

BroadBand Europe Geneva, Switzerland
 11-14 December 2006

ISBN10 : 907654607X
ISBN13 : 9789076546070 Paper Th3B4 – Antoniades Page 1 of 6

Appmon: An Application for Accurate per Application Network Traffic Characterization

Demetres Antoniades1, Michalis Polychronakis1, Spiros Antonatos1, Evangelos P. Markatos1, Sven Ubik2, Arne Øslebø3.

1{danton,mikepo,antonat,markatos}@ics.forth.gr. Institute of Computer Science Foundation for Research and
Technology, Hellas PO Box 71110, Heraklion, Crete, Greece

2ubik@cesnet.cz CESNET, 160 00 Prague 6, Czech Republic
3Arne.Oslebo@uninett.no UNINETT S.A. N-7465 Trondheim, Norway.

Abstract

Accurate per-application network traffic
characterization is becoming increasingly difficult in the
face of emerging applications that use dynamically
negotiated port numbers. At the same time, information
about the contribution of different network applications and
services to the traffic mix is highly demanded by network
administrators for facilitating effective network
management and traffic engineering. In this paper we
present appmon, a passive monitoring application for per-
application network traffic classification. Appmon uses deep
packet inspection to accurately attribute traffic flows to the
applications that generate them, and reports in real time the
network traffic breakdown through a Web-based GUI.
Appmon is easy to configure and deploy, and is publicly
available as an open source application.

1 Introduction
One of the most frequent requests of network

administrators is to identify the applications and hosts that
generate the largest amount of network traffic. The
emergence of peer-to-peer file sharing, multimedia
streaming, and conferencing applications has resulted to a
substantial increase in the traffic volume, since they transfer
a large amount of data. However, monitoring the traffic
generated from such applications is becoming increasingly
difficult.

Traditionally, traffic attribution to the corresponding
applications is performed using the statically assigned port
numbers. Widely used network services, like the Web,
Telnet, SSH, and many others, are associated with well-
known port numbers which can be used for identifying the
traffic related with each application. However, many major
new applications, including popular, bandwidth-hungry file
sharing applications and widely used video and voice
conferencing applications, do not use well-known port
numbers. Instead, they allocate and use dynamically
negotiated ports. Furthermore, some applications
masquerade their traffic using pervasive, firewall-friendly
protocols, like HTTP, in order to bypass firewall
restrictions and make the identification of their traffic
harder. Indeed, several widely used applications like
BitTorrent [6] and Skype [7] can be configured to operate
through port 80, which is usually left open even in
environments with strict firewall configurations. Nowadays,
the assumption that port 80 traffic is solely HTTP Web
traffic is hardly true.

It is clear from the above that traditional network
monitoring methods for determining per-applications

network usage are not effective anymore for accurate traffic
categorization [17]. Having identified this issue, several
researchers have conducted significant work towards
alternative ways for network traffic classification. Due to
the popularity and high bandwidth demands of peer-to-peer
file sharing applications, a significant body of work has
focused on the identification and categorization of peer-to-
peer application traffic. Initial approaches used deep packet
inspection and application signatures for attributing traffic
flows to the corresponding applications [19, 20]. Recent
approaches identify the applications that generate the traffic
either by deriving statistical models for certain protocols
[18] or by characterizing the behavior of the host generating
this traffic [22].

Motivated by the significance of traffic categorization
for effective network management and traffic engineering
and aiming at gaining a better understanding of Internet
traffic, we have developed appmon, a passive network
monitoring application for accurate per-application traffic
identification and categorization. Appmon uses three
different approaches for attributing flows to the applications
that generate them. First, it searches inside application
messages for characteristic application protocol patterns.
For certain applications that dynamically negotiate the ports
that are going to be used, appmon fully decodes the
applications protocol to identify the new, dynamically
generated port number and then tracks further traffic flows
through these ports. Finally, legacy applications that do not
match above filters are categorized based on well-known
port numbers and protocols using BPF filters.

The rest of the paper is organized as follows. Section 2
gives a more extensive description of the tool. Section 3
discusses performance and evaluation issues. Section 4
refers to currently deployed Appmon sensors.

2 Application Design
This section presents the overall design of appmon,

including a detailed description of the traffic classification
algorithm, implementation details, and the graphical user
interface.

2.1 Traffic Classification
Appmon passively monitors the traffic that passes trough

the monitored link and categorizes the active network flows
according to the application that generated them. A network
flow is defined as a set of IP packets with the same
protocol, source and destination IP address, and source and
destination port (also known as a 5-tuple). Traffic
categorization is performed using information from both the
packet header and payload .

BroadBand Europe Geneva, Switzerland
 11-14 December 2006

ISBN10 : 907654607X
ISBN13 : 9789076546070 Paper Th3B4 – Antoniades Page 2 of 6

The classification algorithm operates as follows:
appmon processes each captured network packet
sequentially. For each captured packet, it first checks if the
packet belongs to an already categorized network flow.
Information about the network flows seen so far is stored
into a hash table, along with information about the matching
application. Appmon keeps the minimal state required in
order to reduce the packet processing time. This allows for
a “fast path” processing of subsequent packets of an already
categorized flow, since they will only result to a look up in
the hash table for finding the record of the network flow in
which they belong, and, consequently, the matching
application, without the need for any further processing..

Packets that do not have a matching entry in the hash
table are passed down to the next processing level, where
each packet is sequentially processed by a set of modules
called application trackers. Each tracker is responsible for
identifying the traffic of a particular application or protocol.
There are three different types of application trackers,
depending on method used for classifying traffic: packet
inspection trackers, protocol decoding trackers, and header
filtering trackers.

Packet inspection trackers are used for tracking
application-level protocols, mainly used in peer-to-peer file
sharing applications such as Gnutella [8] and BitTorrent.
The packet inspection tracker searches inside packet
payloads for characteristic application messages or binary
byte sequences that are used by application protocols. These
application messages where selected by extensively reverse-
engineering the network traffic of popular file sharing
applications, as well as by studying the related work on
signature-based traffic classification [9, 19, 20]. Although
pattern matching inside packet payloads is a quite CPU
intensive operation, in most cases the characteristic
application patterns, usually protocol control messages, are
present in the first 100 bytes of the packet payload, and thus
the pattern matching is performed only to this portion of the
payload, reducing significantly the processing overhead.

Protocol decoding trackers are used for publicly
documented application level protocols that operate through
well known control ports, but use a dynamically assigned
port for data exchange. For example, in passive FTP,
control messages are exchanged through port 21, but actual
data transfers are made through a dynamically negotiated
port. Protocol decoding trackers operate by fully decoding
the application-level messages exchanged through the well-
known control port, trying to identify the messages related
with the negotiation of port numbers that will be used for
future data transfers. When such a message is identified, the
number of the dynamic port is extracted and then the tracker
will correctly classify the new network flow that is going to
be used for the data transfer, since the flow will use this
dynamically negotiated port.

If none of the above groups of trackers succeeds in
identifying a given packet, then the packet is passed to the
header filtering trackers. Filtering trackers classify traffic
based on packet header information such as identifying
predefined registered ports [2] and other protocol

information. Filtering trackers are implemented using BPF
filters [16].

Table 1: Implemented Protocol Trackers.

Layer 4 Protocols Application Protocols

TCP BitTorrent eDonkey
UDP Direct Connect Gnutella
ICMP FTP HTTP

IP-in-IP SSH SMTP
 DNS NetBIOS
 RTSP OpenVPN

As we have already discussed, several applications

masquerade their traffic using widely used, firewall-friendly
protocols, like HTTP, in order to bypass firewall
restrictions and make identification of their traffic harder.
To avoid potential traffic misclassification due to such
tricks, trackers are prioritized, with packet inspection
trackers applied first, then the protocol decoding trackers,
and finally header filtering trackers. When a packet is
matched by a tracker, then it is not processed further by
subsequent trackers. For example, the BitTorrent tracker
has higher priority than the HTTP Web tracker. Thus, the
flow of a BitTorrent packet through port 80 will be
correctly attributed to the BitTorrent protocol, and not to
Web traffic.

If none of the above methods manages to classify the
flow in which the packet belongs, then the packet is
temporarily considered as unknown, and the application
waits for more packets of the same flow in order to classify
it.

It worth mentioning that since most of the application
specific patterns are located at the beginning of a flow, the
vast majority of the monitored packets will belong to an
already active – and thus categorized – network flow. As a
result, expensive deep packet inspection operations are
performed only to a small subset of the traffic, and appmon
manages to process traffic loads of several hundred Mbit/s

Error! Reference source not found. presents the
currently implemented protocol trackers in appmon. We
split these protocols into two broad categories. The first
contains the main layer 4 protocols, while the other contains
application-level protocols, including those used by several
popular traffic-dominating peer-to-peer applications.

2.2 Graphical User Interface
Appmon reports the classification results through two

different user interfaces, depending on the requirements of
the user. For quick and easy network monitoring, there is a
console-mode version which can report the results either
through a batch text mode printout, or a more user-friendly
ncurses [11] version. For long-term usage, appmon
provides a powerful GUI accessible using any web browser.
Due to space restrictions, in this paper we describe only the
Web interface, since it provides a superset of the
information provided by the console-mode versions.

Appmon reports the per-application traffic distribution
through the web interface presented in Error! Reference

BroadBand Europe Geneva, Switzerland
 11-14 December 2006

ISBN10 : 907654607X
ISBN13 : 9789076546070 Paper Th3B4 – Antoniades Page 3 of 6

source not found.. The main page is split into three frames.
The central frame presents a graph of the incoming and
outgoing traffic distribution for the last hour. The graph
presents the traffic portion of each categorized application
with a different color, while any remaining non-categorized
traffic is shown in grey. The topmost/bottommost line
represents the total observed traffic load.

The information of this frame is better viewed in Figure
2 which presents the per-application distribution of the
incoming and outgoing traffic at the University of Crete in
Greece. The values are expressed in Mbit/s, and the graph
isupdated every 10 seconds. A detailed per-application
breakdown of the traffic load is presented underneath the
graph.

The application offers five different time period views
of the traffic distribution. The main view presents the per-
application traffic distribution of the last hour. Links also
exist for the time period of the last three hours, last day, last
week, last month and last year.

Figure 1: Appmon Web Interface.

Besides traffic classification, Appmon also reports the K

top bandwidth consuming IP addresses. This is done by
accumulating the traffic of each IP address after every
packet is categorized at a specific application. In order to
achieve this some extra state is needed. For every protocol
we keep a hash table with all the IP addresses that belong to
flows marked as belonging to this protocol. For every IP
address we keep the number of bytes it transmitted, and the
addresses are sorted in descending order according to the
amount of traffic seen so far.

The top bandwidth consuming IP addresses are showed
in three tables in the right frame of the Web interface. The
first two tables contain the IP addresses of the K (10 by
default) flows that consumed the largest portion of
bandwidth during the last measurement period. Each record
contains information about the application in which the
flow belongs to and the exact amount of bandwidth that it
consumed. The third table presents the same information at
the IP level, which corresponds to the top K IP addresses
that consumed the largest portion of bandwidth irrespective
of application. Error! Reference source not found. shows

an example of how the top 10 IP addresses are presented
through the web interface.

Figure 2: Per-application bandwidth usage.

Since information about IP addresses is sensitive and in

some cases it may not be desirable to be exposed, appmon
can anonymize all the IP addresses presented by the Web
interface. Address anonymization is performed using
prefix-preserving anonymization [23, 24, 25], which
preserves subnet information. A non-anonymized version of
the TOP IP address information is also available for view
only by authorized personnel using a login procedure.

Finally, the left frame of the Web interface gives the
user the ability to view the traffic of only selected protocols
through a menu with all available protocols.

Figure 3: Top 10 incoming traffic IP addresses as

presented by appmon.

2.3 Implementation
To be freely available and easy installable, we have

implemented appmon using only a few external libraries.

BroadBand Europe Geneva, Switzerland
 11-14 December 2006

ISBN10 : 907654607X
ISBN13 : 9789076546070 Paper Th3B4 – Antoniades Page 4 of 6

Appmon is build in C language and uses the Libpcap packet
capturing library [13], which supports live traffic capture
using standard Ethernet interfaces, as well as DAG cards.

The crucial pattern matching operation within the packet
payloads is performed using an implementation of the
Boyer-Moore [15] string searching algorithm.

Appmon uses the RRDtool suite [10] for storing
measurement data and graphing the traffic distribution. The
Round Robin Database provided by RRDtool efficiently
stores time-series data for very long periods in very little
space using data aggregation. The database used by appmon
has a size of a few megabytes and can store measurements
for a period as long as one year.

The installation of the Web interface requires a web
server like Apache with no extra packages. The results are
rendered using simple CGI scripts and plain html code.

3 Performance
Our first experiment aims at exploring the performance

of our application. We used a local testbed consisting of
three PCs connected to a gigabit switch, as shown in Figure
4. The “Sender” PC generates traffic destined to the
“Receiver” PC using the nttcp [1] tool. The traffic from
both hosts is mirrored to the third monitoring machine
which is running appmon.

The configuration of the measurement machine is as
follows. We used an Intel Xeon 2.4 MHz, with 512 KB
cache and 512 MB memory. The Operating System was
Debian Linux with 2.6.15 kernel version. Two kinds of
network interfaces were used. A regular Gigabit Ethernet
interface (NIC), and a specialized DAG 4.3GE packet
capturing card [12].

It is important to mention that nttcp produces artificial
traffic by filling the packet payload with random bytes. This
is a worst-case traffic load for appmon since none of the
packets matches any of the monitored protocols. Thus,
every packet passes through the “slow” processing path,
going through all tracker functions, since none of the
packets has a matching entry in the hash table, and none of
the trackers is able to find a matching packet.

Figure 4: Testbed Environment

We stressed appmon by sending traffic in various

speeds. Figure 5 shows the results for both NIC and DAG
interfaces. As we can see appmon can process up to 500
Mbit/s without any packet loss when running on a regular
NIC interface (blue line), while it is able to process all 900
Mbit/s when running on top of the DAG card (green line).
The results imply that the application can fully monitor a
Gigabit link using a DAG card.

Figure 5: CPU Usage for Incoming TCP Traffic

For our second experiment we deployed appmon in a

real network environment, aiming at verifying the
performance results of the first experiment. Appmon was
installed on a sensor at University of Crete, monitoring the
incoming and outgoing traffic from the campus to the
Internet. The monitoring machine was an Intel Xeon
3.2GHz, with 2MB cache memory and 1GB main memory,
running a Debian Linux, kernel version 2.6.15. The traffic
is captured using a DAG 4.2GE passive monitoring card.
Along with the traffic load reported by the application, we
measured the CPU load of the machine.

A new measurement result was produced every 5
minutes for a measurement period of four days.

Figure 6 presents the CPU load (y-axis) of the
monitoring sensor as a function of the monitored traffic
load (x-axis). Each point corresponds to a five minute
interval, computed as the average of the measurements
performed every 10 seconds in that interval. Appmon has a
steady behavior, since the CPU load increases as the traffic
load increases. Some corner cases in which the load is
increased significantly while the traffic load is low are
probably caused due to the almost simultaneous arrival of
many new traffic flows that have not yet been categorized.

4 Deployment
Appmon can also operate on top of the Monitoring

Application Programming Interface (MAPI) [3, 4]. MAPI is
an expressive programming interface for network
monitoring that has been developed in the context of the
LOBSTER Project [14]. MAPI gives the ability for remote
and distributed monitoring [5] without the need of user
access to the remote monitoring sensors.

BroadBand Europe Geneva, Switzerland
 11-14 December 2006

ISBN10 : 907654607X
ISBN13 : 9789076546070 Paper Th3B4 – Antoniades Page 5 of 6

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

CP
U

Ut
iliz

at
ion

 (%
)

Total Traffic (Mbps)

CPU Utilization Vs Traffic Load in Uocmon

Figure 6: Appmon CPU Load Vs. Traffic Load while

running on University of Crete

Using MAPI we have deployed appmon in several

monitoring points around the world. Currently we have
deployed appmon sensors in four institutions in Greece; the
Foundation of Research and Technology Hellas, the
University of Crete, the Greek School Network and the
Node of HellasGRID in Crete. We have also deployed
sensors in Czech Republic, as shown in Figure 7, and
several sensors in Norway.

Figure 7: appmon deployment in Czech Republic

through LOBSTER.

Conclusions
In this paper we have presented appmon, an application

for real time per-application network traffic categorization.
The main goal of the application is to visualize the network
traffic usage in order to help in effectively monitoring the
network traffic usage. As we have shown, appmon is able to
categorize traffic in speeds that reach the one Gbit/s.
Appmon uses a large set of protocol trackers for the
classification of traffic from many emerging applications,
while its module design allows for the easy addition of
more protocol trackers in the future.

With several “bandwidth-hungry” applications
increasingly trying to make their traffic difficult to detect,

we expect that the use of encrypted traffic is on the way. In
order to address this problem, we plan to explore whether
non payload traffic classification methods can be used to
identify and classify network traffic in real time.

Acknowledgments
This work was supported in part by the IST project

LOBSTER funded by the European Union under contract
number 004336.

References
1. Νttcp. http://sd.wareonearth.com/~phil/net/ttcp/.
2. Internet Assigned Numbers Authority.

http://www.iana.org/.
3. MAPI official homepage. http://mapi.uninett.no.
4. M. Polychronakis, K. G. Anagnostakis, E. P. Markatos,

and A. Oslebo. Design of an application programming
interface for IP network monitoring. In Proceedings of
the 9th IEEE/IFIP Network Operations and
Management Symposium (NOMS), pages 483-496,
April 2004.

5. P. Trimintzios, M. Polychronakis, A. Papadogiannakis,
M. Foukarakis, E. P. Markatos and A. Oslebo.
DiMAPI: An application programing interface for
distributed network monitoring. In Proceedings of the
10th IEEE/IFIP Network Operations and Management
Symposium (NOMS), April 2006.

6. The BitTorrent protocol. http://www.bittorent.org.
7. Skype. http://www.skype.com.
8. Gnutella. http://www.gnutella.com/.
9. http://protocolinfo.org/.
10. http://oss.oetiker.ch/rrdtool/.
11. The Ncurses library.

http://www.gnu.org/software/ncurses/ncurses.html.
12. ENDACE. DAG Network Monitoring Interface Card.

http://endace.com/networkMCards.htm.
13. The Packet Capture Library http://www.tcpdump.org.
14. The LOBSTER IST project http://www.ist-lobster.org.
15. R. S. Boyer and J. S Moore. A fast string searching

algoritm. In Communication of ACM, Volume 20,
pages 762 – 772, October 1977.

16. S. McCanne and V. Jacobson. The {BSD} Packet
Filter: A New Architecture for User-level Packet
Capture. In USENIX 1993.

17. A. Moore and K. Papagiannaki. Toward the Accurate
Identification of Network Applications, In PAM,
March, 2005.

18. L. Bernaille, R. Teixeira, I. Akodkenou, A. Soule, K.
Slamatian. Traffic Classification On The Fly.

19. T. Karagiannis, A.Boido, N. Broenlee, kc claffy and M.
Galoutros. Is P2P dying or just hiding? In IEEE
Globecom 2004, GI

20. S. Sen, O. Spatscheck and D. Wang. Accurate,
Scalable In-Network Identification of P2P Traffic
Using Applications Signatures. In WWW, 2004.

21. T. Karagiannis, A. Broido, M. Faloutsos and kc claffy.
Transport layer identification of P2P traffic. In
ACM/SIGCOMM IMC, 2004.

BroadBand Europe Geneva, Switzerland
 11-14 December 2006

ISBN10 : 907654607X
ISBN13 : 9789076546070 Paper Th3B4 – Antoniades Page 6 of 6

22. T. Karagiannis, K. Papagiannaki, and M. Faloutsos.
Blinc: multilevel traffic classification in the dark.
SIGCOMM. Comput. Commun. Rev., 35(4):229–240,
2005.

23. A. Slagell, J. Wang and W. Yurcik. Network log
anonymization: Application of crypto-pan to cisco
netflows. NSF/AFRL Workshop on Secure Knowledge
Management (SKM), 2004.

24. J. Xu, J. Fan, M. Ammar, and S. B. Moon. On the
design and performance of prefix-preserving ip traffic
trace anonymization. Internet Measurement Workshop
(San Francisco, CA, USA: 2001), pages 263–266,
2001.

25. J. Xu, J. Fan, M. Ammar, and S. B. Moon.
Prefixpreserving ip address anonymization:
Measurement-based security evaluation and a new
cryptography-based scheme. ICNP 2002, 2002.

