An Efficient Processor-Network Interface for
Local Area Multiprocessors

Evangelos Markatos, Manolis Katevenis, George Kalokerinos, and Dimitrios Serpanos
Computer Architecture and VLSI Systems Group
Institute of Computer Science (ICS)
Foundation for Research & Technology — Hellas (FORTH)
Vassilika Vouton, P.O. Box 1385 GR 711 10 Heraklion, Crete, Greece
markatos@csi.forth.gr tel:4+30 (81) 39 16 55, fax:+30 (81) 39 16 71

In Proceedings of the SCIzzL-4 Workshop on Local-Area MultiProcessors
Heraklion, Crete, October 1995

1 Introduction

Most computing environments today consist of
a number of workstations or personal comput-
ers (PCs)* connected via a (high-speed) in-
terconnection network. These environments
are usually called workstation clusters, while
acronyms like COWs (Clusters of Worksta-
tions) and NOWs (Networks of Workstations)
are popular as well. Although worksta-
tion clusters have the aggregate processing,
memory, and I/O capacity to execute high-
performance applications, they usually lack the
required hardware support that allows them to
present a high-performance communication in-
terface to user applications. Network interfaces
and communication protocols designed for slow
and untrusted networks, impose a number of
overheads in both message passing and shared
memory applications, resulting in loss of a large
amount of bandwidth at the application, al-
though the underlying network may provide
significant bandwidth [14]. The main sources
of these overheads include:

o Operating System Intervention: Typically,
in message passing systems, applications

E. Markatos, M. Katevenis, and D. Serpanos are
also with the University of Crete. D. Serpanos is also
with IBM Research Division, T.J. Watson Research
Ctr.

*In the rest of the paper we use the term workstation
for both workstations and high-speed PCs.

have to suffer a system-call overhead each
time they want to send or receive a mes-
sage.

o Message Copying: On its way from the
sender to the receiver, a message is usu-
ally copied several times from one address
space to another, esp. in microkernels.

o Message Reassembly: Large messages are
usually broken into smaller ones, which
get interleaved with messages from various
senders, and arrive at their destination in
random order, where they have to be re-
assembled in their proper order to form a
new message.

Despite the above disadvantages, traditional
network interfaces and communication proto-
cols were successful in the past because the
message transfer time on the wire was the dom-
inant percentage to the total message pass-
ing time. Thus, the software-imposed over-
head just described contributed only a small
percentage to the overall latency. Nowadays,
the increasing network bandwidth makes the
time spend on the communication medium
a small percentage of the message passing
overhead, thereby exacerbating the software-
imposed overhead.

To reduce the mentioned overheads, we
have designed and implemented Telegraphos

[9, 10], T an efficient processor-network inter-
face for workstation clusters which supports
both message-passing and shared memory, and
provides a high performance platform for effi-
cient parallel processing.

2 Telegraphos

A Telegraphos system is composed of a num-
ber of workstations (nodes) interconnected
through a high speed network. The sys-
tem implements a single-address space multi-
processor on top of the workstation cluster.
Data replication/movement among systems is
achieved through remote memory operations
implemented with transfers of short, fixed size
messages in the order of a few bytes; the net-
work guarantees delivery of the messages in or-
der. So, due to its architecture, Telegraphos
supports both message-passing and shared-
memory programming models. Its character-
istics contributing to its efficiency are:

e hardware support of non-coherent shared
memory through efficient implementation
of remote read, write and atomic opera-
tions;

e mapping the receiver’s memory address
space directly in the sender’s address
space, so that messages go directly to their
final destination, avoiding expensive copy-
ing and page remapping operations;

o use of standard virtual-memory protection
mechanisms to avoid expensive OS calls
on message transmission and reception;

o sender-based buffer management to avoid
buffer overflows and throughput collapse;

o page-level access counters that can guide
the page replication/migration decisions
of the operating system for distributed
shared memory systems [12], and network
memory systems [13]. This is important,

TWe call this project Telegraphos or TyAéypados
from the greek words T'nA¢é meaning remote, and ypdow
meaning write, because the central operation on Tele-
graphos 1s the remote write operation.

Address Trangdlation
virtual physical

20 L Remote-Write
Packet

5
p —Sore ™30 |R[13[8 P
7 sz 135127 v
;
Local/Refiote™ - res =
NETWORK

visible by By ---{---- page 8
invisible by R------ -
DI Jogens

Memory

page 5

Figure 1: Remote Write Operation in the
Telegraphos Network Interface

as in most distributed systems (includ-
ing Telegraphos) expensive operations like
cache (memory) coherence are left to soft-
ware implementation at the OS or ap-
plication level, which usually can achieve
comparable results with hardware imple-
mented cache coherence [6];

e provision of special operations, such as re-
mote fetch-and-add, DMA, non-blocking
read, etc., which are initiated from user
space without OS intervention, in contrast
to previous systems [15]. Standard vir-

tual memory protection mechanisms pre-

vent applications from performing special
operations on memory addresses they are

not allowed to.

All above properties are essential to pro-
viding an easy-to-use, low-latency, high-
bandwidth substrate for parallel and dis-
tributed applications, ranging from scientific
computations to multimedia applications.

2.1 The Remote Write Operation

Figure 1 illustrates the remote write opera-
tion. In a single address space system, each
physical address refers to a particular word in
the local memory of one particular processor
(computer) on the network; in other words,
the physical address space is shared among the
processors. Thus, any virtual address gener-
ated by any processor on the network may re-
fer, after address translation, either to a word
in the local processor’s memory or to a word in
any other (remote) processor’s memory. This
is accomplished by treating the MS bits of ev-
ery physical page number as a processor iden-
tifier, and the LS bits as a page number in that

processor’s memory. From the implementation
point of view, when the virtual address of a
store instruction translates into a physical ad-
dress in the Telegraphos device I/O space, the
Telegraphos network interface places the ad-
dress and the data into a packet, and sends
this packet through the network to the desti-
nation identified by the MS bits of the physical
At the destination node, the Tele-
graphos interface performs the (local) mem-
ory write. Figure 1 illustrates an example of
this procedure. Processor P; issues a store
instruction on virtual address 3027. Virtual
page number 30 is translated into physical page
number 138 which denotes the physical page 8
that resides on processor P;3. The store oper-
ation to physical page 138 is directed to the
Telegraphos interface, which prepares a net-
work packet and sends it to node P53, where
the store to the actual memory location will be
eventually performed. To reduce the latency of
remote write operations, Telegraphos acknowl-
edges the remote write operations as soon as
it latches the data to be transferred to the re-
mote processor.
data to arrive at their destination before it can

address.

Thus does not wait for the

proceed.

Remote read operations are similar to re-
mote write operations, with the difference, that
they wait for the data to arrive from the re-
mote processor. Thus, remote read operations
are slow, costing at least as much as one net-
work round-trip delay. Both remote read and
remote write operations are issued using a sin-
gle load or store instruction, thus providing the
end users the abstraction of a single-address
space multiprocessor.

2.2 Special Operations

Telegraphos provides several operations (be-
sides remote read and write), like DMA, re-
mote atomic operations, non-blocking read,
etc. We call these operations special operations
because they are launched using more than one
instructions, as current processors do not pro-
vide single hardware instructions for these (and
other) special operations. All implementations
of such special operations should meet the fol-
lowing criteria:

e Applications should be protected from
each other when launching a special op-
eration.

e Applications should be allowed to perform
special operation only in memory loca-
tions they are allowed to read or write.

The simplest way of satisfying the above
conditions is to provide system calls that will
implement the special operations. Although
system calls provide the necessary protection,
they impose an unnecessary overhead to user
applications which can be quite high if special
operations are frequently used. Furthermore,
system calls may require modification to oper-
ating system sources, which may not always be
available.

To overcome the problems associated with
operating system-level implementation of spe-
cial operations, we use the notions of Tele-
graphos contexts and shadow addressing [2].
Each application is given at least one Tele-
graphos context which consists of registers that
hold the arguments to the special operations.
These contexts are mapped in the virtual ad-
dress space of applications, so that an applica-
tion will trap if it attempts to access a Tele-
graphos context it is not allowed to. Appli-
cations that want to start a special opera-
tion write the arguments in their Telegraphos
contexts and complete the special operation
with an access to a special register. The idea
of hardware contexts allows applications to
launch special operations from user space in
a secure and efficient way: No application is
allowed to tamper with another application’s
special operations; moreover, if an application
gets interrupted while launching a special oper-
ation, the Telegraphos registers preserve their
contents, so that the special operation will be
launched when the application is resumed. *

Malicious users, however, may attempt to
bypass hardware protection and initiate spe-
cial operations in addresses they are not al-

‘In early versions of Telegrpahos we provided only
one context. Applications that wanted to launch spe-
cial operations had to execute without interruption. To
achieve uninterrupted execution in user space we used
the PAL mode of execution that the Alpha processor
provides [18].

lowed to access in any other way. For exam-
ple, they may try to store a physical address
(that they normally have no access right to)
in a Telegraphos register and ask for a special
operation in it, effectively modifying the con-
tents of that physical address. To avoid this
improper use of Telegraphos we build on the
notion of shadow addressing. For each virtual
address that maps into a physical address, we
introduce a shadow virtual address that maps
into a shadow physical address. An address
differs from its shadow only in the highest bit.
When a user application wants to pass a physi-
cal address to Telegraphos to be used as an ar-
gument to a special operation, it makes a store
to its corresponding shadow virtual address.
Telegraphos catches this store operation, gets
the physical address, strips the highest order
bit, and uses the remaining address as an ar-
gument to a special operation. The argument
of the store instruction contains the identifica-
tion of the Telegraphos context where the phys-
ical address is to be placed, along with a key
that verifies that the process issuing the store
instruction is allowed to use this Telegraphos
context. This combination of Telegraphos con-
texts, keys, and shadow addressing, albeit a
little complicated, it manages to translate a
virtual address to its corresponding physical
one, and pass it to the network interface in a
secure way, all in one instruction issued from
user-level!

Special operations include atomic opera-
tions, DMA requests, and remote fetch oper-
ations. The remote fetch operation is like a
remote read, but the processor does not wait
for the returned value, which is written in a
memory location and not a register; this value
is returned into the memory of the requesting
host, for later use by the processor. Normally,
the fetch operation is used in order to prefetch
data into a local page of the requesting proces-
sor. Thus, it is expected that the return host
will be the same as the issuing host, and that
the return address will point to a local page.
The fetch operation does not include in itself
any explicit test for its completion (any explicit
method for the issuing processor to know when
the return data have arrived). However, there

are a number of indirect tests that are possible.
One simple method is to know (by program-
ming means) that the value to be returned has
some particular property (e.g. non-zero, non-
negative, etc.), and to initialize the return lo-
cation to a value that does not have that prop-
erty before issuing the fetch operation (e.g. ini-
tialize to 0, -1, etc.); then, completion of the
fetch can be tested for by looking for a value
with the desired property at the return loca-
tion. The other methods deal with collective
tests, i.e. tests for the completion of a number
of remote fetches, but their detailed description
is beyond the scope of this paper.

2.3 Page Access Counters

To aid the operating system in making vari-
ous page replication/migration decisions, Tele-
graphos provides reference counters for each
page. These counters can be used to count lo-
cal and remote accesses to each page. Thus,
the operating system is able to identify ref-
erence patterns for each page and find the
frequently used pages.
ters for each remote page in the system and
four counters for each local page. The two
former are used to count the numbers of re-

There are two coun-

mote read requests, and the numbers of remote
write/atomicOp requests, respectively, origi-
nating from this host. The four latter coun-
ters do the same for local accesses, but they
count separately local accesses from the host
and local accesses coming from the network.
All counters count down; when a counter is
decremented from 1 to 0, the host is inter-
rupted. This is a method for the operating
system to make certain page placement deci-
sions, and then to be later invoked by means
of an interrupt if these decisions lead to a num-
ber of accesses of certain types that exceeded a
certain preset threshold. No interrupt is gen-
erated, and the counter value is not changed
when the counter was already at zero; this is
a method to selectively disable some counters
from ever causing interrupts.

Simulation results suggest that these coun-
ters can be used to improve performance in dis-
tributed shared memory systems [12], and in
network memory systems [13]. In distributed

Figure 2: Photograph of Telegraphos-I
Network Interface

shared memory systems they are used by the
operating system to determine which pages
to replicate/migrate close to which processor.
The same counters can be used in network
memory systems that use remote memory for
paging, file system caching, etc. Such systems
need to make sophisticated decisions regard-
ing which pages they are going to keep in local
memory, which pages are going to keep in re-
mote memory, and which pages are going to
keep in disk, in order to improve performance
and avoid thrashing.

3 Telegraphos-I

Telegraphos I has been implemented using
DEC Alpha 3000 model 300 workstations
as nodes and a custom-made interconnection
transferring 9-byte messages over links operat-
ing at 103 Mbps. Interfaces are attached to the
workstations” TurboChannel I/O bus, and al-
low any attached workstation to map memory
of any other workstation in the same cluster.
The goal of this implementation is fast devel-
opment of a cluster, mostly for experimenta-
tion with parallel and distributed applications.
For this reason, Telegraphos I has been imple-
mented using rapid-prototyping methods like
FPGAs (see figure 2).

3.1 Performance Measurements

Although Telegraphos I is still being debugged,
it is stable enough to run simple experiments
that measure the performance of its basic op-
erations: remote read, and remote write.

Our experimental hardware consists of two
DEC 3000 model 300 workstations connected
with the Telegraphos Network. We started
one application on one workstation that makes
both local and remote read and write accesses
to the Telegraphos shared memory. Remote
read and write accesses look just like ordinary
load and store operations. Their only differ-
ence with local accesses from the programmer’s
point of view is that local accesses are faster
than remote accesses. After starting the appli-
cation, we measured the latency of local and
remote read and write operations by perform-
ing 10000 operations. Our measured results

are:
Operation Elapsed Time
per operation (usec)
Local Read 0.87
Local Write 0.46
Remote Read 7.2
Remote Write 0.7

We see that remote write operations are very
efficient: they take less than a microsecond!
The reason is that Telegraphos acknowledges a
write operation as soon as its is written onto
the local HIB. Thus, applications that want
to send small messages can do that very ef-
ficiently. Short batches of write operations ex-
For example, a stream of
100 remote write operations takes less than 50
psec, thus each of the remote write operations
takes less than 0.5 psec. The reason is that

ecute even faster!

long batches of write operations are eventually
performed at the network transfer rate, while
short batches of write operations may take ad-
vantage of Telegraphos buffering. However, the
net result is that the programmer sees that a
remote write operation takes less than 0.5 psec!

Remote read operations are less efficient:
they take a few microseconds, because they
need to talk to the remote HIB, read the re-
sult, communicate it to the local HIB, to the
TURBOchannel, and eventually to the proces-
sor who remains blocked throughout the entire
operation.

Telegraphos local read and write operations
may seem a bit expensive (0.87, and 0.46 us
respectively). The reason is twofold:

o In Telegraphos-1 the local portion of the
shared memory of each node resides on the
TurboChannel network interface. Thus,
local shared memory accesses have to pay
at least one TurboChannel roundtrip de-
lay. Telegraphos II, and more recent ver-
sions do not suffer from this problem, be-
cause the local portion of the shared mem-
ory is just a portion of the computer’s
main memory.

o In the first version of Telegraphos we have
used (rather small) FPGAs. To perform
even simple local operations several FP-
GAs need to cooperate. Each time some
data travel from one FPGA to another,
the cost is (usually) increased by one more
TurboChannel cycle (80 ns). Recent ver-
sions of Telegraphos do not suffer from
this problem as they are being designed
in ASIC technology.

To place the Telegraphos Architecture in
perspective we compare it with other archi-
tectures running from workstation clusters to
large scale multiprocessors (table 1). We see
that Telegraphos is significantly better than
previous generation multiprocessors (like In-
tel IPSC/2), is comparable to modern work-
station clusters (like SCI Dolphin Cluster, and
the Memory Channel used for DEC’s worksta-
tion clusters), and multiprocessors (like Intel
Paragon XP/S, and Cedar), and is significantly
better than Local Area Network whose com-
munication is based on software-implemented
TCP/IP on top of Ethernet. We believe that
the performance of future Telegraphos systems
will be significantly improved for the reasons
mentioned above.

4 Telegraphos using

SCI-over-ATM

We currently develop a new architecture for a
Telegraphos system that provides:

1. PCI bus interface;
2. ATM network connectivity;

3. SCI framing.

There are several reasons for defining this new
generation of the architecture. The main ones
that drive this effort (which are also goals of
the architecture) are two: (i) caching of all
data for high performance, and (ii) use of stan-
dards for easy scalability and “openness” to a
large number of systems provided by different
vendors.

4.1 Data Caching

One of the main drawbacks of architec-
tures such as Telegraphos-I, PRAM [17],
SHRIMP [2], etc, is that shared data backed
by remote main memory cannot be cached.
The reason is that all these architectures are
designed with their shared, network memo-
ries non-cacheable, since their interfaces are
attached to the workstation’s I/O bus. In a
typical conventional architecture, all memory
attached to the I/O bus cannot be cached for
coherency reasons. New emerging processor ar-
chitectures seem to be able to overcome this
limitation, and provide mechanisms that al-
low designers to build systems with all mem-
ory space cacheable. Such interesting features
currently appear in the specification of DEC’s
Alpha processor [18], but we expect that their
usefulness will attract other manufacturers as
well.

An analysis of a remote read operation shows
how the various consistency problems may be
solved with processor features such as the ones
included in Alpha: let us assume that 2 proces-
sors, P, and P,, are interconnected through a
Telegraphos network, and they are caching all
data. We also assume that processor P; reads
a variable v which resides in . Then:

1. P issues a load instruction that causes a
data miss that requests the data from the
Telegraphos interface;

2. the interface issues a remote read opera-
tion to P, for the variable v;

3. the interface eventually receives a response
from P, (from the network) containing the
value v;

4. v is provided to the cache, and from
there to the processor. The solution for

System name Link Latency (usec) | Throughput (Mbps) | Source
SCI Dolphin Workstation Cluster 4 (one way) - [19]
Memory Channel < 5 (one way) - (5]
Tntel IPSC/2 350 39 [21]
Local Area Net (Ethernet - TCP/IP) 800 6 [21]
Intel Paragon XP/S 15 1600 [21]
Cedar 1.1 190 [21]
Telegraphos I 7.2 (roundtrip) 103 -

Table 1: Comparative performance of Telegraphos-1 and related architectures.

caching in this case is coming from the
Alpha architecture, considering that the
interface is attached to the I/O bus: the
processor allows cacheable data over the
I/0O bus [18]. Furthermore, the ability of
the processor to implement a consistency
protocol, enforces consistency between all
data in the cache and the Telegraphos
interface. Since current implementations
of Alpha-based workstations seem to not
provide all this functionality, as an alter-
native we consider provision of 2 bus in-
terfaces on the card: omne for the outgo-
ing data through the I/O bus, and one
for the memory bus of the used worksta-
tion. In this case, all incoming data can
be cached, since they are read through the
memory bus, but special consideration has
to be paid to the fact that the shared data
may be stale, if the system’s cache is write-

back.

Regarding processor P,, the data validity is-
sues are resolved as follows:

e if v is in Py’s cache, then the validity of
the data read by P; is guaranteed, if P,
has configured the memory portion where
v resides as cacheable with write-through
or write-back with update as the Alpha
architecture handbook describes [18]. If
the capability is not provided, then data
must be consistent before the remote read
is served; this can be implemented through
memory barriers (MB instructions on Al-

pha);

e if vis only in P,’s main memory, then data

is valid.

Thus, several alternatives exist for building an
interface for Telegraphos on the I/O bus en-
abling caching as well.

As the features described above are not in-
cluded in currently available systems, data
caching of remotely read data can be imple-
mented only through attachment of the Tele-
graphos interface on the memory bus (in ad-
dition to the I/O bus), so that incoming data
arrives to the processor through that bus.

4.2 Use of Standards

The available Telegraphos prototype system is
not an “open” design, since neither the in-
terface nor the network use standardized, or
widely used interfaces. It is important though
to design interfaces and networks that can in-
terconnect heterogeneous systems provided by
a wide range of different vendors. So, the
new version of the Telegraphos architecture is
directed towards the use of standards. The
main parameters that need to be considered in
such an environment are: the minimum packet
size and, the bandwidth /latency requirements.
These are the main parameters, since the I/0
bus choice is clearly made by the vendors pro-
viding the workstations. All these considera-
tions led us to the choice of the following stan-

dards:
1. ATM network technology;
2. SCI packet framing;

3. PCI bus interface.

ATM is an emerging network transport tech-
nology that provides high bandwidth, low la-
tency and interoperability with other AT M sys-
tems. The choice of ATM is an important one
in our architecture for 2 reasons:

o It fits the requirements of the new genera-
tion Telegraphos which is expected to have
larger packet size. Such longer packet size
fits well with the characteristics of ATM,
which has a cell size of 53 bytes with 48
bytes of useful data in the ATM Adapta-
tion Layer-5 (AAL-5) which we intend to
use.

o ATM is a technology that seems to be
widespread in the near future in both LAN
and WAN environments.

The remote memory operations implemented
by Telegraphos require a reliable network that
does not drop packets, and delivers packets
in order. Fortunately, recent ATM switches
[8, 20] provide flow control, and guarantee in-
order packet delivery.

SCI is also a standard allowing scalability
and ability to interconnect other SCI systems
from different vendors. As coherence is an op-
tion in SCI and not a concern of the Tele-
graphos architecture, our interface will only
provide SCI framing without using (or support-
ing) the SCI coherence options. To implement
SCIl-over-ATM, a number of ATM virtual cir-
cuits will be reserved to carry remote mem-
ory requests framed in an SCI format. When
the host workstation issues a remote memory
read or write operation, the Telegraphos in-
terface will use one of the special ATM VCs
to send this request to the appropriate host.
The Telegraphos interface on the destination
host will receive the ATM cell over the spe-
cial VC number, and treat it as a shared mem-
ory operation. It will assemble the SCI packet
from possibly several ATM cells, and execute
the read or write operation requested. As long
as the ATM network provides in order guar-
anteed delivery of packets, the shared memory
operations will work without a problem.

Finally, PCI seems to be the choice of up-
coming high performance workstations and
PCs. Its ability to reach 1 Gbps throughput

(increasing to 2 G'bps in PCI-2) as well as its
low latency and the fact that it is a standard
are attractive features that will allow develop-
ment of high speed, “open” systems that can
accommodate several vendors’ interface cards.

5 Related Work

The design of efficient shared-memory systems
has been the focus of several groups in the last
decade. Building efficient shared-memory mul-
tiprocessor systems is crucial for applications
that need high performance. Several shared-
memory multiprocessors have been built, from
small-scale bus-based multiprocessors [16] to
large-scale distributed memory machines [4, 1].

Although networks of workstations may have
an (aggregate) computing power comparable
to that of a supercomputer (while costing sig-
nificantly less), they have rarely been used to
support high-performance computing, because
communication on a network of workstations
has traditionally been very expensive, making
it prohibitively expensive for an application to
use more then a few workstations.

There have been several projects to provide
efficient communication primitives in networks
of workstations via a combination of hardware
and software: PRAM [17], MERLIN [22, 11],
Galactica Net [7], Hamlyn [3] DEC’s Memory
Channel [5] and SHRIMP [2] provide efficient
message passing on networks of workstations
based on memory-mapped interfaces. Their
shared-memory support, though, is limited be-
cause they do not provide individual single re-
mote memory accesses; thus a processor that
wants to access a few words out of a page is
forced to replicate the whole page locally, and
then access its data - moreover, as long as the
page is replicated, it has to be kept coherent.
SHRIMP and PRAM provide efficient methods
of keeping copies of pages coherent but do not
provide user applications the ability to access
a remote page without keeping a local copy
of this page as well. Thus, the total amount
of shared memory a processor may see at any
time is limited by the amount of its local mem-
ory. In Telegraphos, instead, the amount of
shared memory that a processor may see at

any time is the total amount of shared mem-
ory in the system. Besides that, Telegraphos
provides several sophisticated shared-memory
primitives like remote atomic operations, and
non-blocking fetch operations.

6 Summary

In this paper we describe Telegraphos, a dis-
tributed system suitable for efficiently support-
ing both message-passing and shared-memory
applications on top of high-speed networks.
Telegraphos has a memory-mapped network
interface that avoids almost all software im-
posed communication overhead. It uses the
page mapping and protection mechanism, ex-
isting in almost all virtual memory systems,
to implement protection in message passing.
Telegraphos also implements a fast remote-
write hardware primitive that enables one pro-
cessor to send a message to another proces-
sor by simply writing directly into the receiver
processor’s memory. No software is involved in
passing the message, apart from the initializa-
tion phase that makes sure that the sender is
allowed to send messages to the receiver. The
receiver gets the message by simply reading its
local memory. Besides being efficient, Tele-
graphos is also affordable, because it can be
connected into an existing workstation envi-
ronment, and upgrade it into a loosely-coupled
multiprocessor.

We believe that Telegraphos demonstrates
that it is feasible to build inexpensive shared-
memory systems based on existing worksta-
tions. The main idea is to provide hardware
support for the necessary shared-memory oper-
ations while leaving complicated coherence de-
cisions to software and to users that are willing
to pay the cost of coherence if they are going
to benefit from it.

Acknowledgments

Part of this work was developed in the ES-
PRIT/HPCN project “SHIPS”, and will be
used for the OMI project “Arches”, funded by
the European Union. We deeply appreciate

this financial support, without which this work
would have not existed.

We would like to thank P. Vatsolaki, D. Gus-
tavson, G. Dramitinos, and C. Papachristos for
useful comments in earlier drafts of this pa-
per.

References

[1] BBN Laboratories. Butterfly Parallel
Processor Overview. Technical Report
6148, BBN Laboratories, Cambridge, MA,
March 1986.

[2] M. Blumrich, K. Li, R. Alpert, C. Dub-
nicki, E. Felten, and J. Sandberg. Virtual
Memory Mapped Network Interface for
the SHRIMP Multicomputer. In Proceed-
ings of the Twenty-First Int. Symposium
on Computer Architecture, pages 142-153,
Chicago, IL, April 1994.

[3] G. Buzzard,
D. Jacobson, S. Marovich, and J. Wilkes.
Hamlyn: a high-performance network in-
terface, with sender-based memory man-
agement. In Proceedings of the Hot Inter-
connects I1I, August 1995.

[4] T. H. Dunigan. Kendall Square Mul-
tiprocessor: Early Experiences and Per-
formance. Technical Report ORNL/TM-
12065, Oak Ridge National Laboratory,
May 1992.

[6] R. Gillet. Memory Channel. In Proceed-
ings of the Hot Interconnects III, August
1995.

[6] Hakan Grahn and Per Stenstrom. Effi-
cient Strategies for Software-Only Direc-
tory Protocols in Shared Memory Multi-
processors. In Proceedings of the Twenty-
Second ISCA, Santa Margherita Ligure,
Italy, June 1995.

[7] Andrew W. Wilson Jr., Richard
P. LaRowe Jr., and Marc J. Teller. Hard-
ware Assist for Distributed Shared Mem-
ory. In PROC of the Thirteenth Interna-
tional Conference on Distributed Comput-

[11]

[12]

[13]

ing Systems, pages 246-255, Pittsburgh,
PA, May 1993.

M. Katevenis, S. Sidiropoulos, and
C. Courcoubetis. Weighted Round-Robin
Cell Multiplexing in a General-Purpose
ATM Switch Chip. [IEFE Journal on
Sel. Areas in Communications, 8(9):1265—
1279, 1991.

M. Kat-
evenis, P. Vatsolaki, and A. Efthymiou.
Pipelined Memory Shared Buffer for
VLSI Switches. In Proceedings of the
ACM SIGCOMM 95 Conference, August
1995. URL: file://ftp.ics.forth.gr/tech-
reports/1995/ 1995.S1G-
COMMO95.PipeMemoryShBuf.ps.gz.

Manolis Katevenis. Telegraphos: High-
Speed Communication Architecture for
Parallel and Distributed Computer Sys-
tems. Technical Report 123, ICS-FORTH,
May 1994.

C. Maples. A High-Performance Memory-
Based Interconnection System for Multi-
computer Environments. In Proceedings
of the Supercomputing Conference, pages

295-304, 1992.

E.P. Markatos and C.E. Chronaki. Trace-
Driven Simulations of Data-Alignment
and Other Factors affecting Update and
Invalidate Based Coherent Memory. In
Proceedings of the ACM International
Workshop on Modeling, Analysis,
Simulation of Computer and Telecommu-
nication Systems (MASCOTS ’94), pages
44-52, January 1994.

and

E.P. Markatos and G. Dramitinos. Im-
plementation of a Reliable Remote Mem-
ory Pager. In Proceedings of the
USENIX 1996 Technical Conference, Jan-
uary 1996. Earlier version published as
TR 129, at Institute of Computer Science,
FORTH; URL: file:/ /ftp.ics.forth.gr/tech-
reports/1995/

1995.TR129.remote memory_paging.ps.gz.

10

[14]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

H. E. Meleis and D. N. Serpanos. Design-
ing Communication Subsystems for High-
Speed Networks. IEFE Network Maga-
zine, 6(4):40-46, July 1992.

R. Rettberg and R. Thomas. Contention
is No Obstacle to Shared-Memory Multi-
processing. Communications of the ACM,
29(12):1202-1212, December 1986.

Sequent Computer Systems Inc. Balance
8000 System, 1985.

D. Serpanos. Scalable Shared-Memory In-
terconnections. PhD thesis, Princeton
University, Dept. of Computer Science,
October 1990.

R. Sites. Alpha AXP Architecture. Com-
munications of the ACM, 36(2):33-44,
February 1993.

Dolphin Interconnect Solutions. Dolphin
Breaks Cluster Latency Barrier with SCI
Adapter, 1995. press announcement.

R. Souza, P. Krishnakumar, C. Ozv-
eren, R. Simcoe, B. Spinney, R. Thomas,
and R. Walsh. GIGAswitch System: A
High-Performance Packet-Switching Plat-
form. Digital Technical Journal, 1(6):9—
22, 1994.

B.K. Totty. Experimental Analysis of
Data Management for Distributed Data
Structures, 1992. Master Thesis, Univer-
sity of Ilinois at Urbana-Champaign.

Larry Wittie and Creve Maples. Merlin:
Massively Parallel Heterogeneous Com-
puting. In Proceedings of the 1989 ICPP,
pages 1:142-150, 1989.

