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Abstract. We present a software architecture that enables the use of
the IXP1200 network processor in packet header analysis for network
intrusion detection. The proposed work consists of a simple and efficient
run-time infrastructure for managing network processor resources, along
with the S2I compiler, a tool that generates efficient C code from high-
level, human readable, intrusion signatures. This approach facilitates the
employment of the IXP1200 in network intrusion detection systems while
our experimental results demonstrate that provides performance compa-
rable to hand-crafted code.

1 Introduction

Network processor vendors have invested considerable effort in tools for cost-
effective software development, however, building an application for a network
processor is still a non-trivial task. To address this difficulty, recent work has
demonstrated the use of component models for simplifying development (c.f. [1,
8, 2]). This work focuses on forwarding and routing services, exploiting applica-
tion modularity in a divide and conquer approach in order to map parts of the
application to network processor execution resources. The main design goal is
primarily flexibility and design modularity which usually comes at the price of
some performance penalty.

Network monitoring and network intrusion detection are becoming increas-
ingly important network-embedded functions[6, 5]. Network Intrusion Detection
Systems improve security for organizations by monitoring in real time the traffic
that crosses the border of their networks. They passively inspect traffic to de-
termine if it matches an attack profile. The simplest and most common form of
NIDS inspection is to analyze packet headers and match string patterns against



alert tcp 10.0.0.0/32 any -> 10.0.0.1 80 (dsize: >512;)

alert tcp [10.0.0.1 10.0.0.2] any -> 10.0.0.2 80 (ack: >512;)

alert tcp any any -> 10.0.0.300 20 (dsize: >512;)

Fig. 1. Example of snort signature file. Note the use of any, which serves as a wild-card

the payload of packets. A popular open-source NIDS is snort [5], that uses sig-
natures to describe a set of known forms of attacks. Snort signatures consist
of three parts: the action (e.g. alert), the header (protocol + source[IP,port] +
dest[IP, port]), and the options (ip-flags, ip-options, tcp-options, etc). Figure 1
shows a few examples of actual snort signatures.

The flexibility required by the dynamic nature of intrusion detection appli-
cations, along with their inherently large processing needs makes network pro-
cessors an ideal implementation technology. However, these applications differ
substantially from services such as packet forwarding that have been studied
so far. In this paper we present the snort To IXP compiler (S2I), a tool to
facilitate the deployment of the IXP1200 network processor in a snort-based
NIDS. The input of the S2I compiler is a regular snort configuration file, which
contains signatures for a collection of known intrusions (some typical signatures
are shown in Figure 1). Each signature is defined in a high-level language and
describes the action to be performed (e.g. alert, log, etc) when a packet satisfies
a set of conditions.

S2I transforms such a set of snort signatures into efficient C code for the
micro-engines of IXP1200. The transformation is performed using a tree-structure
in order to minimize the number of required checks. The resulting code together
with a general runtime environment can be compiled, optimized, and loaded on
the IXP1200 using the standard tool chain. There are three main benefits from
this approach. First, it offers faster execution speeds of the resulting code, which
is comparable to hand-crafted code. Second it provides versatility since adding
or changing the signatures involves only running tools and not hand-tuning.
Finally, it offers transparent resource management.

Using cycle-accurate simulations we measure significant reduction in both
the required space and execution time. Space improvements range from about
14% to 42%, with the improvement magnitude increasing with the number of
signatures. In addition, execution time improves by about 20%.

The rest of this paper is organized as follows. Section 2 provides a brief
overview of the target architecture, and Section 3 describes the S2I compiler.
Section 4 contains an experimental analysis, Section 5 presents related work,
and Section 6 concludes and discusses our plans for future work.
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Fig. 2. Block architecture of the IXP1200 Network Processor

2 The Intel IXP1200 Network Processor

2.1 General Description

A block architecture for the IXP1200 network processor is shown in Figure 2.
The IXP1200 consists of the following basic components:

– A StrongARM host processor, capable of operating at 232 MHz.
– Six micro-engines operating at the same frequency as the host processor.
– An SDRAM unit communicating to external SDRAM via a 64 bit bus at

116 MHz.
– An SRAM unit communicating to external SRAM via a 32 bit bus at 116

MHz.
– The FBI unit which provides 1 KB memory of 32 bit words (the scratchpad),

a hash unit and the IX bus unit. The later interfaces to network interface
cards (NICs) and provides the Receive Buffer and the Transmit Buffer.

2.2 The Micro-engines

Each micro-engine (or uEngine) is a simplified RISC processor that has hardware
support for four threads of execution. Special instructions allow a thread of
execution to be swapped out until a certain event occurs. Such events are “data-
written”, “data-read”, “signaled”, etc.

Each thread receives one fourth of the register space of the uEngine using
relative register referencing, while absolute register referencing can be used for
thread communication via shared registers. Each uEngine contains 128 32-bit
general purpose registers, and 128 32-bit special purpose registers dedicated for
data transfers (e.g. SRAM/SDRAM read-only and write-only registers, etc).



The uEngines can fetch data directly from SRAM, SDRAM, and the FBI
(scratchpad, receive and transmit buffers, etc), but cannot exchange data directly
between them. Instead, uEngines can exchange messages through shared memory
accesses which are expensive: for example, reading 4 bytes from the SRAM takes
22 cycles. 3

The uEngines are responsible for managing the buffers of the network inter-
face ports e.g. monitoring the state of the buffers and initiating data transfers
when necessary.

Each uEngine has 2 KB of instruction memory; programs are uploaded by
the host processor by writing in a specific memory address region.

3 The S2I Compiler

The snort-to-IXP1200 (S2I) compiler generates micro-C 4 code for the uEngines
from a snort set of signatures. The generated code consists of a static and a
dynamic section. The static section is a skeleton that is independent of the set
of signatures and contains the fixed run-time infrastructure needed to dispatch
packets for processing. The dynamic section is produced from the snort set of
signatures and performs the actual computation to analyze packet headers and
trigger the corresponding actions.

The space and performance benefits of S2I are based on the following obser-
vation. An interpretive approach where the signatures are kept in data structures
in memory is expensive both in time (e.g., executed instructions and memory ref-
erences) and space since for each signature, the interpreter input can be a large
structure defining which fields to check, what operation to perform and against
what value. A compiled approach is faster since it avoids the interpretation cost,
and allows for standard compiler optimizations. The compiled approach may
also result in more compact code since many of the constants can be embedded
in the instructions themselves, saving space.

An essential optimization pass performed by S2I is common-subexpression
elimination using an expression evaluation tree. When several signatures share
the same prefix conditions, these conditions are evaluated only once. Organiz-
ing the signature checks in a tree saves both space (each datum is stored once)
and time (each condition is evaluated once). While this possibility is available
to the programmer as well, implementing the code for a large number of sig-
natures is error prone, reduces code readability, and is very hard to adapt to
a new set of signatures. S2I provides performance close to that of hand-crafted
code while offering the advantage of a standard and managable high-level input
specification.

3 Newer models (the IXP2xxx series) support more efficient inter-uEngine communi-
cation, by chaining uEngines and by providing shared registers between neighboring
uEngines.

4 micro-C is an enriched version of the C language provided by Intel. It provides
primitives to support the architectural advantages of the uEngines.
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3.1 Static Section

We describe the structure of the static section of the generated code. It consists
of the necessary minimal infrastructure for basic packet handling as well as an
algorithm for distributing the packet processing load to different units of the
network processor. Currently we target 100 Mbit/s ports.

For the purpose of our particular design, each packet is processed in-full by
a single uEngine. Finer-grained load distribution would require inter-uEngine
transfers of data as some processing to occur in one worker and the rest to be
handed off to another, due to different packets requiring different amounts of pro-
cessing. Since inter-uEngine transfers are not efficiently supported by hardware,
such a scheme was not considered at all for this work.

The basic approach for load distribution is therefore to assign each packet to
a single worker for its entire processing. This results in a reasonably balanced
system, as a busy worker cannot issue requests for more work and therefore new
packets will be assigned to the least busy uEngine. This approach also minimizes
accesses to shared resources as the work for each packet is isolated on a single
uEngine.

Because of the multi-threaded structure of the IXP1200, a worker for a packet
can be either an individual thread or an entire uEngine. We therefore consider
two different methods for load distribution presented below.

The thread-based scheme, (shown in Figure 3) assigns the entire process-
ing of each packet to one of the four threads of a uEngine. This has the advantage
of simplicity, and yields the same code for all threads. The 2 KB of instruction
memory are unified and shared by all threads.

One drawback of the thread-based scheme is that the registers of each uEngine
must be equally divided among the four threads. Each thread has to fetch the
headers of its packet in its local registers, for processing, consuming 14 registers:
54 bytes are needed for Ethernet, IP and TCP headers. A total of 56 registers
are therefore needed for all threads, corresponding to 30% of the total number
of registers that can be read. Another disadvantage is that processing of the four
packets inside the uEngine is done in an interleaved manner, meaning that only
one thread is active and only one fourth of these registers are actually used at
any given time.
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Synchronization among the threads is accomplished in two steps. First, we
allow one thread from each uEngine to start issuing willingness of receiving a
packet. On the second step, up to six threads (one for each uEngine) race to lock
the input port. The winning thread receives a packet, releases the acquired lock,
and commences signature checking. Meanwhile, the other threads can perform
the same synchronization method in order to serve the next packet.

An alternative to the thread-based scheme is the micro-engine-based scheme,
where an entire uEngine is allocated for serving a packet. This is illustrated in
Figure 4. In this case, the threads are responsible for specific jobs of packet
processing, such as moving the packet between microengine and SDRAM and
performing the actual header processing.

In contrast with the thread-based scheme, the uEngine based scheme results
in one packet being active per uEngine, consuming only 14 registers for packet
headers. Leaving more local space available enhances the chances for the dynamic
section to fit entirely within a uEngine. In other words, we want all the variables
that are necessary to perform the signature checking to be mapped to registers.
If there are not enough registers, some variables will have to be mapped to
scratchpad or SRAM which greatly degrades performance.

Note, that in the thread-based scheme, there are four packets concurrently in
each uEngine. In order to give the same processing time for each packet to the
uEngine based scheme, small buffers should be kept. These buffers (jobQueues)
ideally will hold pointers to three more packets, that this uEngine should process
in the future. Now, the processing of these packets is done serially, rather than
interleaved.

This scheme was supported further with a simpler synchronization method.
Each uEngine signals the next one to start polling for arrived packets. Therefore
accesses to memory (for locking/unlocking) are avoided, and the system behaves
much more smoothly.

Both schemes demostrate similar performance. However, since the uEngine
based scheme requires much fewer resources, it was chosen to work with.



3.2 Dynamic Section

In this section we present the dynamic section, i.e. the generated micro-C code.
This code is dynamic in the sense that it can be automatically reproduced every
time a new set of signatures is used. In this context, dynamic does not imply that
the executed code is changed during run time. Certainly, it would be desirable to
operate continuously and never having to interrupt packet monitoring. However,
this flexibility would sacrifice performance if it was built-in the architecture of the
monitoring system. On the other hand, there may be other ways to achieve both
constant operation and flexibility without sacrificing performance (e.g. using
redundancy). This can be subject of future work.

The dynamic section is the output of the S2I compiler for the particular snort
input file. S2I does not yet support all snort features. More specificaly, this
version of S2I does not support payload searches. In an overview the functionality
of the S2I compiler is divided in to two basic tasks. Firstly it builds a tree-like
representation of the signatures in the input file and secondly it produces the
corresponding micro-C code.

Building the Tree. Having a complete array of signatures, i.e. the complete
input file in an internal representation, the S2I compiler starts combining the
signatures in a tree structure. In this tree, each level corresponds to checking a
specific field. For example at the first level we check for the protocol field, while
at the second level we check for the destination port. This is depicted in Figure
5 where we show the resulting tree of the signatures presented earlier in Figure
1.

The S2I compiler initializes the tree using the first signature. Then, for each
next signature, it starts combining each of the fields into the tree, following a
predefined order. 5 New nodes are generated if the added field of a signature
checks against a value that has not been seen earlier. The algorithm that builds
the tree sorts each level from the most specific values to the most general. There-
fore, stricter signatures will be checked before more general.

Producing the Final Code. During this phase, the S2I compiler generates
the code that will be merged and compiled together with the static infrastruc-
ture presented earlier. The final object file will be loaded in the uEngines, and
monitoring can be initiated. In Figure 6 we present a snapshot of some sample
code produced by the S2I compiler.

It is important to note the use of constant literals in the various checks. For
example, the signature that checks for the destination port 80, will be compiled
to code similar to: “if (PORT2 == 0x50)” rather than code like “if (PORT2
== ports[i])”. In this way we reduce memory accesses which are expensive and
may significantly degrade performance. This optimization was discussed in [3]
and was found to also work well for our particular design.

5 In the future, we plan to guide this process with the assistance of a profiler, in order
to intelligently select which checks to perform first.
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(.......................................................)

if (ETHPROTOCOL==0x0800 && PROTOCOL==0x6) {

if (PORT2==0x50) {

if (IP2==0xa000001) {

if (IP1==0xa000000) {

if (DSIZE>0x200) {

/*Action for "tcp 10.0.0.0 any -> 10.0.0.1..." */

}}}

ctx_swap();

if (IP2 == 0xa000002) {

if (IP1==0xa000001 || IP1==0xa000002) {

if (ACK>0x200) {

/*Action for "tcp [10.0.0.1 10.0.0.2] any..."*/

}}}

(.......................................................)

}//<<<<PORT2

if (PORT2==0x14) {

if (IP2==0xa00012c) {

if (DSIZE>0x200) {

/*Action for "tcp any any -> 10.0.0.300 20..."*/

}}}}

ctx_swap();

Fig. 6. Generated code for the tree of Figure 5



We should note that although this paper focuses on the IXP1200, the micro-C
code produced by S2I can be slighlty modified so as to be compiled on a general
purpose processor. Moreover, it can be easily adapted for other embedded or
network processors. (An i386-based implementation of a lightweight snort-like
system is briefly analyzed in Section 4.)

For the IXP1200, the S2I compiler will also insert context swap directives
in certain points of the code. Context swaps are needed to voluntary let the
current thread swap out of execution so that other threads on the same uEngine
will have a chance to execute. This is done to avoid monopolizing a uEngine for
too long. If all uEngines are claimed by running threads, then the buffer of the
monitored port is likely to overflow causing packet loss.

4 Evaluation

In this section we perform the evaluation of the proposed software architecture.
We evaluate separately the static section and the generated dynamic code.

4.1 Evaluation of the Static Section

The evaluation of the static section was done by measuring the headroom [7, 2]
of the system: the number of cycles that can be consumed for processing each
packet (plain signature checking) without causing packet loss, using minimum-
sized packets.

We produced minimum sized packets arriving from one port at 100 Mbit/s.
Using the uEngine-based infrastructure, each packet was received and brought
locally to a uEngine. Processing on the packet was simulated by performing some
initial field extractions and then running a loop checking some values against
some fields. Each loop was guaranteed to perform a fixed number of calculations
and to take a constant number of cycles. We measured the number of loops that
can be supported without dropping packets. By varying the number of available
uEngines we measured how the headroom scales. Moreover we multiplied the
number of loops that can be supported by the cycles that takes each loop. The
corresponding number of cycles is the available headroom. The results are shown
in Figure 7 and indicate how many cycles are available in each uEngine to
perform the actual signature checks. We can see that using all the uEngines
of the IXP1200, we have approximately 4920 cycles available for processing of
each 64 byte packet.

The results show that the headroom offered by the static section is compa-
rable to previous estimations [7] in which the authors used 100 Mbit/s links as
well.

4.2 Evaluation of the Dynamic Section

The dynamically generated code is heavily influenced by the tree structure of the
field checking. In this section we evaluate the effects of using this tree structure
both in space and in performance.
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4.3 Evaluation of Space Requirements

Space requirements are crucial since the entire set of signatures must be loaded in
the instruction memory of the uEngines in order to perform intrusion detection.
Given that some space is already dedicated for the static section (approximately
476 words for the uEngine-based static scheme), the rest (1572 words) will have
to be handled very efficiently. In this section we perform some simple experiments
in order to measure how much space we gain by using a tree structure.

We used a modified version of the S2I compiler configured so as to produce
code without using a tree structure. That is, each signature will result in one
separate code-block which includes all its checks (e.g. as illustrated in Figure
8). The tree-like example of the code produced for this example was presented
earlier in Figure 6.

Using several signature input files from the snort distribution site, we mea-
sured the total number of instruction words that the signature checking consists
of. 6 Table 1 summarizes our findings.

S2I offers size reduction (compression) for all files, with magnitude varying
from 17.24% to 69%. The S2I space benefits increase as the size of the input file
increases, indicating its success to combine multiple signatures in a shallow tree.
At the extreme case of icmp-info signatures, S2I manages to fit all the required
code in instruction memory, while with the simple approach the signatures do
not fit in the uEngine memory. These results are very encouraging, since in our
tests, S2I is able to perform when needed most, i.e. for large input files.

4.4 Evaluation of Execution Time

In addition to space, S2I promises also gains is performance, since traversing
the tree is a very efficient way of evaluating the signatures. In order to gain

6 We subtracted from the total number of instructions the size of the static section
(which was 476 instructions).



(.......................................................)

if (ETHPROTOCOL==0x0800 && PROTOCOL==0x6) {

if (PORT2==0x50) {

if (IP2==0xa000001) {

if (IP1==0xa000000) {

if (DSIZE>0x200) {

/* Action for "tcp 10.0.0.0 any -> 10.0...."*/

}}}}}

//alert tcp [10.0.0.1 10.0.0.2] any -> 10.0.0.2 80 (ack: >512;)

if (ETHPROTOCOL==0x0800 && PROTOCOL==0x6) {

if (PORT2==0x50) {

if (IP2==0xa000002) {

if (IP1==0xa000001 || IP1==0xa000002) {

if (ACK>0x200) {

/* Action for "tcp [10.0.0.1 10.0.0.2] ..."*/

}}}}}

(.......................................................)

Fig. 8. Linear code produced by the S2I compiler by disabling the tree structure opti-
mizations. Each signature is implemented in an independent code block

Table 1. Space Savings using Tree structure

Signature Plain Code Tree Code
File Signatures inst/ions inst/ions Reduction

icmp-info 79 did not fit 479 >69.00%
backdoor 44 1531 886 42.13%
web-misc 18 401 277 30.92%
virus 6 173 149 13.87%
web-cgi 4 145 120 17.24%



Table 2. Cycles(232 MHz) spent on field checking

Scenario Plain Code Tree Code Reduction

signature0+signature4 75 60 20.00%
signature1+signature4 74 62 16.22%
signature2+signature4 74 59 20.27%
signature3+signature4 74 61 17.57%
signature4 only 47 29 38.30%

Average 68.8 54.2 21.22%

intuition on the speed improvements, we contacted the following experiments in
the IXP1200 Simulator.

Artificial signatures and artificial traffic. We used five different signatures com-
piled using both the tree and without the tree. Then, we produced traffic with
interleaved packets so as the signatures are matched sequentially: first pack-
ets matches first signature, second matches the second signature, etc. The fifth
signature was a wild-card and therefore all packets matched it.

For this setting we measured the number of cycles spent on checking fields
for the two compiled sources. In Table 2 we provide details of our findings. For
each scenario, (packet matches signature 1, packet matches signature 2,...) we
present the total number of cycles that were spent on performing checks. This
time includes the time needed to perform an action when a match is found. (An
action was simply to increment the value of an address in scratchpad).

As it can be seen the number of field checks is decreased by 21.2% on average.
More interesting however, is that the performance gains are larger where there
are fewer matches in the input (as in the ”signature 4 only” case). The reason
for this behavior is that if there is a match, the linear search of the simple
implementation will stop quickly (for the few signatures we evaluated here).
However, if the signatures do not match, the search will continue for longer. A
tree structure allows the search to stop even in intermediate branches of the tree
if the prefix does not match.

Using artificial signatures and real traffic. This experiment is conducted to in-
crease our confidence in the previous evaluation and to indicate that the inputs
we used are not skewed in favor of S2I. In this scenario, we conducted experi-
ments using a small set of artificial signatures similar to the above. These signa-
tures count packets based on protocol, source host, target host and payload size.
However, unlike the previous case, we used real network traffic trace. This trace
primarily consists of web traffic which was taken at ics.forth.gr, during a work
day. Again we measure 20% on average reduction in the time spent on checking
fields.

Using real signatures and real traffic. Finally, to get a feeling of the actual impact
on real applications with real traces, we used the same trace, and the snort



”backdoor” set of signatures. We ran this trace with the simple and the S2I tree
structure, and measured total cycles spent on one packet. The results show that
using the simple, sequential code, the field checking of the 44 signatures takes
about 280 cycles. When compressing the field checks using the tree, the number
drops to about 180 cycles, corresponding to a reduction of 35%.

Summarizing, the use of the tree is beneficial both for space and time reasons.
Regarding space, we observe a minimum compression of 17.3% in instruction
memory. Regarding time, we observe a significant reduction of around 20% in
the time spent to apply the signatures, using some simple scenarios.

4.5 Lightweight snort for i386 systems

The output of the dynamic section of the S2I compiler can be used as a base to
program any kind of processor. In this section we present experiments with the
S2I output C code on an Intel Pentium processor. We compare the user time of
executing the original snort and the lightweight version produced using the S2I
tool.

We extracted from the default snort signature set all the signatures that do
not require payload search. Then we used the S2I tool to produce a lightweight
snort based on the remaining signatures. We run snort and lightweight snort
over a trace taken from the NLANR archive [4]. While the user time of the
original snort is about 12 seconds, our lightweight snort takes less than 5
seconds – an improvement of more than 50%.

5 Related Work

Research in tools and methodologies for network processors have focused mainly
on routing-like applications and on modularity, re-usability and ease of program-
ming.

In [8], Spalink et al. use the IXP1200 to build a software-based router. They
propose a two-part architecture, which consists of a fixed infrastructure and a
dynamically re-programmable part. The use of a network processor in software
routers is also discussed in [2]. The authors present a tool supporting the dy-
namic binding of different components to form a fully-fledged router. The tool
provides a basic infrastructure for controlling program flow and the data from
one component to another, and a way for binding the components before up-
loading the code on the uEngines.

Dynamic code generation for packet filtering has been studied by Engler et
al. in [3], with focus on efficient message demultiplexing in a general purpose OS.
They present a tool that generates code based on a filter description language.
Each filter is embodied at runtime in a filter-trie in a way that takes advantage
of the known values the filter checks for.



6 Summary and Future Work

Hand coding hundreds of signatures in micro-C or assembly is a painful and error-
prone task. In this paper we have proposed a software architecture and a tool
for generating IXP1200 code from NIDS signatures. Using the S2I compiler, this
task is being highly automated, translating a high-level signature specification
into high-performance code. Therefore implementing intrusion analysis on the
IXP1200 becomes a process that does not require knowledge of architecture
internals and the micro-C programming language. Overall, the S2I compiler is
able to produce fast and efficient code. while offering development speed and
versatility.

There are several directions for future work that we are pursuing. First, we
are working on tuning the S2I infrastructure. For instance, we consider improv-
ing the tree structure by adapting the field order for each sub-tree in order to
minimize space, and execution profiles to reorder fields for minimizing processing
time. Second, we are investigating the applicability of our design to higher-speed
ports (e.g. 1 Gbit/s on the IXP1200). Finally, we are interested in applying the
same general design principles of application-specific code generation to content
matching, which is of great practical interest in intrusion detection.
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