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Abstract— Biomedical research often relies on having access
to vast amounts of sensitive information. Patient data in elec-
tronic form are held in medical databases and bio-repositories
and have to be queried, data mined and operated on by doctors
and researchers. Lately, all this information has been migrating
to the cloud making access easier for all interested parties.
While this helps with dissemination and access, it may have
unintended consequences in terms of security and privacy. In
this work we propose an architecture that combines distributed
access control mechanisms with privacy preserving crypto-
graphic protocols to enable secure sharing and computations
on clouds holding sensitive biomedical data. The data shared
are tagged with security policies that define who has access to it
and how they should be used. Access rights may be delegated to
other parties making collaborations easier. Finally, data can be
operated on cryptographically to extract specific information
without compromising the entire data set.

I. INTRODUCTION

Patient records, and biomedical data in general, are
steadily converted into digital form, and placed in databases
and other repositories for ease of access by the appropri-
ate parties. Many countries, healthcare providers, medical
practitioners etc. are adopting Electronic Medical Record
(EMR) systems, and large companies, such as Google and
Microsoft are building medical record clouds (e.g. Google
Health and Microsoft HealthVault). A wide range of data
relating to a person may appear is such repositories. For
example, conditions, medications, allergies, immunizations,
procedures, as well as any digital images and files relating to
that person. In many cases even DNA sequences are stored
on file.

This wealth of information coupled with the open
paradigm of online databases and cloud computing, offers
tremendous potential for biomedical research, as data can
now be easily aggregated and shared. This model however
is not without problems primarily relating to the security and
privacy of the information. For this reason there are strong
regulatory requirements concerning the storage, access and
use to such data. For example the Health Insurance Portabil-
ity and Accountability Act (HIPAA) [1] in the United States
places very stringent requirements with respect to privacy
in patient records. Also the ISO/TS 18308 standard gives
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definitions of security and privacy issues for the Electronic
Health Record (EHR) [2]

From a practical perspective however we need to come up
with architectures that can enable us to work with such sen-
sitive data. Specifically we have the following requirements:

1) Each data owner only controls access to their own
data. The data owner may be an individual or an
organization.

2) A data owner should be able to grant access to their
data to others.

3) Access rights should be delegatable.

4) Any architecture designed for data sharing should scale
with the number of data owners.

5) If so desired, computation on data should be done in
such a way as to not reveal anything other than the
result of the computation.

In this work we present an architecture that addresses
the above requirements. Specifically, our architecture accom-
plishes two broad goals: (i) distributed and scalable access
control to private biomedical datasets that can be shared at
least partially, and (i) privacy-preserving computation that
only reveals the result of the computation for datasets that
cannot be shared.

II. RELATED WORK

The topic of security, access, privacy and anonymity with
respect to biomedical data, but also data in general, is a very
active research area. We will focus here to works that closely
relate to ours. In [11] Zhang and Liu discuss important
concepts related to EHR sharing and integration in healthcare
clouds, and analyze security and privacy issues in terms of
access and management of EHRs. Fung et al. in [12] present
a survey of of recent advances in privacy-preserving data
publishing. In this work we use different building blocks,
namely credentials and homomorphic encryption functions,
to design a scalable biomedical cloud architecture.

Freedman et al. [3] consider the problem of comput-
ing the intersection of private datasets of two parties and
analyze their protocol under a number of threat models.
Their solution is based on representing sets as roots of
polynomials. Kissner and Song [10] extend the results of
[3] to utilize properties of polynomials beyond evaluation at
given points. In this work we utilize these low-level tools
in our architecture to support privacy-preserving access to
sensitive data in the case of unstrusting parties.

Automated Trust Negotiation was first proposed by Wins-
borough et al. [20]. The purpose is to build trust between
participants by having the two parties exchange digitally
signed credentials that contain attribute information in order



to establish trust and make access control decisions. In
environments like the Internet where there may be few or
no pre-existing relationships, parties that seek to form a
trust relationship might be unwilling to release sensitive
credentials [13], [17]. To address this difficulty, a number of
schemes have been proposed recently that use cryptography
or multiple rounds of negotiations to protect credentials and
attributes [14], [15], [16], [18], [19]. Using an automated
trust negotiation scheme, participants specify access control
policies for the disclosure of credentials. They then enter a
negotiation phase which consists of a sequence of exchanges
that are controlled by the access control policies defined for
the credentials. At each round, parties gain higher levels
of mutual trust, permitting access control policies for more
sensitive credentials to be satisfied, which in turn enable
these credentials to be exchanged. In our work we assume the
date owner as well as the data user have a well known trust
relationship, and credentials are issued that implement these
policies. In the case of lack of trust, we use cryptographic
privacy-preserving protocols.

The STRONGMAN system described in [22] demonstrates
three new approaches to providing efficient local policy
enforcement complying with global security policies. First
is the use of a compliance checker to provide great lo-
cal autonomy within the constraints of a global security
policy. Second is a mechanism to compose policy rules
into a coherent enforceable set, e.g., at the boundaries of
two locally autonomous application domains. Third is the
“lazy instantiation” of policies to reduce the amount of
state enforcement points need to maintain. In this work we
utilize the KeyNote system which was developed as part of
STRONGMAN to build strong and scalable access control
is biomedical data clouds.

III. ARCHITECTURE
A. Preliminaries

We define the participants in our architecture to be (i)
the biomedical data owners that hold their data in network
accessible repositories or clouds, and (i) the data consumers
that seek access to the data. A data owner can also be a data
consumer and vice versa. Sharing of sensitive information
between participants is a very challenging task. Each par-
ticipant may have their own data representation and their
own security policies in place. For the purpose of this work
we assume that anyone that wants to participate in data
sharing must use the same data format and agree on the
same data operations. Different data items are represented as
unique natural numbers. The same number cannot be used
to represent two different data items. For example if the
number 12345 is used to represent medication XYZ, it cannot
be used to also represent disease ZYX. Our architecture
can be agnostic to the type of data, which may range
from medication XYZ, it cannot be used to also represent
disease ZYX. Our architecture can be agnostic to the type of
data, which may range from simply patient names to DNA
sequences, as anything can be represented by a number or
bitstring.

Local-Constants:
BIOMEDICAL_DATAOWNER_KEY="rsa-base64:M..."
PHYSICIAN_KEY KEY = "rsa-base64:MIGJAo..."

Authorizer: BIOMEDICAL_DATAOWNER

Licensees: PHYSICIAN

Conditions:

((app_domain == "CLOUD_COMPUTING") &&
(records == "ALL_PATIENTS") &&
(permissions == "READ_ACCESS") &&

(valid <= "20101231")) -> "permit";

Signature: "sig-rsa-shal-base64:QU6..."

Fig. 1. Sample credential for allowing a physician to read patient records
off a biomedical data cloud.

Local-Constants:
PHYSICIAN_KEY="rsa-base64:McgFJX..."

RESEARCHER_KEY = "rsa-base64:MCgQGB..."
Authorizer: PHYSICIAN
Licensees: RESEARCHER
Conditions:

((app_domain == "CLOUD_COMPUTING") &&
(records == "CANCER_PATIENTS") &&
(record_state == "ANONYMIZED") &&
(permissions == "READ_ACCESS") &&
(valid <= "20101130") —-> "permit";

Signature: "sig-rsa-shal-base64:Qpf..."

Fig. 2. Sample credential for delegating some access rights from the
physician to a collaborating researcher.

We also assume that each participant will use a se-
mantically secure public-key cryptosystem and generate the
corresponding public and private keys.

B. Distributed Access Control

The main architectural principle behind our system is the
ability of data owners to issue access credentials to data
users. Data users in turn may further issue access credentials
to other data users. A credential is a statement that specifies
what access rights it’s holder has with respect to very specific
data. The credential is cryptographically signed by it’s issuer.
The holder of the credential may present it to the issuer to
gain access to the data.

Let us examine how the process works with an example.
Figure 1 shows a simple credential. For the purpose of this
work we are using the KeyNote Trust Management system
[5]1, [6] which provides us with the necessary credential
functionality. The credential in our example is issued by a
biomedical data owner to a physician, granting read access
to all of the data owner’s patient records. The credential
contains the public keys of the two parties along with
the cryptographic signature (computed by the authorizer)
verifying the validity of the credential. The specific credential
also has an expiration date, invalidating it past that date.
Finally the credential has an extra field specifying the type
of application the credential is supposed to be used for, in
this case cloud computing.

The physician may now present this credential to the data
owner every time they want to read a patient record. The



physician may also issue new credentials for collaborators.
In our example in Figure 2, the physician creates a new
credential and grants read access to only the cancer patient
records that have been anonymized, and for a shorter period
of time. The physician then signs the credential and gives it
to the researcher along with the original credential that the
data owner issued to the physician. Essentially this creates
a chain of credentials, all cryptographically signed by their
issuer.

The researcher can now go directly to the data owner,
present this chain of credentials, which can in turn be
cryptographically verified by the data owner by checking the
correctness of the signatures. If all the conditions are met,
and the signature are valid, then access is granted.

C. Scalability

Using credentials to hand out access rights is ideal for
distributed environments as they remove the bottleneck of
managing access rights centrally and the cumbersome use of
logins and passwords [7], [9], [8]. Credentials wrap the au-
thentication and authorization procedure in on cryptographi-
cally signed token.The credential itself is sufficient to prove
the validity of the access. Additionally, the ability to delegate
access rights further helps in offloading the management
burden. Someone that has valid rights to access certain data,
may issue credentials to their collaborators without involving
the data owner. Delegation is always hierarchical, and no one
can escalate their access rights that can lead to a security
and privacy breach. That is, the permissions one can grant
are always a subset of the permissions they hold.

D. Privacy Discussion

So far we have primarily covered the case of security and
scalability, and to a lesser degree privacy. While sharing is
controlled in terms of who has a certain type of access to a
certain type of data, once this access is given, the data can at
the very least be looked at. What happens in cases where we
don’t want to reveal any data prior to the execution of the
computation. For example, assume that two participants want
to discover whether they have any common patients with a
specific disease. How can they do this without revealing their
entire patient list along with their corresponding diseases.

E. Cryptographic Tools

The basic tool we use for computation in the case of
mistrust between parties is a privacy-preserving set inter-
section protocol. Specifically we use work done in [3], by
Freedman et al. Their private matching scheme is a two-
party protocol between a client C' and a server S. When the
protocol starts, both parties have private data sets (Z¢ and
Zg) drawn from some common domain. At the conclusion of
the protocol, the chooser learns the intersection ZoNZg, but
nothing about any other data in Zg. That is, Freedman et al.
prove that their protocol is privacy-preserving in the semi-
honest model. For data sets of size O(k), the protocols results
in a communication overhead of O(k) and computational
overhead of O(kInlnk).

The Freedman protocol is based on a semantically secure
homomorphic encryption scheme: If F is a public encryption
function of a homomorphic encryption scheme, then, given
the ciphertexts ¢; = E(mq) and ¢o = E(ms), the ciphertext
¢ = E(my 4+ m2) can be computed efficiently without
knowledge of the private key. Similarly, given ¢ = E(m)
and some r from the group of plaintexts, then ¢* = E(rm)
can be computed efficiently without knowledge of the pri-
vate key. A public encryption function E is semantically
secure if it is computationally infeasible for an attacker to
derive significant information about a plaintext given only
its ciphertext and the public encryption key. An example of
a semantically secure homomorphic encryption scheme is
Paillier’s cryptosystem [4]. The homomorphic property of an
encryption function E implies that anyone in possession of
the encrypted coefficients of a polynomial f(z) can compute
a valid encryption of f(y) for any y from the group of
plaintexts without the knowledge of the private key or the
coefficients. In particular, for any known plaintexts y;, y» and
any known constant , a valid encryption E(r f(y1)+y2) can
be computed without the knowledge of the private key or the
coefficients of f(x).

F. Example Private Computation between Mistrusting Par-
ties

Continuing the discussion from Section III-D and given
the tools from Section III-E we can see that biomedical data
owners can share their data under certain conditions, even
when they do not entirely trust the requester. Specifically, if
two parties are willing to at least reveal the data they have
in common, it is possible to do it, and guarantee that no
other data is revealed. This is very often the case in medical
research, where both parties can benefit from exploring each
others dataset. After all, if the same data exist in both
datasets, is was known to both parties to begin with, and
no privacy constraints were violated.

To see how this works in practice, consider two biomedical
data owners (let us call them Alice and Bob) that want
to conduct some collaborative research, but no one of the
two wants to give (even anonymized) access to their dataset
to the other. The use of credentials as we described in
the first part of our architecture is therefore insufficient.
Assume that Alice’s dataset is Z4, = aq,...,a, and Bob’s
dataset is Z4 = bq,...,b,. Remember that a; and b; need
to be drawn from the same domain (see Sections III-A
and III-E). Also, let us define a semantically secure public-
key homomorphic encryption scheme S = (E,, Dsi) e.g.
Paillier’s cryptosystem [4]. That is was have generated a
public key which we use for encryption and a private key
which we use for decryption.

Alice starts by creating a polynomial:

fl@)=(x—a1)(x—a2) - (x —ap) = Zaixi
i=0

She then encrypts each coefficient «; (i = 1,...,n)
under E,; getting E,i(a;) and proceeds to send those



encrypted coefficients to Bob. Bob then proceeds to compute
Ep(f(b:)) for every b; € Zg. Note, that Bob, cannot simply
use the public key to compute the these values, because even
though the public key is well know, the polynomial is secret.
Bob, can however compute the encrypted polynomial using
the properties of the homomorphic encryption scheme (see
Section III-E). For every b; € Z4 then f(b;) = 0, that is
data of Bob that also exist in Alice’s dataset are roots of the
polynomial Alice computed. As Bob does not want to reveal
any additional information other that what is in the common
dataset, he randomizes all his encryptions by a random, non-
zero, value r. This is done by using the properties presented
in Section II-E, Epp(f(b;))" = Epu(rf(bs)). If f(b;) = 0
then obviously the encryption of E,(rf(b;)) = Epk(0),
otherwise it it some random value. Bob must however
provide some information to Alice to check whether some
of Bob’s data exist in her dataset. To do this Bob computes
the following: Epk(rf'(bi) + b;) and sends it to Alice. Alice
decrypts it using her secret key: Dy, (Epp (7 f(b;) +b;)). The
resulting plaintext data will be b; if and only if b, € A.

1) Security Analysis: Obviously, one of the two parties
may lie in the interaction by supplying false data. For
example, one can enumerate all possible numbers to try to
extract the others dataset. This is the age old problem of
dataset extraction which may be addressed by out-of-band
methods. For example limiting the data that can be queried at
every interaction, or denying to further interact with parties
that have been found to lie. One may actually go a step
further and add a third component to the so far discussed
architecture. That is extend it with a reputation system, that
measures the trustworthiness of participants [21].

IV. CONCLUSIONS

In this work we presented a two-tier architecture for
security and privacy in biomedical clouds. We combined
the power of decentralized management and access control,
provided by cryptographic credentials, with the ability to
perform privacy-preserving set operations on data.

The first part of our architecture enables biomedical data
owners to easily hand out access to physicians, researchers,
etc. They in turn, may delegate further access to their
collaborators. Of course, even though such an approach
provided great flexibility in terms of sharing information, it
is insufficient on its own when we would like to avoid reveal-
ing information unnecessarily. For this reason we combine
cryptographic credentials with privacy-preserving protocols.
Privacy-preserving protocols permit untrusting parties to per-
form specific operations without revealing the entire dataset
but only the result of the operation. This is particularly im-
portant in biomedical research, and biomedicine in general.
Now organizations may datamine each other datasets for
common patterns when for example they perform research
on diseases or experimental drugs. They can do this without
revealing extraneous information.

REFERENCES

[1] Centers for Medicare and Medicaid Services. The Health In-
surance Protability and Accountability Act of 1996 (HIPPA)
http://www.cms.gov/HIPA AGenInfo/

[2] ANSI. ISO/TS 18308 Health Informatics Requirments for an Electronic
Health Record Architecture, ISO 2004.

[3] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient
private matching and set intersection. In EUROCRYPT, volume 3027
of LNCS, pages 1-19, 2004.

[4] P. Paillier. Public-key Cryptosystems Based on Composite Degree
Residuosity Classes. In Proceedings of EUROCRYPT 99, 1999.

[S] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. Keromytis. The role of
trust management in distributed systems security. In Secure Internet
Programming, volume 1603 of Lecture Notes in Computer Science,
pages 185-210. Springer-Verlag Inc., New York, NY, USA, 1999.

[6] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D. Keromytis. The
KeyNote Trust Management System Version 2. RFC 2704, September
1999.

[7] Sotiris loannidis, Steven M. Bellovin, John Ioannidis, Angelos D.
Keromytis, and J.M. Smith. Design and implementation of virtual
private services. In Proceedings of the IEEE International Workshops
on Enabling Technologies: Infrastructure for Collaborative Enterprises
(WETICE), Workshop on Enterprise Security, Special Session on Trust
Management in Collaborative Global Computing, June 2003.

[8] Sotiris loannidis, Steven M. Bellovin, John Ioannidis, Angelos D.
Keromytis, Kostas Anagnostakis and J.M. Smith. Virtual Private Ser-
vices: Coordinated Policy Enforcement for Distributed Applications In
International Journal of Network Security (IJNS) 4(3):69-80, January
2007.

[9] S. loannidis, A.D. Keromytis, S.M. Bellovin, and J.M. Smith. Im-
plementing a Distributed Firewall. In Proceedings of Computer and
Communications Security (CCS) 2000, pages 190-199, November 2000.

[10] L. Kissner and D. Song. Private and Threshold Set-Intersection. In
Proceedings of CRYPTO’05, 2005.

[11] Rui Zhang and Ling Liu. Security Models and Requirements for
Healthcare Application Clouds. In Proceedings of the 3rd IEEE
International Conference on Cloud Computing (Cloud2010). July 2010.

[12] B.C.M. Fung, K. Wang, R.Chen and P.S. Yu. Privacy-preserving data
publishing: A survey of recent developments. In ACM Computing
Surveys (CSUR) 42(4), December 2010.

[13] W. Winsborough and N. Li. Towards Practical Automated Trust
Negotiation. In Proceedings of IEEE 3rd International Workshop on
Policies for Distributed Systems and Networks (Policy’02), 2002.

[14] W. H. Winsborough and N. Li. Protecting Sensitive Attributes in
Automated Trust Negotiation. In Proceedings of the 2002 ACM
Workshop on Privacy in the Electronic Society (WPES’02), 2002.

[15] W. H. Winsborough and N. Li. Safety in Automated Trust Negotiation.
In IEEE Symposium on Security and Privacy (S&P’04), 2004.

[16] J. E. Holt, R. W. Bradshaw, K. E. Seamons, and H. Orman. Hidden
Credentials. In WPES’03: Proceedings of the 2003 ACM Workshop on
Privacy in the Electronic Society, 2003.

[17] K. Irwin and T. Yu. Preventing Attribute Information Leakage in
Automated Trust Negotiation. In Proceedings of the ACM Conference
on Computer and Communications Security (CCS’05), 2005.

[18] K. Seamons, M. Winslett, and T. Yu. Limiting the Disclosure of Access
Control Policies during Automated Trust Negotiation. In Proceedings
of Network and Distributed System Security Symposium, 2001.

[19] K. E. Seamons, M. Winslett, T. Yu, L. Yu, and R. Jarvis. Protecting
Privacy During On-line Trust Negotiation. In Proceedings of the 2nd
Workshop on Privacy Enhancing Technologies (PET’02), 2002.

[20] W. H. Winsborough, K. E. Seamons, and V. E. Jones. Automated
Trust Negotiation. In Proceedings of DARPA Information Survivability
Conference and Exposition, 2000.

[21] Andrew G. West, Adam J. Aviv, Jian Chang, Vinayak S. Prabhu,
Matt Blaze, Sampath Kannan, Insup Lee, Jonathan M. Smith and Oleg
Sokolsky. QuanTM: A Quantitative Trust Management System. In Pro-
ceedings of the European Workshop on System Security (EUROSEC),
2009.

[22] Angelos D. Keromytis, Sotiris Ioannidis, Michael B. Greenwald, and
Jonathan M. Smith. The STRONGMAN Architecture. In DARPA
Information Survivability Conference and Exposition (DISCEX III),
pages 178-188. IEEE Computer Society Press, April 2003.



