a NIDS/NIPS works
and how load balancing is used in intrusion detection. In
Section 3, we present the active splitter architecture and the
performance-enhancing mechanisms that it can support. In
Section 4, we present the detailed implementation of the
splitter on the IXP1200 Network Processor and the
modifications needed on the sensor side and, in Section 5,
we present experiments examining the performance of the
proposed system. We discuss related work in Section 6 and
we conclude in Section 7.

2 BACKGROUND

We first describe a simplified model of how a Network
Intrusion Detection System (NIDS) operates. A NIDS
examines network traffic and uses a variety of heuristics
that try to identify attacks in the observed traffic. While
research on detection heuristics is ongoing, most of the
work can be classified into two broad categories: signature-
based detection (compare [29]) and anomaly detection
(compare [38], [39], [37], [4], [18], [19]).

In this paper, we only consider the signature-based
detection methods that are implemented in systems such as
snort [29] because they appear simpler, more mature, are
in wide operational use, and are therefore much better
understood than anomaly detection. Reexamining our work
in the context of a wider set of detection mechanisms is a
subject for future work.

The functionality of a signature-based NIDS can be
divided into two different phases: the protocol decoding

32 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 3, NO. 1, JANUARY-MARCH 2006

phase and the detection phase. In the first phase, the raw
packet stream is separated into connections representing
end-to-end activity of hosts. In case of IP traffic, a connection
can be identified by the source and destination IP addresses,
transport protocol, and UDP/TCP ports. Then, a number of
protocol-based operations are applied to these connections.
The protocol handling ranges from network layer to applica-
tion layer protocols. Some of the operations applied by the
protocol handling are IP defragmentation, TCP stream
reconstruction, and identification of the URI in HTTP
requests. The second phase consists of the actual detection.
Here, the packet (or an equivalent higher-level protocol data
unit) is checked against a database of signatures representing
attack patterns. The snort NIDS organizes the rule-set as a
two-dimensional data-structure chain, where each element,
called a chain header, tests the input packet against a packet
header rule. When a packet header rule is matched, the
chain header points to a set of signature tests, including
payload signatures that trigger the execution of the pattern
matching algorithm. Recent versions of snort organize the
rule set in groups of rules that should be checked against
packets that have the same destination port [32] and apply
multipattern string matching algorithms [9], [11], [1] on the
packet payload. Other systems, such as Bro [27] implement
more elaborate protocol analysis rules in different ways.
When an attack signature is detected, a NIDS typically
issues an alert, while a NIPS would take further actions
such as dropping the offending packet.

Recently, researchers have started to examine a general
approach for load balancing tailored for high speed NIDS
and NIPS [17]. In addition to research prototypes, commer-
cial NIDS and NIPS load-balancing products have recently
started to become available, such as [36], [28]. Although
there is little publicly available information about the
design of these systems, they are usually presented as
dumb load balancers that simply distribute the incoming
traffic to an array of off-the-shelf sensors (such as snort)
for processing.

3 DESIGN

There are four main goals in designing a NIPS traffic
splitter. First, packets that belong to the same attack context
need to be processed by the same sensor. Otherwise, certain
attacks would not be detected. For content-based intrusion
detection this can be achieved by mapping packets of the
same flow to the same sensor. Second, traffic should be
distributed so that overall system performance is max-
imized. Assuming a set of N identical sensors (in terms of
resources, software, and configuration), a good way of
achieving this is to distribute approximately 1=N of the total
load to each sensor. Flow-level traffic distribution works
well toward this goal. Third, the splitter needs to be efficient
enough to operate at high network speeds. Therefore, any
additional functionality should have low cost, so that the
splitter does not become a bottleneck. Finally, the system
should involve minimal, if any, modifications to the sensor
function.

The overall architecture of our approach is shown in
Fig. 1. The system is composed of an early filtering element,
a load distribution element, a set of locality buffering units,

one unit for each sensor, and a module that blocks intrusion
packets based on the cumulative acknowledgments me-
chanism. All incoming network traffic arrives from the left
side of Fig. 1 and enters the traffic splitter. The splitter, after
some early-filtering preprocessing, divides the traffic
through the load distribution element into separate streams
and sends each of them to a different sensor which
processes the incoming packets searching for possible
intrusion attempts. Each sensor provides a response to
our system indicating whether or not the packets it received
contain an attack. All packets that do not contain an attack
are forwarded to the exit point. Given that the end sensors
are off-the-self intrusion detection systems, such as snort
[29], our contribution is focused on the architecture and
implementation of the traffic splitter.

In the remainder of this section, we will present each
element in more detail.

3.1 Early Filtering and Forwarding

The goal of early filtering is to identify the incoming packets
that do not contain any intrusions and filter them out
immediately, preventing the system from unnecessarily
sending them to the end sensors. The early filtering stage
reduces the load on the end sensors and may also improve
the performance of the overall system, as the process of
sending the filtered-out packets from the splitter to the
sensors is avoided.

To perform early filtering, we analyzed the default
snort rule set (version 2.0.0) and found 165 rules that
require only header (not payload) processing: We refer to
this set of rules as the EF rule set.

Once the EF rule set has been identified, the splitter
operates as follows: When a packet is received, it is first
checked against the EF rule set. If no rule is matched and
the packet contains no payload, then the packet is filtered
out. Otherwise, it is forwarded to the end sensors for
further processing. Note that packets that are forwarded
to the sensors may belong to one of the following two
classes: They matched one of the rules from the EF rule
set, or they did not match any of the EF rule set rules but
they contain payload. Packets belonging to the first class
are forwarded to the sensors in order to be logged, while
packets belonging to the second class are forwarded to
the sensors in order to be examined against the rest of the
snort rule set.

XINIDIS ET AL.: AN ACTIVE SPLITTER ARCHITECTURE FOR INTRUSION DETECTION AND PREVENTION 33

Fig. 1. The active NIPS splitter architecture.

We must note that the specific instance of early filtering
only applies to systems that are configured not to perform
stateful inspection. For example, stateful inspection requires
a complete TCP handshake before it checks a rule. If
acknowledgments are dropped by early filtering, then
stateful inspection cannot be performed. Similarly, TCP
reassembly will not work if control packets (e.g., packets
with SYN, ACK, or FIN flags) are dropped. Thus, this
specific form of early filtering should be applied carefully,
keeping in mind that some intrusion detection features may
not work correctly [13]. To solve this problem, one could
perform TCP reassembly on the splitter, which recent work
has shown to be feasible [31].

Beyond the specific instance of early filtering presented
above, one could more generally try to move some of the
detection workload to the splitter. In particular, we have
observed that many rules do not necessarily require full
content inspection in terms of scanning the whole packet for
a pattern at any offset. An example is shown in Fig. 2.1 This
would require rethinking the structure of a NIDS in general.
Specifically, reducing detection to multipattern matching
seems like a reasonable design for general purpose PCs, but
more fine-grained analysis, as performed by other systems,
such as Bro [27] might be a better model for multiprocessing
architectures such as the one considered in this paper. This
direction is outside the scope of this paper, and subject for
future work.

3.2 Load Distribution

The goal of load distribution is to divide the network traffic
among the end sensors so as to keep them as evenly loaded
as possible. At the same time, the distribution of the
network traffic should make sure that all packets of a
network flow are examined by the same sensor, otherwise
the system might miss an attack. As an example, think of an
attack that is located at the boundaries of two packets. If the
packets are sent to different sensors, the attack cannot be
detected. Furthermore, preprocessing elements, such as
TCP reassembly, need the entire flow to operate properly.

A simple and efficient approach for load distribution is
to compute a hash function on some of the fields of the
packet headers and to assign each packet to an end sensor
based on the resulting value of this hash function. A hash
function such as CRC16 [5], can evenly spread the flows
among the sensors, so that each sensor will receive an
approximately equal amount of work. Careful choice of the
header fields that will be used as input to the hash function
can result in a load-balancing policy that is flow preserving,

i.e., packets of the same flow will be assigned to the same
sensor. This can be easily accomplished by using the
following header fields: protocol number, source IP ad-
dress, destination IP address, source port, and destination
port. Assuming well-behaved (e.g., TCP-friendly) traffic,
this approach is also robust to variations in traffic load, as
new flows will be assigned evenly among the available
sensors. Of course, such an approach may not be robust
against attackers attempting to overload the system to
evade detection. Another problem with this specific in-
stance of hash-based load balancing is that the analysis
context may span across flows. For instance, analyzing FTP
sessions requires processing both the control and the data
connection on the same sensor. Because we include port
numbers in the hash computations, the two connections are
likely to be assigned to a different sensor. If hashing is
performed on source and destination IP address only, then
the context would be properly preserved. However, this
might result in greater load imbalance. Another option
would be for the FTP analyzer to explicitly set up state on
the load balancer that overrides the hash-based assignment
and redirects the FTP data connection to the right sensor.
We have not implemented this functionality in our system,
as these problems are beyond the main focus of this work.

For the purpose of our study, we have used a CRC16-like
hashing function, which has been shown to perform well [5].

3.3 Locality Buffering

Locality buffering is a technique for adapting the packet
stream in a way that accelerates sensor processing by
improving the locality of its memory accesses and thus
reducing its cache misses.

Locality buffering is based on the following observation.
Each packet that arrives at the end sensor will be checked
against rules that apply to the application protocol of the
packet. For example, packets destined to a Web server will
be checked against a set of rules which search for Web
server attacks. This set of rules remains constant during the
execution lifetime of the sensor. Similarly, packets destined
to an FTP server will be checked against a set of rules which
describe FTP server vulnerabilities. When checking a packet
against a set of rules, each sensor will have to bring this rule
set to the first and possibly the second-level cache of the
processor. In the incoming traffic stream, packets from
different network flows appear interleaved. As an example,
consider a sensor that monitors a traffic stream consisting of
packets belonging to a Web session and packets belonging
to an FTP session. Web packets will arrive interleaved with
FTP packets, which implies that the sensor may alternate
the Web rule set and the FTP rule set in the cache, resulting
in cache misses and reduced performance.

To increase memory locality and reduce cache misses,
the proposed locality buffering mechanism attempts to
rearrange the interleaving of packets in the packet stream so
that packets that arrive back-to-back will trigger the same
rule set as frequently as possible. To do so, our method uses
a set of locality buffers. Instead of directly sending packets to
the sensors, our approach initially places packets in locality
buffers, and when a buffer becomes full, all packets are
transmitted back-to-back to the target sensor. Therefore,
packets arriving back-to-back at the sensor will have a

34 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 3, NO. 1, JANUARY-MARCH 2006

1. The content keyword specifies the pattern to search for in the packet
payload. The offset keyword specifies the offset inside the packet payload to
start the search and the depth keyword sets the maximum search depth. The
distance keyword makes sure that there are at least N bytes between pattern
matches and, finally, the within keyword makes sure that at most N bytes
are between pattern matches.

Fig. 2. RPC protocol rule, formulated as a string matching problem.

higher probability of triggering the same rule set and

improving locality. To avoid introducing latency when

arrival rates are low, we periodically flush the locality

buffers, while an even better solution (not implemented in

our prototype) is to dynamically enable locality buffering

only when sensors approach their maximum capacity.

Frequently flushing the locality buffers is particularly

important for a NIPS where the system latency does not

only affect detection delay but also forwarding delay.
How many locality buffering units do we need and how

do we assign packets to locality buffers? Ideally, we could

replicate the header processing function implemented by

the NIDS that decides which rule-group a packet belongs to,

and allocate one locality buffering unit for each rule-group.

This would be optimal in terms of performance, as it

completely eliminates the possibility of packets in a single

locality buffer triggering different rule-groups. However, to

rely on this general approach, we need to assume that

header processing is not overly expensive, or that it has to

be performed anyway (e.g., to support early filtering).

Furthermore, the number of rule-groups can be large,2 and

some rule-groups will rarely be triggered. Depending on

the implementation the cost of maintaining an idle locality

buffer could become a problem.
To make sure we address cases where it is undesirable to

perform classification of packets to rule-groups that mirrors

the NIDS rule set, we focus on a simpler approach based the

following heuristics for determining the target locality

buffer for a given packet (see Table 1):

. src+dst: We place a packet in a locality buffer
based on the result of a hash function computed on
the source and the destination ports of the packet.
Using this approach we expect that packets belong-
ing to different flows will end up in different buffers,
thereby reducing packet interleaving.

. dst: We place a packet in a locality buffer based on
the result of a hash function computed on the
destination port only.

. dst-static: In this approach, we allocate a subset
of locality buffers for known traffic types and use
method dst for the remaining buffers/packets. For
example, one buffer may receive only Web traffic,
another buffer may receive only NNTP traffic, and a
third buffer may receive only traffic of a popular P2P
application. Unclassified packets are then allocated
to the rest of the locality buffers using method dst,
that is, hashing on the destination port only. The
choice of traffic types can be made by profiling
network traffic and looking at how the NIDS rule set
is utilized.

Some of the positive effects of separating traffic based on

port numbers may be diluted by the growing trend of

applications using nonstandard (or even random) ports

[16]. To counter this problem, the NIDS would have to

adopt new approaches, such as [16] for identifying

application protocols. Whether these new approaches can

be integrated on the splitter side to be used for choosing
locality buffers is unclear at this point.

3.4 Cumulative Acknowledgments

We have designed a simple mechanism for reducing
redundant communication between the splitter and the
sensors. The idea behind this mechanism is the following:
Suppose that the splitter stores temporarily (for a few
milliseconds) the packets that it forwards to the sensors for
analysis. Then, there is no need for the sensors to forward
packets back through the splitter. Instead, sensors can send
control messages to the splitter containing unique packet
identifiers. Because the splitter has previously stored the
packet with this unique identifier, it can determine the
referenced packet and forward it to the appropriate
destination. The only additional work for the splitter is to
tag each packet with a unique identifier, which is a
straightforward task. Although the additional processing
cost to the splitter from this plug-in is minimal, the
reduction to the load of the sensors is remarkable. However,
this technique requires the splitter to be equipped with
additional memory for the buffering of the packets.

Our mechanism is designed as follows: The splitter
needs to communicate with the sensors in order to decide
the action that should be performed, e.g., to forward or
drop a packet. This is done with acknowledgments (ACKs)
from the sensors to the splitter. An ACK is an ordinary
Ethernet packet: It consists of an Ethernet header, followed
by two bytes denoting the number of packets acknowl-
edged (ACK factor), followed by a set of four-byte integers
representing the internal packet identifiers (PIDs). There are
other possible formats requiring less bytes and supporting
higher ACK factors for this configuration. However, this
approach seemed sufficient.

1. Positive ACKs: An ACK for every packet not related
to any intrusion attempt.

2. Positive cumulative ACKs: An ACK for a set of
packets not related to any intrusion attempt.

3. Negative ACKs: An ACK for every packet that
belongs to an offending session.

4. Negative cumulative ACKs: An ACK for a set of
packets that belong to an attack session.

5. The packet received.

Each of these solutions has advantages and disadvan-
tages. The packet received (PR) scheme does not require the
splitter to temporary hold the packet in memory but it
suffers in terms of performance. Negative acknowledg-
ments have two major drawbacks. First, in order to be able
to distinguish when a packet must be forwarded, we have
to use a timeout value. Recall that our NIPS must not drop
any packet or an attack might be missed. As a result, we

XINIDIS ET AL.: AN ACTIVE SPLITTER ARCHITECTURE FOR INTRUSION DETECTION AND PREVENTION 35

2. The number of chain-headers is 265 for the default rule set in snort

version 2.3.3, and 211 for snort version 2.0.0.

TABLE 1
Locality Buffer Allocation Methods

would be forced to choose a timeout for the worst-case
scenario, resulting in unnecessarily high latency. Second, it
is impossible for the splitter to differentiate the case where
the analyzed packet contained no attack from the case
where the packet was dropped due to some error. There-
fore, positive acknowledgments appear more suitable. The
choice between simple ACKs and cumulative ACKs is
based on the latency versus processing trade-off, which we
discuss in more detail in Section 5.5.

In terms of memory requirements, there is a direct
relationship between the processing latency of the sensors
and the memory required on the splitter. The splitter needs
memory to retain incoming packets until they are acknowl-
edged by the sensors. The amount of memory the splitter
needs depends on the highest possible latency that our
NIPS will tolerate. A reasonable value, confirmed by
measurements, is 200 milliseconds. Considering that the
NIPS is supposed to analyze traffic at 1 Gbit/s, the required
memory is approximately 25 MBytes.

4 IMPLEMENTATION

We have implemented the proposed architecture using the
Intel IXP1200 network processor as the traffic splitter and
general purpose PCs running a modified version of snort
as the sensors. The IXP1200 network processor is equipped
with one StrongArm processor core and six special-purpose
processors called microengines. Each microengine is
equipped with four hardware threads (contexts) which
frequently context switch among themselves in order to
mask memory latency. Also, this chip has an FBI unit and
buses for off-chip memories (SRAM and SDRAM). The FBI
unit connects the IXP1200 chip with the media access control
(MAC) units through the Intel Exchange (IX) bus (a modified
version of the PCI bus). The FBI also contains a hash unit that
can take 48-bit or 64-bit data and produce a 48-bit or 64-bit
hash index. In our experimental environment, the IXP1200
network processor is mounted on an ENP-2506 development
board provided by Radisys. In addition to the processor, the
board includes 256 MBytes of SDRAM and 8 MBytes of
SRAM, two optical Gigabit Ethernet interfaces and a 64-bit
external PCI interface. The IXP1200 network processor is
internally clocked at 232 MHz.

The choice of snort on the sensor side is based on the
observation that it is a widely used and mature system, that
has been significantly optimized in the last few years [32],
[9], [11], [1].

Concerning the development of the splitter architecture,
we have used the microengine assembly language. The
assignment of threads to tasks is done as follows: We assign
16 threads for the receive part of the two Gigabit Ethernet
interfaces and eight threads for the transmit part of the two
Gigabit Ethernet interfaces. Note that although the current
implementation utilizes all the available microengines, there
is headroom for further active operations to be implemented
on the splitter. Regarding, the memory utilization of the
IXP1200, only 32 MBytes of the total 256 MBytes are used for
storing the actual contents of each packet. Also, only
2 MBytes of the total 8 MBytes of the SRAM memory are
used for storing packet descriptors, per-packet metadata,
locality buffer metadata, and synchronization variables. A

more detailed description of the implementation of each part
of our splitter architecture follows.

4.1 Early Filtering and Forwarding

To perform early filtering and forwarding on the splitter we
first have to transform the set of snort rules into a form
suitable for processing on the NP. For this purpose, we have
designed S2I, a tool that transforms such a set of snort
signatures into efficient microengine code for the micro-
engines of IXP1200. The transformation is performed using
a tree-structure in order to minimize the number of
required checks. The resulting code together with a general
runtime environment can be compiled, optimized, and
loaded on the IXP1200 using the standard tool chain.

The benefits of this approach are based on the following
observation. An interpretive approach where the signatures
are kept in data structures in memory is expensive both in
time (e.g., executed instructions and memory references)
and space since for each signature, the interpreter input can
be a large structure defining which fields to check, what
operation to perform and against what value. A compiled
approach is faster since it avoids the interpretation cost and
allows for standard compiler optimizations. The compiled
approach may also result in more compact code since many
of the constants can be embedded in the instructions
themselves, thus saving space.

An essential optimization pass performed by S2I is
common-subexpression elimination using an expression
evaluation tree. When several signatures share the same
prefix conditions, these conditions are evaluated only once.
Organizing the signature checks in a tree saves both space
(each datum is stored once) and time (each condition is
evaluated once). While this possibility is available to the
programmer as well, implementing the code for a large
number of signatures is error prone, reduces code read-
ability, and is very hard to adapt to a new set of signatures.
S2I provides performance close to that of hand-crafted code
while offering the advantage of a standard and manageable
high-level input specification.

For the IXP1200, the S2I compiler will also insert context
swap directives in certain points of the code. Context swaps
are needed to voluntary let the current thread swap out of
execution so that other threads on the same microengine
will have a chance to execute. This is done to avoid
monopolizing a microengine for too long. If all micro-
engines are claimed by running threads, then the buffer of
the monitored port is likely to overflow, causing packet loss.
More information on the S2I compiler is provided in [6].

4.2 Load Balancing

Each incoming packet received by the splitter on the NP is
assigned to a target sensor that will inspect the packet for
possible attacks. Sensor assignment is performed in a flow
preserving manner, e.g., all packets of the same flow will
always be assigned to the same sensor. This is accomplished
by assigning packets to sensors based on the result of a hash
function applied on the source and destination IP addresses
and TCP/UDP ports of the packet.

For the implementation of the hash-based load balan-
cing, we used the hash unit of the IXP1200. Specifically,
every input packet is checked to verify that it is not an

36 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 3, NO. 1, JANUARY-MARCH 2006

IP fragment. If it is not a fragment, the source and
destination IP addresses and UDP/TCP ports are send to
the hash unit. Then, the last N bits of the result specify the
destination sensor. If it is an IP fragment, then the packet is
enqueued to the StrongARM. The StrongARM drains this
queue and assembles the IP fragments into a nonfragmen-
ted IP packet. After the StrongARM acquires the nonfrag-
mented IP packet, we enqueue this packet to the
microengines which are then responsible to perform the
hashing. The hashing function we used is CRC16.

4.3 Locality Buffering

Following sensor assignment, each packet is assigned to one
of 16 locality buffers (dedicated to each sensor) based on the
result of a hash function computed on the packet’s
destination port. An exception to this rule is packets
belonging to specific traffic categories that have dedicated
buffers, such as packets destined to port 80 (Web client
traffic), originating from port 80 (Web server traffic), etc.
When a locality buffer becomes full, all packets are
enqueued in the transmit queue and transferred to the
sensor in a single burst (e.g., back-to-back).

We have chosen to implement locality buffering on the
splitter for two reasons. First, locality buffering is a function
that is straightforward and cheap enough to implement on
the splitter, as we will demonstrate in Section 5. Second,
implementing it on the sensor is both cumbersome and
expensive. It would require copying packets from the
buffers as delivered by libpcap to the locality buffers, as
libpcap (and the underlying kernel packet capture
facility) is not designed to give control over buffer
allocation to the application. To address this problem, one
would have to modify the kernel code. This, however,
results in code that is OS-specific and therefore not easily
portable. Without this enhancement, any benefit derived
from improved locality is overshadowed by the cost of
copying packets.

4.4 Cumulative Acknowledgments

The main modification needed to support cumulative
acknowledgments is for the splitter to store packets before
transmission to the sensors and accessing them upon
receipt of a cumulative acknowledgment. For this purpose,
we use a circular buffer which resides in SDRAM memory.
The circular buffer needs to be large enough to prevent
overwriting packets before their matching acknowledgment
is received. Before requesting an unallocated buffer, we first
need to know the size of the packet; otherwise, we would be
forced to use a conservative estimate that would lead to
memory waste. Because the IXP1200 transfers packets in
64-byte chunks (called mpackets), the actual packet size is
not known until the microengines receive the last mpacket.
To avoid this problem, we extract the packet size from the
IP header, which is in the first mpacket. Every packet
received from the interface G0 (shown in Fig. 1) is stored in
the circular buffer. Then, the pointer to the next free buffer
is advanced by the size of the packet. As the SDRAM on the
IXP1200 is only quad-word (8 bytes) addressable, the
pointer is advanced by the packet size plus some bytes for
quad-word alignment.

The sensor function is implemented by modifying the
snort NIDS. In particular, we have modified the action

phase of the sensors, e.g., the function performed after
detection, so that the sensor sends P-CACKs back to the
splitter if no attack is identified. For the transmission of
control packets from the sensor to the splitter, we used
libnet [30].

More precisely, we use the tagging option of snort to
keep track of offending sessions and to decide whether or
not to transmit P-CACKs back to the splitter. This option is
embedded in the rules of snort and gives the sensor the
ability to tag the packets that are part of a current attack
context. When the sensor finds an attack in a packet, it
marks the session corresponding to the packet as an attack
session. If, afterward, the sensor receives packets that are
determined to be part of an attack session, it (silently) drops
these packets and does not send P-CACKs back to the
splitter. This way, the attack is effectively blocked. One can
choose to block specific packets, the whole session, or all the
traffic generated by the source of the offending packet. The
designer of the rules can also specify how long the
offending source should be blocked by providing a timeout
value or a packet count threshold.

5 EXPERIMENTS

In this section, we first present the effect of the proposed
techniques on NIDS/NIPS performance and then examine
the cost of implementing the active splitter architecture. For
the experimental evaluation of the sensors, we use two
different platforms. The first platform is used for the
evaluation of the early filtering and locality buffering
techniques while the second platform is used for the
evaluation of the cumulative acknowledgments technique.

The first platform is a Dell PowerEdge 500SC equipped
with a 1.13 GHz Pentium III processor PC with 8 KB
L1 cache, 512 KB L2 cache and 512 MB of main memory.
The host operating system is Linux (kernel version 2.4.17,
Redhat 7.2). The NIDS software is snort version 2.0-beta20
compiled with gcc version 2.96 (optimization flags O2).

The second platform is a Dell PowerEdge 1600SC
equipped with 2.66 GHz Pentium IV Xeon processor
(hyper-threading disabled) and 512 MBytes of DDR
memory at 266 MHz. The PCI bus is 64-bit wide clocked
at 66 MHz. The host operating system is Linux (kernel
version 2.4.22, Red-Hat 9.0). The NIDS software is a
modified version of snort 2.0.2, compiled with gcc
version 3.2.2. We turn off all preprocessing in snort. In
most experiments, snort is configured with the default
rule set.

The locality buffering experiments are performed by
reading packet traces from a hard disk, while the early
filtering experiments use traffic received from the network
(to capture the effect of early filtering on the network
subsystem). In the latter case, we use a simple network with
two hosts A and B and a monitoring host S. Host A reads
the trace from a file and sends traffic to host B (using
tcpreplay) over a 100 Mbit/s Ethernet switch configured
to mirror the traffic to host S. As the exact timing of trace
packets has negligible effect on NIDS behavior, we simply
replay the trace at maximum rate (link utilization is roughly
90 percent).

XINIDIS ET AL.: AN ACTIVE SPLITTER ARCHITECTURE FOR INTRUSION DETECTION AND PREVENTION 37

We drive our experiments using a packet trace from the
NLANR archive captured in September 2002 on the OC12c
(622 Mbit/s) PoS link connecting the Merit premises in East
Lansing to Internet2/Abilene [26]. The trace contains
roughly 2.7 million packets with an average size of
762 bytes, 96 percent of which are TCP packets and
3.55 percent are UDP packets. Since the trace contains only
packet headers, we retrofit packets with uniformly random
data as their payload.3

5.1 Early Filtering/Forwarding

In our first set of experiments, we set out to explore the
benefits of using early filtering. We observe that for the
trace we used in our experiments, more than 40 percent of
the packets do not contain any payload. A closer look
reveals that most of these packets are TCP acknowledg-
ments and more than 99 percent of these packets do not
match any of the rules in the EF rule set, and can therefore
be safely dropped by the splitter during early filtering.

To measure the effect of early filtering on sensor
performance, we measure the user and system time of
running snort on two traces: the original trace as well as a
stripped-down trace that does not contain the packets that
would have been dropped by early filtering. The results are
presented in Fig. 3. The left bar of the figure shows the
processing time on the original trace, while the right bar
shows the processing time on the stripped-down trace. We
observe that user time is reduced by 6.6 percent while
system time is decreased by 16.8 percent, resulting in an
overall improvement of roughly 8 percent.

5.2 Load Balancing

In this section, we explore the load-balancing properties of
the CRC16 hash function which is used to distribute packets
to the available sensors. For this purpose, we measure the
maximum number of packets received by any sensor, as well
as the average number of packets received by the sensors for
the cases of two, four, and eight sensors. Fig. 4 shows the
difference between the maximum and the average number
of packets received by two, four, and eight sensors. We see
that this difference is rather small for the case of two sensors
(1.25 percent), and more noticeable for the case of eight
sensors (13.55 percent).

5.3 Locality Buffering

To quantify the benefit of locality buffers we measure NIDS

performance using two metrics:

. aggregate user time:4 the total user time spent by all
snort sensors.

. maximum user time: the user time spent by the most
loaded sensor.

The measurements are taken by applying the load-

balancing and locality buffering algorithms on the original

trace and then running snort on the generated trace. We

determine how performance is affected by the locality

buffering policy, the number of participating sensors, as

well as the number and size of the locality buffers.

5.3.1 Effect of Different Locality Buffering Policies

We examine how the different policies for allocating locality

buffers affect performance. For this set of experiments, we

consider four sensors, 16 locality buffers per sensor, and

256 KB per buffer. Again, we measure the percentage of

reduction in aggregate user time achieved by locality

buffering.
Fig. 5 shows the performance improvement for different

locality buffer allocation methods, in terms of the aggregate

user time as well as the user time of the slowest sensor. We

see that using hashing on the destination port only (dst

policy) is better than simple hashing on both ports (src+dst)

by more than 4 percent. The best result is obtained when

assigning some of the locality buffers to specific types of

traffic. This is observed in bars labeled dst-static which show

an improvement of 12.19 percent. This is not surprising, as a

38 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 3, NO. 1, JANUARY-MARCH 2006

3. It has been shown that the use of random payloads introduces an error
of up to 30 percent in the measured IDS processing costs [2]. However, since
we are interested in the relative (rather than the absolute) improvement in
sensor performance, we believe that the benchmark is reasonable.

4. We ignore system time in our measurements as it is dominated by
kernel overheads related to reading the network packets from the trace
stored on the disk.

Fig. 3. The effect of early filtering on sensor performance.

Fig. 4. Performance of CRC16-based load balancing method: difference

in percent of assigned packets on most loaded sensor and fair share.

Fig. 5. Percentage of performance improvement when using different

locality buffer allocation methods.

significant part of the trace includes Web traffic and,
therefore, dedicating buffers to this kind of traffic results
in longer bursts of similar packets.

5.3.2 Effect of Locality Buffers versus Number of

Sensors

Fig. 6 shows the aggregate user time for different numbers
of sensors, and Fig. 7 shows the user time of the slowest
(e.g., the most loaded) sensor. For this set of experiments,
we use 16 locality buffers of 256 KB each and the dst-

static allocation method. Fig. 6 shows that using locality
buffers reduces aggregate user time by at least 11.4 percent
for eight sensors and up to 13.8 percent for a single sensor.
Fig. 7 shows that using locality buffers reduces the
processing load of the most loaded sensor by 9 percent-
12 percent. An interesting observation from Fig. 6 is that as
the number of sensors increases, the aggregate user time (in
light gray bars) is decreasing. Although it is not entirely
obvious why this happens, we conjecture that one possible
reason is that distributing packets to a large number of
different sensors, even in the absence of locality buffers,
demultiplexes the incoming traffic and increases the
probability of same-type back-to-back packets.

To verify this observation, we measure the average burst
size, e.g., the number of consecutive packets that have the
same protocol and destination port as received by the
sensors. Fig. 8 presents the average burst size for one to
eight sensors. By looking at Fig. 8, it is evident that the
average burst size increases with the number of sensors. For
example, in the absence of locality buffers, the average burst
size increases from 1.06 packets to 1.18 packets, an
11 percent increase. Similarly, when locality buffers are
being used, the average burst size increases from 1.63 to
2.27, a 39 percent increase. It is interesting, however, to note
that the average burst size in almost all cases increases
significantly with the use of locality buffers. For example, in

the case of one sensor, locality buffers increase the burst size
by 53 percent (from 1.06 to 1.63), and in the case of eight
sensors by 92 percent (from 1.18 to 2.27).

5.3.3 Locality Buffer Dimensioning

In our next set of experiments, we investigate how
performance is affected by the number of locality buffers
(e.g., each for a different type of traffic) and the size of each
buffer (e.g., the total amount of memory dedicated to buffer
particular types of packets). We use four sensors and the
locality buffers are allocated using method dst-static. In
each experiment, we measure the difference in user time
compared to a system without locality buffers.

Fig. 9 shows the results of using a different number of
locality buffers per sensor when the size of each buffer is
256 KB. We observe that the improvement in aggregate user
time varies between 6.8 percent (four buffers) and 12.9 per-
cent (64 buffers). Increasing the number of locality buffers
beyond 32 does not appear to offer further benefit in terms
of aggregate user time, although the performance of the
most loaded sensor continues to improve. This suggests that
using 32 or 64 locality buffers per sensor is a reasonable
design choice.

To measure how the size of each locality buffer affects
performance, we measure the aggregate user time and the
user time of the most loaded sensor for various buffer sizes.
The results are presented in Fig. 10. The reduction in
aggregate user time ranges from 9.3 percent to 13.31 percent
for the cases of 64 KB and 512 KB, respectively. Using
256 KB per locality buffer seems like a reasonable choice, as
the gain of increasing the buffer size from 256 KB to 512 KB
is marginal.

5.4 Early Filtering Combined with Locality Buffering

To estimate the benefits of using both early filtering and
locality buffering together, we apply the early filtering

XINIDIS ET AL.: AN ACTIVE SPLITTER ARCHITECTURE FOR INTRUSION DETECTION AND PREVENTION 39

Fig. 6. Aggregate user time over all sensors versus number of sensors.

Fig. 7. User time of slowest sensor versus number of sensors for the

experiments of Fig. 6.

Fig. 8. Mean burst size versus number of sensors for the experiment of

Figs. 6 and 7.

Fig. 9. Performance improvement (reduction in user time) using a

different number of LBs.

method on the packet trace and split the remaining packets
to four sensors using 16 locality buffers of 256 KB per sensor
and the dst-static locality buffering policy. Fig. 11 sum-
marizes the results. The measured aggregate user time is
37.88 seconds compared to 41.61 seconds when using
locality buffers only, reflecting an improvement of 8.9 per-
cent. Compared to 47.27 seconds when not using locality
buffers at all, the overall improvement of using both early
filtering and locality buffering is 19.8 percent. For the
slowest sensor, performance is increased by 5 percent when
compared to using only locality buffers (from 11.52 to
10.93 seconds) and 14.4 percent when compared to not
using early filtering or locality buffers.

5.5 Cumulative Acknowledgments

We measure the processing cost of a sensor for different
coordination schemes using the default rule set. In this
experiment, snort simply reads traffic from a packet
trace,5 performs all the necessary NIPS processing, and then
transmits the coordination messages to a hypothetical
splitter through a Gigabit Ethernet interface. We use three
packet traces: FORTH.WEB is a trace of Web traffic obtained
on a small LAN with around 50 workstations, FORTH.LAN
is a trace of all traffic on a larger LAN with around 150 hosts
(including both servers and workstations), and IDEVAL is a
synthetic trace created specifically for IDS evaluation [21].

Fig. 12 shows the time that snort spends to process all
the packets for the FORTH.WEB trace in terms of user and
system time. The results show that the bigger the P-CACK
factor, the less the total running time for snort. The
running time is roughly the same with an unmodified
detection-only sensor for a P-CACK factor equal to 128.
Furthermore, snort is 45 percent faster for a P-CACK
factor equal to 128 compared to the PR scheme. We also
observe that most of the improvement is due to a reduction
in system time.

We also observe that the improvement of the P-CACK
scheme compared to the PR scheme depends on the trace
used: the P-CACK scheme was between 0.45 and 3 times
more efficient than the PR scheme. The reason is that the
improvement depends on the detection load of the sensor:
the smaller the detection load, the bigger the relative
improvement. This becomes more clear if we determine the
source of the improvement. We observe that the P-CACK
scheme eliminates much of the overhead for sending
packets back to the network (system time in Fig. 12). If the
detection engine of a sensor is overloaded, then this
overhead is a small fraction of the total workload of the
sensor, and reducing it does not lead to much improve-
ment. In contrast, if the the detection engine of a sensor is
lightly loaded, this overhead consumes a big fraction of the
total workload of the sensor, and reducing it results in a
more notable improvement. For example, if the traffic is
rule set-intensive, then the detection load of the sensor
increases and the relative improvement is small. On the
other hand, for traffic that requires less rules to be checked
for every packet, the detection load of the sensor will be
minimal and the improvement will be greater.

We also repeat the experiment on a PC with a slower
Pentium III processor at 1.13 GHz and the same PCI bus
characteristics and Ethernet network interfaces. The results
show that the improvement is smaller compared to the faster
machine. When we examine the results more carefully, we
observe that while user time doubles, the system time
increases only by 30 percent. This happens because user time
is mainly the time spent for content search and header
matching, which are processor intensive tasks. In contrast,
system time is dominated by the time spent for copying the
packet from main memory, over the PCI bus, to the output
network interface, handling interrupts and control registers
of the Ethernet device. As the speed of processors increases
faster than the speed of PCI buses and DRAM memories, we
can argue that, as technology evolves, the effect of our
enhancements will be even more pronounced—processors
are already running at 3.8 GHz and, therefore, the pre-
viously reported improvement is in fact a conservative
result.

The above experiments are performed using the
default rule-set of snort. To further understand the
relationship between the detection load of a sensor and

40 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 3, NO. 1, JANUARY-MARCH 2006

Fig. 10. Performance improvement (reduction in user time) as a function

of locality buffer size.

Fig. 11. Evaluation of EF + LB combined.

Fig. 12. Sensor processing cost (time to process all packets in a trace),

with user and system time breakdown.

5. We confirm that the hard disk is not the bottleneck by measuring the
throughput of the hard disk and the transmit rate of snort. As expected,
the transmit rate of snort is smaller than the throughput of the disk.

the improvement of the P-CACK scheme, we also
experiment with variable synthetic rule sets using the
method of [3]. We generate synthetic rule sets that follow
certain statistical properties of existing NIDS rule sets. For
instance, the string-matching part of each rule is
generated based on permutations of strings from a seed
rule set, and the distribution of string lengths as well as
the number of rules for each application protocol follow
the corresponding measured distributions of the seed rule
set. This approach is shown in [3] to offer a reasonable
approximation as rule sets evolve over time, for the
particular case of the snort NIDS. Similarly to the
previous experiment, we use snort to read traffic from
a trace and transmit packets to our system over a Gigabit
Ethernet interface. The results are shown in Fig. 13. We
observe that as the number of rules increases, the
improvement of the P-CACK scheme versus the PR
scheme decreases. In other words, as detection load
increases, the improvement decreases.

Another interesting point is that we obtain the maximum
relative improvement of P-CACK over PR for small packets
of 64 bytes. Small packets require less time for content
matching (user time), and communication (system time) is the
dominant cost factor. In addition, in the case of
64-byte packets, the bottleneck is not the processor, as in
the case of larger packets, but the PCI bus. This is clearly
shown in the experiments involving the IDEVAL traces,
which contain many small packets for emulating certain
types of attacks such as SYN flooding. For this trace, the
P-CACK scheme is three times more efficient compared to
the PR scheme. This is also a nice side effect of the P-CACK
scheme, in that it makes the NIPS more robust against TCP
SYN flood attacks, given that such attacks contain a large
number of small packets.

The latency introduced by an IPS as a whole is mostly
due to content matching on the sensors. This happens
because content matching is the single most expensive
operation in every NIPS. We first estimate the maximum
loss free rate (MLFR) of a sensor by replaying a packet trace
and measuring the rate at which the sensor started
dropping packets (Fig. 14). In this experiment, we set the
input packet buffer size to 16 MB. We see that the use of the
P-CACK scheme improves MLFR considerably. The MLFR
of P-CACK with a factor of 128 is very close to the MLFR of
sensors that only perform detection. In other words, the

additional cost of coordinating with the splitter becomes
negligible.

We also measure the latency introduced by the P-CACK
scheme. Fig. 15 shows the distribution of latency for all
ACK schemes when a sensor receives traffic at the MLFR
for the FORTH.WEB trace. We notice that latency increases
with the P-CACK factor. An interesting observation is that
although most packets experience very low latency, a small
fraction of the packets (around 5 percent), exhibit very high
latency. A closer look revealed that these are packets
received while the sensor is temporarily overloaded. This
happens when some packets require many rules to be
checked: If too many such packets are received back-to-
back, the offered load exceeds sensor capacity and latency
increases considerably. To confirm this, we measured the
time that snort spends in content and header matching
using the rdtsc [33] instruction of the Pentium IV. The
results show that the peaks in time spent for content and
header matching overlap with the peaks in latency. This
means that, when the required per-packet operations
increase, so does the latency. A consequence of this
property is that packets that require a significant amount
of processing may slow down other packets, which is
essentially a form of head of line (HOL) blocking.

5.6 Evaluation of Network Processor
Implementation

In this section, we report on the evaluation of the network-
processor-based implementation. The performance of the
splitter running on the IXP1200 is measured using the
IXP1200 Developer Workbench (version 2.01a) [14]. Speci-
fically, we use the transactor provided by Intel. The

XINIDIS ET AL.: AN ACTIVE SPLITTER ARCHITECTURE FOR INTRUSION DETECTION AND PREVENTION 41

Fig. 13. Sensor performance using incremental number of synthetic

rules.

Fig. 14. Sensor Maximum Loss Free Rate (MLFR) using default rule-set.

Fig. 15. Forwarding latency for NIPS with cumulative acknowledgments.

transactor is a cycle-accurate architectural model of the
IXP1200 hardware. We consider four different configura-
tions: a forwarder that includes early filtering/forwarding
(EF + FWD), locality buffering (LB + FWD), all techniques
(SPLITTER), and locality buffering, early filtering and
forwarding (EF + LB + FWD) (without CACKs). We
simulate the configurations as they would run on a real
IXP1200 chip. We assume a clock frequency of 232 MHz and
a 64-bit IX bus with a clock frequency of 104 MHz.

We measure the capacity of the IXP1200-based splitter
implementation. The results are shown in Table 2. We first
measure only the transmission capacity of the splitter, by
disabling all other functions and making the splitter
transmit the same packet repeatedly over a Gigabit Ethernet
link. For large packets (1,472 bytes), the system manages to
achieve a transmission rate of around 980 Mbit/s which is
equal to the theoretical maximum, while for small packets
(64 bytes—the smallest possible packet on an Ethernet link)
the achieved rate is around 500 Mbit/s. The theoretical
maximum transmission rate on a Gigabit Ethernet link is
around 627 Mbit/s because of Ethernet overheads and
framing costs. Thus, we are limited by the IXP1200 chip to
roughly 80 percent of the theoretical full line rate for 64-byte
packets. Using the transmit code alone, the IXP can be used
as a simple packet generator for stress-testing the perfor-
mance of other network elements. To measure the proces-
sing capacity of the IXP1200-based splitter, we use one
IXP1200 board as the traffic generator and another board as
the splitter. The traffic generator was generating 1472-byte
packets at 980 Mbit/s and 64-byte packets at 500 Mbit/s. In
both experiments, the IXP1200-based splitter was able to
sustain the offered load without any packet loss.

As the system sustains the full offered load, we look at
the utilization of the microengines and the SRAM and
SDRAM memory buses to measure the cost of the active
splitter. These are the likely bottlenecks, considering, for
instance, that the IXP1200 specification sets the maximum
IX bus throughput to 6 Gbit/s. In Figs. 16, 17, and 18, we
present the average utilization of the microengines and the
SRAM and SDRAM memories for the described configura-
tions. We note that the increased utilization of the
microengines in the case of the splitter configuration is
caused by the instrumentation code we had to add to
measure the performance of the splitter. While in the other
configurations we do not add code for evaluation purposes,
we are obliged to do so in the case of the splitter. We
observe that our approach is efficient and does not consume
all the resources of the IXP1200. Thus, the extra cost of the
active splitter compared to a passive load balancer seems
affordable. Furthermore, the results indicate that there is
some headroom for additional processing on the splitter,
suggesting that additional active mechanisms can be
supported. Finally, the difference in utilization and load
between small and large packets shows that the splitter is
likely to be able to support full line rates. In other words,
the bottleneck is not the additional processing required for

implementing the active splitter, but the maximum
throughput of the IXP1200 transmission subsystem used
in this experiment, which is currently limited to 500 Mbit/s.

6 RELATED WORK

The use of load balancing for building a scalable NIDS has
been examined in [17]. The authors propose a three-stage
architecture for scaling stateful intrusion detection. They
describe a partitioning approach that supports in-depth,
stateful intrusion detection on high-speed links. The traffic
is captured by a traffic scatterer, which equally distributes
packets to a set of traffic slicers, in a round-robin fashion.
Subsequently, the slicers are connected through a switch to
a set of intrusion detection engines. The slicers examine
packets for determining a suitable set of detection engines
for final processing. The decision on which detection engine
will analyze the packet is based on rules describing the
attack contexts to which a packet may belong. The main
focus of the work is to preserve detection semantics in a
generalized model of intrusion detection, assuming differ-
ent types of detection heuristics including statistical
anomaly detection. In contrast, our work only considers

42 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 3, NO. 1, JANUARY-MARCH 2006

TABLE 2
Measured Capacity of the IXP1200-Based Implentations

Fig. 16. Utilization of the IXP1200 microengines.

Fig. 17. Utilization of the SDRAM memory of the IXP1200.

Fig. 18. Utilization of the SRAM memory of the IXP1200.

signature-based detection and, thus, relies on a simpler
model of flow-preserving load balancing, focusing instead
on investigating ways to offload the detection engines. This
is achieved by rethinking the mapping of operations to the
various components of the system.

Other research efforts recognize the issue of extensibility
and have implement NIDS prototypes in reconfigurable
hardware. Schuehler et al. [31] describe an architecture for a
hardware-based content scanning system, capable of
performing complete, stateful payload inspection on eight
million TCP flows at 2.5 Gbit/s. They use a hardware circuit
that combines a TCP processing engine, a per flow state
store and a payload scanning engine. Similar architectures
are also presented in [23], [20], [8]. One weakness of such
designs is that programming hardware is likely to be more
difficult than programming NPs.

A number of vendors use NPs to accelerate intrusion
detection. Cisco uses IXPs on the Cisco Catalyst 6500 Series
IDS Module (IDSM-2) [7] which is a platform capable of
performing intrusion detection at 600 Mbit/s with 450-byte
packets. This system supports up to 4,000 TCP connections
per second (new arrivals) and up to 500,000 concurrent
connections. Consystant [10] claims to have implemented
snort on the IXP2400 network processor, but details on the
structure and performance of this design are not available.

A number of vendors claim to have designed prevention
systems that can operate at high speeds. For example, ISS
offers the Proventia G200 [15], a system designed for
200 Mbit/s networks. This device uses a software-based
detection engine on an Intel platform. NetScreen provides
the IDP 500 [24] designed for 500 Mbit/s networks. This
sensor is a hardware appliance that runs the Linux-based
IDP Sensor software, based on the Dell PowerEdge 1750
hardware platform with dual-Pentium IV processors and
4GB RAM. McAffee has developed the IntruShield 4000
Sensor (I-4000) [25], claiming real-time prevention at speeds
of up to 2 Gbit/s. In order to be able to reach that speed, the
I-4000 uses custom hardware for capturing packets and
detecting and blocking attacks. TippingPoint uses custom
high-speed security processors on the UnityOne 2400 [34]
and claims aggregate throughput of 2 Gbit/s. The Attack
Mitigator IPS 2400 [36] from Top Layer uses a combination
of multiple Attack Mitigator IPS 1000 sensors and load
balancer units capable of analyzing traffic at 1 Gbit/s.
Incoming traffic is evenly distributed by a load balancer to
four Attack Mitigator IPS 1000 devices and from there to a
second load balancer which forwards packets to their
destination.

Load balancing has been extensively used for building
high-performance systems such as Web servers [12], [5].
The idea of combining filtering with load balancing is also
discussed by Goldsmidt and Hunt [12], where the splitting
device is instructed to block traffic destined to unpub-
lished ports. Although the functionality proposed in [12] is
similar to the functionality provided in our work, the goals
are different: Our aim is to enhance sensor performance
rather than to provide firewall-like protection against
malicious traffic.

Locality enhancing techniques for improving server
performance are also well studied. For example, [22]
presents techniques for improving request locality on a
Web cache, demonstrating significant benefits in file system
performance. However, to the best of our knowledge, the
locality buffering technique presented here is the first

attempt to provide locality enhancements as part of a load
balancer, and the first to do so in the context of intrusion
detection.

7 SUMMARY

We have proposed an active traffic splitter architecture for
building network intrusion detection systems (NIDS) and
network intrusion prevention systems (NIPS). Rather than
acting as a passive load-balancing component, we have
argued that the traffic splitter should actively manipulate
the traffic stream ways that increase sensor performance.

We have presented and analyzed three specific examples
of performance-enhancing techniques that have been im-
plemented as part of our architecture: early filtering/
forwarding, locality buffering, and cumulative acknowl-
edgments. These mechanisms offer significant performance
benefits in terms of reducing the processing load on the
system as a whole. Our experiments have demonstrated
improvements of 8 percent for early filtering, 10-17 percent
for locality buffering, and 45-90 percent for cumulative
acknowledgments. We have also confirmed that the im-
plementation of the architecture using IXP1200 network
processors is feasible.

Based on these results, we claim that active splitters are
an effective way to scale the performance of NIDS and NIPS
systems, enabling them to effectively monitor high-speed
network links.

ACKNOWLEDGMENTS

This work was supported in part by the IST project SCAMPI
(IST-2001-32404) funded by the European Union and the
GSRT project EAR (GSRT code: USA-022). K. Xinidis,
I. Charitakis, S. Antonatos, and E.P. Markatos are also with
University of Crete. The authors would like to thank the
members of the DCS group at FORTH-ICS, Lam Vinh The
(Terry) and the anonymous reviewers for useful sugges-
tions and feedback on earlier versions of this paper.

REFERENCES

[1] K.G. Anagnostakis, S. Antonatos, M. Polychronakis, and E.P.
Markatos, “E2xB: A Domain-Specific String Matching Algorithm
for Intrusion Detection,” Proc. IFIP Int’l Information Security Conf.
(SEC ’03), May 2003.

[2] S. Antonatos, K.G. Anagnostakis, and E.P. Markatos, “Generating
Realistic Workloads for Intrusion Detection Systems,” Proc. Fourth
ACM SIGSOFT/SIGMETRICS Workshop Software and Performance
(WOSP ’04), Jan. 2004.

[3] S. Antonatos, K.G. Anagnostakis, M. Polychronakis, and E.P.
Markatos, “Performance Analysis of Content Matching Intrusion
Detection Systems,” Proc. Fourth IEEE/IPSJ Symp. Applications and
the Internet (SAINT 2004), Jan. 2004.

[4] M. Bhattacharyya, M.G. Schultz, E. Eskin, S. Hershkop, and S.J.
Stolfo, “MET: An Experimental System for Malicious Email
Tracking,” Proc. New Security Paradigms Workshop (NSPW), pp. 1-
12, Sept. 2002.

[5] Z. Cao, Z. Wang, and E.W. Zegura, “Performance of Hashing-
Based Schemes for Internet Load Balancing,” Proc. IEEE Infocom,
pp. 323-341, 2000.

[6] I. Charitakis, D. Pnevmatikatos, E.P. Markatos, and K.G. Ana-
gnostakis, “Code Generation for Packet Header Intrusion Analysis
on the IXP1200 Network Processor,” Proc. Seventh Int’l Workshop
Software and Compilers for Embedded Systems (SCOPES ’03), Sept.
2003.

[7] Cisco Catalyst 6500 Series IDS Module (IDSM-2)}, http://
www.cisco.com, 2006.

XINIDIS ET AL.: AN ACTIVE SPLITTER ARCHITECTURE FOR INTRUSION DETECTION AND PREVENTION 43

[8] C. Clark, W. Lee, D. Schimmel, D. Contis, M. Kone, and A.
Thomas, “A Hardware Platform for Network Intrusion Detection
and Prevention,” Proc. Third Workshop Network Processors and
Applications (NP3), Feb. 2004.

[9] C.J. Coit, S. Staniford, and J. McAlerney, “Towards Faster Pattern
Matching for Intrusion Detection, or Exceeding the Speed of
Snort,” Proc. Second DARPA Information Survivability Conf. and
Exposition (DISCEX II), June 2002.

[10] Consystant Design Technologies, http://www.consystant.com,
2005.

[11] M. Fisk and G. Vargheseau, “An Analysis of Fast String Matching
Applied to Content-Based Forwarding and Intrusion Detection,”
Technical Report CS2001-0670 (updated version), Univ. of
California at San Diego, 2002.

[12] G. Goldszmidt and G. Hunt, “Scaling Internet Services by
Dynamic Allocation of Connections,” Proc. Sixth IFIP/IEEE Int’l
Symp. Intergrated Network Management, pp. 171-184, May 1999.

[13] M. Handley, V. Paxson, and C. Kreibich, “Network Intrusion
Detection: Evasion, Traffic Normalization, and End-to-End Proto-
col Semantics,” Proc. 10th USENIX Security Symp., 2001.

[14] Intel Corporation, “Intel IXP1200 Network Processor,”white
paper, 2000, http://developer.intel.com.

[15] Internet Security Systems Inc., http://www.iss.net, 2006.
[16] T. Karagiannis, A. Broido, M. Faloutsos, and K. Claffy, “Transport

Layer Identification of P2P Traffic,” Proc. Internet Measurement
Conf. (IMC), Oct. 2004.

[17] C. Kruegel, F. Valeur, G. Vigna, and R. Kemmerer, “Stateful
Intrusion Detection for High-Speed Networks,” Proc. IEEE Symp.
Security and Privacy, pp. 285-294, May 2002.

[18] C. Kruegel and G. Vigna, “Anomaly Detection of Web-Based
Attacks,” Proc. 10th ACM Conf. Computer and Comm. Security
(CCS), pp. 251-261, Oct. 2003.

[19] W. Lee, S.J. Stolfo, P.K. Chan, E. Eskin, W. Fan, M. Miller, S.
Hershkop, and J. Zhang, “Real-Time Data Mining Based Intrusion
Detection,” Proc. DISCEX II, June 2001.

[20] S. Li, J. Torresen, and O. Soraasen, “Exploiting Reconfigurable
Hardware for Network Security,” Proc. IEEE Symp. Field-Program-
mable Custom Computing Machines (FCCM ’03), Apr. 2003.

[21] R. Lippmann, J.W. Haines, D.J. Fried, J. Korba, and K. Das, “The
1999 DARPA Off-Line Intrusion Detection Evaluation,” Computer
Networks, vol. 34, no. 4, pp. 579-595, Oct. 2000.

[22] E.P. Markatos, D.N. Pnevmatikatos, M.D. Flouris, and M.G.H.
Katevenis, “Web-Conscious Storage Management for Web
Proxies,” IEEE/ACM Trans. Networks, vol. 10, no. 6, pp. 735-748,
2002.

[23] M. Necker, D. Contis, and D. Schimmel, “TCP-Stream Reassembly
and State Tracking in Hardware,” Proc. IEEE Symp. Field-
Programmable Custom Computing Machines (FCCM ’02), Apr. 2002.

[24] NetScreen Technologies, http://www.netscreen.com, 2005.
[25] Network Associates, Inc., http://www.networkassociates.com,

2005.
[26] NLANR, “MRA Traffic Archive,” Sept. 2002, http://pma.nlanr.

net/PMA/Sites/MRA.html.
[27] V. Paxson, “Bro: A System for Detecting Network Intruders in

Real-Time,” Proc. Seventh USENIX Security Symp., Jan. 1998.
[28] Peapod, “Radware Linkproof,”http://www.peapod.co.uk/rad-

ware_linkproof.htm, 2006.
[29] M. Roesch, “Snort: Lightweight Intrusion Detection for Net-

works,” Proc. Second USENIX Symp. Internet Technologies and
Systems, Nov. 1999, http://www.snort.org.

[30] M. Schiffman, “The Million Packet March,” http://www.pack-
etfactory.net/Projects/Libnet/, 2006.

[31] D.V. Schuehler, J. Moscola, and J.W. Lockwood, “Architecture for
a Hardware-Based, TCP/IP Content-Processing System,” IEEE
Micro, vol. 24, no. 1, pp. 62-69, 2004.

[32] Sourcefire, Snort 2.0 - Detection Revisited, Oct. 2002, http://
www.snort.org/docs/Snort_20_v4.pdf.

[33] Intel Xeon Processor MP Specification Update, Oct. 2005, http://
download.intel.com/design/Xeon/specupdt/29074135.pdf.

[34] TippingPoint Technolgies Inc., http://www.tippingpoint.com,
2005.

[35] Top Layer Networks, http://www.toplayer.com, 2006.
[36] TopLayer, “IDS Load Balancer,”http://www.toplayer.com/,

2006.
[37] T. Toth and C. Kruegel, “Accurate Buffer Overflow Detection via

Abstract Payload Execution,” Proc. Fifth Symp. Recent Advances in
Intrusion Detection (RAID), Oct. 2002.

[38] T. Toth and C. Kruegel, “Connection-History Based Anomaly
Detection,” Proc. IEEE Workshop Information Assurance and Security,
June 2002.

[39] K. Wang and S.J. Stolfo, “Anomalous Payload-Based Network
Intrusion Detection,” Proc. Seventh Int’l Symp. Recent Advanced in
Intrusion Detection (RAID), pp. 201-222, Sept. 2004.

Konstantinos Xinidis received the MSc degree
and diploma in computer science from the
University of Crete. His main research interests
are in network monitoring, intrusion detection,
and network processors.

Ioannis Charitakis received the MSc degree
and diploma in computer science from the
University of Crete. His main research interests
are in network monitoring, intrusion detection,
and network processors.

Spiros Antonatos received the MSc degree
and diploma in Computer Science from the
University of Crete. He is a PhD candidate in
the Computer Science Department at the Uni-
versity of Crete. His main research interests are
in network monitoring, intrusion detection, and
performance evaluation.

Kostas G. Anagnostakis received the BSc
degree in computer science from the University
of Crete and the master’s and PhD degrees in
computer and information science from the
University of Pennsylvania. He is currently a
principal investigator on software systems se-
curity at the Institute for Infocomm Research
(I2R) in Singapore. His main areas of interest
are in distributed systems security, networking,
performance evaluation, and in problems that lie

at the intersection between computer science and economics.

Evangelos P. Markatos received the diploma in
computer engineering from the University of
Patras in 1988, and the MS and PhD degrees in
computer science from the University of Roche-
ster, New York, in 1990 and 1993, respectively.
Since 1992, he has been an associated
researcher at the Institute of Computer Science
of the Foundation for Research and Technology-
Hellas (ICS-FORTH) where he is currently the
head of the Distributed Computing Systems

Laboratory, and the head of the W3C Office in Greece. Since 1994,
he has also been with the Computer Science Department at the
University of Crete, where he is currently a full professor. He conducts
research in several areas including distributed and parallel systems, the
World Wide Web, Internet systems and technologies, as well as
computer and communication systems security. He has been a reviewer
for several prestigious journals, conferences, and IT projects. He is the
author of more than 70 papers and book chapters. He is currently the
coordinator of research projects funded by the European Union, by the
Greek government, and by private organizations.

44 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 3, NO. 1, JANUARY-MARCH 2006

