
Isolating JavaScript in Dynamic Code Environments

Antonis Krithinakis Elias Athanasopoulos Evangelos P. Markatos

Institute of Computer Science,
Foundation for Research and Technology - Hellas

{krithin,elathan,markatos}@ics.forth.gr

Abstract
We analyze the source code of four well-known large web
applications, namely WordPress, phpBB, phpMyAdmin and
Drupal. We want to quantify the level of language intermix-
ing in modern web applications and, if possible, we want
to categorize all coding idioms that involve intermixing of
JavaScript with a server-side programming language, like
PHP. Our analysis processes more than half of a million of
LoCs and identifies about 1,000 scripts. These scripts con-
tain 163 cases, where the source code is mixed in a way that
is hard to isolate JavaScript from PHP. We manually inves-
tigate all 163 scripts and proceed in a classification scheme
of five distinct classes. Our analysis can be beneficial for all
applications that apply operations in the client-side partof a
web application, various XSS mitigation schemes, as well as
code refactoring and optimization tools.

Categories and Subject Descriptors D.2.3 [Software En-
gineering]: Coding Tools and Techniques

General Terms Languages, Security

Keywords JavaScript, Web Security

1. Introduction
Cross-site scripting (XSS) is one of the most well known
techniques for compromising web applications. It is consid-
ered a very popular exploitation technique nowadays [13,
14]. Many schemes for mitigating XSS attacks are based
on isolating all scripts that are trusted [6–8, 15]. All such
schemes require that all trusted scripts (e.g., JavaScript) must
be isolated from the untrusted ones (i.e. possible code injec-
tions). So far, the most prominent techniques formarking
code are based on tainting, static analysis and flow tracking
methods [11, 12, 16]. However, these strategies experience
often dramatic computational overheads. On the other hand,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

APLWACA ’10 June, Toronto, Canada.
Copyright c© 2010 ACM 978-1-60558-913-8/10/06. . . $10.00

modern web applications are based on frameworks that com-
bine multiple server-side and client-side technologies for
producing dynamic content. In these applications, isolating
one technology from the other is not considered a trivial task.
For example, consider a script written in PHP (a server-side
language) which dynamically produces JavaScript source
code. This is acode-mixing case where PHP and JavaScript
are intermixed. The JavaScript source code structure is not
complete prior the execution of the PHP script.

To the best of our knowledge, there has been no system-
atic effort for identifying how client-side and server-side lan-
guages intermix together in modern web applications and
how hard is to isolate the one from the other. In this paper
we try to identify the level of intermixing between differ-
ent programming languages in web applications that enable
real-world web sites. More precisely, we analyze the source
code of four popular applications, namely phpBB, Word-
Press, phpMyAdmin and Drupal. Our findings suggest that
all these web applications are experiencing mixing of PHP
and JavaScript. The way that each framework generates dy-
namic content varies and it can be considered as a result of
a series of coding idioms. However, according to our empir-
ical study, all coding idioms can be classified in five major
classes. For each of the five classes we proceed and present
alternative coding styles in order to reduce the mixing. In
short, we analyze more than half of a million LoCs, iden-
tify less than 1,000 scripts which include about 163 scripts
where JavaScript and PHP are mixed in a way that is hard to
automatically isolate one from the other.

Benefits and applications.Automatically isolating the
client-side part, which is most often expressed in JavaScript,
from the rest of the code of the web application is vital
for security schemes that a) consider all server-generated
JavaScript trusted [7, 8], or b) apply operations to all server-
generated JavaScript in order to isolate it from code injec-
tions [6]. All the analysis of this paper has been carried out
during an attempt for applying Instruction Set Randomiza-
tion [9, 10] to JavaScript. Furthermore, our analysis can be
beneficial for all applications that perform operations in the
JavaScript source corpus of a web application. For example,
consider refactoring, optimization, and code analysis tools.

45

Contribution. a) We perform an extensive analysis in
the source code of four real-world web applications and we
identify all cases where JavaScript is intermixed with PHP.
and b) we classify all cases in five main categories; for each
case we provide an alternative strategy to reduce the mixing.

Web App LoCs Scripts Non-mixed Mixed

WordPress 143,791 187 136 51
phpBB 213,681 539 512 27

phpMyAdmin 178,447 263 183 80
Drupal 44,780 8 3 5

Table 1. Summary of scripts that experience mixing in four
real-world web applications.

2. Methodology
In this paper we aim on finding cases in the source of real-
world web applications where JavaScript is mixed with a
server-side programming language and isolate the JavaScript
code. We process the source code of four web applications,
which happen to use PHP. We assume that JavaScript and
PHP are intermixed only in files and not in a database. A web
application may store JavaScript in a database and generate
content via SQL queries issued by PHP, in order to produce
JavaScript code. This case is beyond the scope of this paper.

In order to isolate JavaScript we use the following method-
ology. For each web application we attempt to randomize all
scripts contained in files included in the application’s distri-
bution. We have built a custom tool which has the following
functions. The first processing unit takes as input a file and
attempts to identify all possible JavaScript source code oc-
currences. It first removes PHP and HTML comments and
then searches for JavaScript scripts. That is, all code inside
a<script> tag, as well as all code in HTML events such as
onclick, onload, etc. Notice the identified code may con-
tain PHP language elements. Finally, the mixed JavaScript
source code is stored for further processing.

The second processing unit is a parser, based on the
Mozilla SpiderMonkey JavaScript engine [4]. The origi-
nal spider monkey parser has been modified to randomize
all identifier tokens as they derive from the JavaScript syn-
tax analysis. The randomization process follows ideas intro-
duced by Keromytis et al. [9, 10], implemented specifically

Web Application Files With JavaScript Pass Fail

WordPress 279 48 28 20
phpBB 542 137 117 20

phpMyAdmin 304 65 28 37
Drupal 143 5 1 4

Table 2. Statistics for files contained in each web appli-
cation. The third column specifies how many files include
scripts. The fifth column indicates how many files include at
least one mixed case.

for JavaScript. For an example of the randomization process
output please refer to Figure 1. For every stored source code
from the previous phase, the parser is invoked to produce
the randomized output. Apparently there are cases the tool
fails to randomize the script and produces a syntax error.
This derives from the mixing between JavaScript and PHP.
In other words the parser is confused when processing PHP
language elements and tries to identify them as JavaScript
language elements. Apart from this, a syntax error can be
produced in other cases where PHP is not involved. This
occurs because the input the parser is given, may not be a
complete JavaScript code but a fragment. For example the
syntax analysis fails when a return statement exists out of
a function block. This mostly occurs in code from HTML
events. Every event has a default action. When an event han-
dler is also defined (likeonclick), the event handler can
return a boolean to tell the browser whether or not to take
the default action. Another example is when the parser has
to deal with escaped string quotes which come from PHP
string variable content extractions. In our implementation,
such cases are successfully identified without producing any
error messages. An example of the parser input is given in
Figure 2. Successfully identified cases do not mean that the
input is not mixed. In many cases PHP language elements
contained in a script pass the syntax checking. This occurs
in JavaScript assignment expressions where the right value
is a string constant containing PHP code. Whenever the tool
fails to randomize a script we record the file and the LoC
of the script and then we analyze each case manually. The
randomization tool performs a best effort for isolating the
JavaScript source. A failure indicates that manual interven-
tion is needed for the isolation of the JavaScript code.

We manage to identify 163 scripts in all four web appli-
cations in which the tool fails to randomize them. We further
proceed and investigate each of the 163 mixed scripts man-
ually. We manage to create a taxonomy with five different
classes. We, finally, assign each script to the corresponding
category. In the following section we describe each of the
five categories. For the overall statistics of all web applica-
tions refer to Table 1 and 2.

2.1 Web Applications

Our analysis includes four popular web applications. We
now provide a short description for each one of these.
WordPress. A popular web application for constructing

1 <!−− O r i g i n a l Document. −−>

2 va r s = ” He l l o World ! ” ;
3 document. getElementByName(” welcome ”) . t e x t = s ;
4

5 <!−− Randomized Document. −−>

6 va r s0x78 = ” He l l o World ! ” ;
7 document0x78. getElementByName0x78(” welcome ”)
8 . t e x t0x78 = s0x78;

Figure 1. A randomization example. All JavaScript identi-
fiers get appended with a random key.

46

blogs. It is estimated that WordPress is used by over 202
million web sites worldwide [5].
phpBB. A web application for developing interactive fo-
rums. It is written in PHP and it supports multiple database
management systems and unlimited levels of sub-forums [2].
phpMyAdmin . This web application is intended to handle
the administration of MySQL databases over a web front-
end. Through the web interface a user can create, modify, or
delete databases, tables, etc. phpMyAdmin contains a sig-
nificant amount of JavaScript intermixed with PHP [3].
Drupal . Drupal [1] is a content management system (CMS)
written in PHP. It allows the system administrator to orga-
nize the content, automate administrative tasks and manage
site visitors.

3. Classification
The analysis of 163 different scripts, where JavaScript is
mixed with PHP, produces the following five categories. For
each category we provide an example from one of the four
web applications that take part in the analysis. The example
may be slightly simplified for presentation reasons.
Case 1.Partial injection of non-mixed JavaScript source us-
ing the PHP built-in function echo(). This is the case where
non-mixed JavaScript source code is injected in the web doc-
ument via PHP, by using the built-in functionecho(). We
present a example of a JavaScript snippet, which is injected
using multiple calls toecho() in Figure 3. In such a case,
isolating the JavaScript part is hard, since the parser’s input
has many extra quotes andecho() occurrences.
Case 2.String concatenations. In this case the final JavaScript
code is generated by the concatenation of string literals and
values of PHP variables. All dynamic generated strings are
printed using the PHP built-in functionecho(). The diffi-
culty here occurs because both quotes (single and double)
are used as part of a complex string concatenation opera-
tion. Isolating the JavaScript part is hard in this case, since
both quoting styles are significant for both programming
languages, JavaScript and PHP. In Figure 4 we present a
string concatenation example.
Case 3.Partial JavaScript code generation by PHP script-
ing blocks. This is the most frequently occurring case of
JavaScript and PHP intermixing. In this case PHP scripting
blocks are put inside JavaScript. These scripts contain calls
of echo(). After PHP is invoked, these blocks are evaluated
and the final JavaScript source is generated. The parser fails
the syntax analysis at the time it consumes the PHP scripting
block. An example of this case is in Figure 5.
Case 4.JavaScript code generation by using frameworks’

1 <!−− O r i g i n a l Document. −−>

2 onsubmi t=” r e t u r n checkPassword (t h i s) ”>
3 <!−− P a r s e r I n p u t −−>

4 / / S t a r t Of I n p u t
5 r e t u r n checkPassword(t h i s)
6 / / End Of I n p u t

Figure 2. Parser input example from phpMyAdmin.

1 /∗ Case 1 . ∗ /
2 echo ”<s c r i p t>\n ” ;
3 echo ” document . w r i t e (. . .) ; ”
4 echo ” </ s c r i p t>\n ” ;
5

6 /∗ P ar s er I n p u t ∗ /
7 / / S t a r t Of I n p u t
8 \n” ;
9 echo ”document. w r i t e (. . .) ; ”

10 echo ”
11 / / End Of I n p u t

Figure 3. Example for Case 1: Partial injection of non-
mixed JavaScript source using the PHP built-in function
echo().

1 /∗ Case 2 . ∗ /
2 $ a c t i o n s[’ q u i c k e d i t ’] =
3 ’ o n c l i c k =
4 ” commentReply . open (\ ’ ’ . $pos t−>ID . ’ \ ’ , \ ’ e d i t \ ’) ; ” ’ ;
5

6 /∗ P ar s er I n p u t ∗ /
7 / / S t a r t Of I n p u t
8 commentReply. open(\ ’ ’ . $pos t−>ID . ’ \ ’ , \ ’ e d i t \ ’) ;
9 / / End Of I n p u t

Figure 4. Example for Case 2: String concatenation.

1 /∗ Case 3 . ∗ /
2 t i n yM C E Pre In i t = {
3 . . .
4 mc e In i t:{<?php echo $mc eop t i ons; ?>},
5 . . .
6 } ;

Figure 5. Example for Case 3: Partial JavaScript code gen-
eration by PHP scripting blocks.

meta languages. In this case a framework uses a meta lan-
guage to build JavaScript dynamically. This case exists only
in phpBB. The framework generates dynamic content by
transforming static HTML pages containing the meta lan-
guages elements. It loads the page, uses patterns to locate
all meta language elements and then substitutes them with
PHP code as the meta language semantics order. Secondly,
the generated PHP code must be evaluated by using PHP
functioneval() to produce the final JavaScript code. In ad-
dition, the meta language is supposed to be more expressive
than ordinary substitutions. It gives the programmer the op-
portunity to make easy conditional assignments. In Figure 6
we present an example which is used in order to assign a
value in thelang and theindex field. In such a case, iso-
lating the JavaScript code is hard, since the complete source
code is not known in advance. The parser fails at the time it
consumes the meta language elements.

Application Scripts C1 C2 C3 C4 C5

WordPress 51 3 12 36 0 0
phpBB 27 1 0 0 26 0

phpMyAdmin 80 0 43 34 0 3
Drupal 5 0 2 3 0 0

Table 3. Categorization of all mixed scripts in the four web
applications.

47

1 /∗ Case 4 . ∗ /
2 va r R e c a p tc ha Op t i ons= {
3 l a ng : {L RECAPTCHALANG} ,
4 i nde x :
5 <!−− IF $CAPTCHA−−>{$CAPTCHA}
6 <!−− ELSE −−>10<!−− ENDIF −−>

7 } ;

Figure 6. Example for Case 4: JavaScript code generation
by using frameworks’ meta languages.

1 /∗ Case 5 . ∗ /
2 onsubmi t=
3 ” r e t u r n
4 (emptyFormElements (t h i s , ’ t a b l e ’)
5 && ; checkFormElementInRange (
6 t h i s , ’ n u m f i e l d s ’ , . . .) ; ”

Figure 7. Example for Case 5: Markup injections.

1 /∗ Case 1 A l t e r n a t i v e Idiom . ∗ /
2 . . . ?>
3 <s c r i p t t ype= ’ t e x t / j a v a s c r i p t ’>
4 document. w r i t e (. . .) ;
5 </ s c r i p t>
6 <?php . . .

Figure 8. Alternative approach for case 1.

1 /∗ Case 2 A l t e r n a t i v e Idiom . ∗ /
2 $ c o n t e n t = ’ \ ’ ’ . $pos t . ’ \ ’ , \ ’ e d i t \ ’ ’ ;
3 $ a c t i o n s[’ q u i c k e d i t ’] =
4 ’ o n c l i c k =
5 ” commentReply . open (’. $ c o n t e n t. ’) ; ” ’ ;

Figure 9. Alternative approach for case 2.

Case 5.Markup injections. Finally, the last case includes
scripts where HTML special characters (like&) are in-
jected in JavaScript expressions. These HTML characters
are translated from a PHP filter before the script reaches the
web browser. Before the translation the JavaScript expres-
sion is invalid. For example, the most frequently occurring
case is when the sequence of HTML entities&&

is translated to&&, which is the logicalAND in a JavaScript
expression. For an existing example of such a case, please
refer to Figure 7. We are not aware of the goal of the web
programmers that use this coding tactic.
Results.We now present the results from the classification
of all 163 scripts of the four web applications. In Table 3 we
list each application with all identified mixed scripts, cate-
gorized in each one of the five categories we present above.
Notice that for all four application most of the mixed scripts
fall in the third case. The meta-language case, Case 4, occurs
only in phpBB. In addition, only three scripts fall in Case 5
and occurs only in phpMyAdmin. Case 1 cases are limited
as well. Our observation suggests that there are only a few
coding idioms, in order to mix PHP and JavaScript, that are
used in real-world web applications. The dominant idioms
is string concatenation, partial injection using PHP scripting
blocks and custom meta-language technologies.

4. Mixing Reduction
In this section we try to reduce the mixing between JavaScript
and PHP code and successfully isolate JavaScript in failed

1 /∗ Case 3 A l t e r n a t i v e Idiom . ∗ /
2 t i n yM C E Pre In i t = {
3 . . .
4 mc e In i t : <?php $mc e op t i ons s = ” {” . $mc e op t i ons. ” } ” ;
5 echo $mc eop t i ons s ; ?> ,
6 . . .
7 } ;

Figure 10. Alternative approach for case 3.

1 /∗ Case 4 A l t e r n a t i v e Idiom . ∗ /
2 <!−− IF $CAPTCHA−−>

3 va r R e c a p tc ha Op t i ons= {
4 l a ng: {L RECAPTCHALANG} , i nde x: {CAPTCHA}
5 } ;
6 <!−− ELSE−−>

7 va r R e c a p tc ha Op t i ons= {
8 l a ng: {L RECAPTCHALANG} , i nde x: 10
9 } ;

10 <!−− ENDIF −−>

Figure 11. Alternative approach for case 4.

Figure 12. Script occurrences for each category for all four
web applications before and after our alterations. Notice,
that most scripts fall in Case 3.

cases of Section 2. This is possible by altering the mixed
code or extending the parser to support some individual
cases.
Case 1.In this case it is easy to give an alternative coding id-
iom to avoid the parser failing. Instead of using PHPecho()

calls to generate the code in the final document, the code can
be injected as it is. The programmer can finalize the PHP
scripting block , inject the JavaScript code and then start the
PHP scripting block again. The alternative code is depicted
in Figure 8.
Case 2.This is the most difficult case to address. Consider
that in our implementation the snippet should be modified to
be syntactically correct by both the PHP interpreter and our
JavaScript parser. Mix reduction in this case can be achieved
by making less confusing use of quotes and by using as less
as possible concatenation parts. The alternative code is de-
picted in Figure 9.
Case 3.In this case we try to address failed cases by both
rewriting the code and extending the parser. The parser
identifies the start and the end of a PHP scripting block
in the syntax analysis, consumes it and then handles it as a
valid JavaScript identifier. However, there are cases where
an identifier is not expected due to JavaScript semantics and

48

the analysis fails again. These cases can be addressed by
code rewriting. The alternative code for this case is depicted
in Figure 10. Now all the PHP scripting blocks are identified
as JavaScript identifiers.
Case 4.During the syntax analysis we use the same pat-
terns phpBB uses to identify the meta language elements.
After a successful identification the parser handles them as
JavaScript identifiers, as above. In cases where the meta lan-
guage elements are straight substituted this approach works.
In cases where the meta language is quite complicated we
propose an alternative writing to make it more simple. This
strategy makes code maintenance more difficult but helps the
parser to successfully isolate the JavaScript. The alternative
code is depicted in Figure 11, where the meta language el-
ements,{L RECAPTCHA LANG} and{CAPTCHA}, are treated
as JavaScript identifiers.
Case 5.In this last case the parser is extended to recognize
HTML entities (like&) and simply consume and ignore
them in the syntax analysis.
Results.In cases where the failed instances are few, like in
Case 1 and in Case 5, we rewrite the code as proposed. In ad-
dition we extend the parser semantics to successfully handle
Case 3 and Case 4. We then rerun the extended parser with
the methodology described in Section 2. We further investi-
gate the current failed cases. In Figure 12 we plot the overall
script occurrences we recorded for each of the five differ-
ent cases before and after our interference. In Case 1 and
Case 5 all failed cases are eliminated. In Case 3 and Case 4,
the parser extensions managed to strongly reduce the failing
rates. In Case 2 the failed cases remain because neither code
rewriting nor extensions are applied in the second run.

5. Conclusion
In this paper we present a systematic analysis in the source
code of four large web applications. The analysis aims on
identifying possible cases where JavaScript is intermixed
with PHP. During our analysis we process more than half of
a million of LoCs. We identify about 1,000 scripts, which
contain 163 scripts, where JavaScript is intermixed with
PHP. We manually investigate all 163 scripts and create a
classification scheme of five distinct classes. Moreover, we
try to address failed cases and reduce the mix by proposing
alternative code idioms or extensions to the processing tool.
We further analyze the results. Our analysis can be benefi-
cial for all applications that apply operations in the client-
side part of a web application and various XSS mitigation
schemes.

Acknowledgements.Elias Athanasopoulos, Antonis Krithi-
nakis and Evangelos P. Markatos are also with the Universityof
Crete. Elias Athanasopoulos is also funded by the MicrosoftRe-
search PhD Scholarship project, which is provided by Microsoft
Research Cambridge.

References
[1] Drupal: An open source content management platform.http:

//drupal.org/.

[2] phpBB: One of the most widely used Open Source forum
solution.http://www.phpbb.com/.

[3] phpMyAdmin: Application that handles the administration
of MySQL over the World Wide Web. http://www.

phpmyadmin.net/.

[4] SpiderMonkey (JavaScript-C) Engine. http://www.

mozilla.org/js/spidermonkey/.

[5] WordPress Usage: 202 Million Worldwide 62.8 Mil-
lion US. http://andrewapeterson.com/2009/09/

wordpress-usage-202-million-worldwide-62-8-million-us/.

[6] E. Athanasopoulos, V. Pappas, A. Krithinakis, S. Ligouras,
and E. P. Markatos. xJS: Practical XSS Prevention for Web
Application Development. InProceedings of the 1st USENIX
WebApps Conference, Boston, US, June 2010.

[7] M. V. Gundy and H. Chen. Noncespaces: Using Randomiza-
tion to Enforce Information Flow Tracking and Thwart Cross-
Site Scripting Attacks. InProceedings of the 16th Annual Net-
work and Distributed System Security Symposium (NDSS).

[8] T. Jim, N. Swamy, and M. Hicks. Defeating Script Injec-
tion Attacks with Browser-Enforced Embedded Policies. In
WWW ’07: Proceedings of the 16th international conference
on World Wide Web.

[9] G. Kc, A. Keromytis, and V. Prevelakis. Countering Code-
Injection Attacks with Instruction-Set Randomization. InPro-
ceedings of the 10th ACM conference on Computer and Com-
munications Security.

[10] A. D. Keromytis. Randomized Instruction Sets and Runtime
Environments Past Research and Future Directions.IEEE
Security and Privacy, 2009.

[11] L. C. Lam and T.-c. Chiueh. A General Dynamic Information
Flow Tracking Framework for Security Applications. InAC-
SAC ’06: Proceedings of the 22nd Annual Computer Security
Applications Conference.

[12] J. Newsome and D. Song. Dynamic Taint Analysis for Au-
tomatic Detection, Analysis, and Signature Generation of Ex-
ploits on Commodity Software. InProceeding of the 13th
Annual Network and Distributed System Security Symposium
(NDSS), 2005.

[13] SANS Insitute. The Top Cyber Security Risks.
September 2009. http://www.sans.org/

top-cyber-security-risks/.

[14] Symantec Corp. April 2008. 1-3. Retrieved on 2008-05-11.
Symantec Internet Security Threat Report: Trends for July-
December 2007 (Executive Summary).

[15] M. Ter Louw, P. Bisht, and V. Venkatakrishnan. Analysisof
hypertext isolation techniques for XSS prevention. InWeb 2.0
Security and Privacy 2008, May 2008.

[16] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and
G. Vigna. Cross-Site Scripting Prevention with Dynamic Data
Tainting and Static Analysis. InProceeding of the 14th Annual
Network and Distributed System Security Symposium (NDSS),
2007.

49

