On Using Network RAM as a non-volatile Buffer

Dionisios Pnevmatikatos Evangelos P. Markatos
Gregory Maglis Sotiris loannidis*
Institute of Computer Science (ICS)

Foundation for Research & Technology — Hellas (FORTH), Crete
P.O.Box 1385, Heraklio, Crete, GR-711-10 GREECE
markatos@ics.forth.gr, tel: +(30) 81 391655 fax: +(30) 81 391601
Technical Report 227

August 1998

Abstract

File systems and databases usually make several synchronous disk write accesses in order
to make sure that the disk always has a consistent view of their data, so that it can be
recovered in the case of a system crash. Since synchronous disk operations are slow, some
systems choose to employ asynchronous disk write operations, at the cost of low reliability:
in case of a system crash all data that have not yet been written to disk are lost.

In this paper we describe a software-based Non Volatile RAM system that provides
the reliability of synchronous write operations with the performance of asynchronous write
operations. Our system takes a set of volatile main memories residing in independent work-
stations and transforms it into a non-volatile memory buffer - much like RAIDS do with
magnetic disks. It then uses this non-volatile buffer as an intermediate storage space in order
to acknowledge synchronous write operations before actually writing the data to magnetic
disk, but after writing the data to (intermediate) stable storage.

Using simulation and experimental evaluation we demonstrate the performance advan-
tages of our system.

1 Introduction

To speedup up I/O accesses, most file systems use large caches that keep disk data in main
memory as much as possible. Published performance results suggest that large caches improve
the performance of read access significantly, but do not improve the performance of write ac-
cesses by more than a mere 10% [3]. This is not due to insufficient cache size, but mostly due
to the fact that data need to be written to disk to protect them from system crashes and power
failures. In the Sprite Operating System for example [20], dirty data that reside in the main
memory cache are written periodically (every 30 seconds) to the disk(s). Databases require that
their data be written to disk even more often: usually at each transaction commit time.

To decouple the application performance from the high disk latency, Fast Non-Volatile RAM
(NVRAM), has been proposed as a mean of speeding up synchronous write operations [2, 27, 10].
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Applications that want to write their data to disk, first write their data to NVRAM (at main
memory speed), and then, they continue with their execution. At the same time, the data
are also asynchronously written from the NVRAM to the disk. If the system crashes after
the data are written in the NVRAM, but before they are written to the disk, the data are
not lost, and can be recovered from the NVRAM when the system comes up again. NVRAM
modules can have various forms, but most usually they consist of battery-backed low power
SRAM. The main disadvantage of these products is their high price - they cost four to ten
times as much as volatile DRAM memory of the same size [2]. To reduce cost and increase
performance, researchers have proposed the use of FLASH (EEPROM) memory to construct
large non-volatile main memory storage systems [27]. FLASH chips retain their contents even
after a power failure, have price comparable to DRAM memory of the same size, but have very
high write latency. An NVRAM system consisting of FLASH chips coupled with a small amount
of battery-backed SRAM has low read and write latency, but also has a high-cost, making it
suitable only for high-end workstations.

In this paper we describe a software-only method to develop an NVRAM system, which
does not require specialized hardware. To provide a non-volatile storage space, we use several
independent, but volatile data repositories. Data that need to be written to non-volatile stor-
age are written to more than one volatile storage repository. Data loss would occur, if all
volatile storage repositories lose their data, an event with very low probability for all practical
purposes. Our system uses the main memories of the workstations in a workstation cluster,
as the independent storage repositories. Thus, if an application wants to write some data to
non-volatile memory, it writes the data in its own memory, and the memory of another work-
station in the same cluster. As soon as the data are written in the main memory of another
workstation, the application is free to proceed. While the application computes, the data are
also asynchronously written to disk. If the workstation on which the application runs crashes
before the data are completely transferred to disk, the data are not lost, and can be recovered
from the remote memory where they also reside. Both local and remote workstations are con-
nected to independent power supplies, so that a power outage will not result in data loss for
both workstations.

The notion of redundancy has been extensively used in the past to provide various forms of
reliability, ranging from RAIDS [8] to large scale geographically distributed databases. Recent
architecture trends in the area of interconnection networks, and Networks of Workstations
(NOWSs) make the idea of using the main memory of remote workstations (within the same
workstation cluster) to develop an NVRAM system more attractive than ever because:

e Bandwidth in Local Area Networks has increased rapidly: current computer
networks consisting of Fast Ethernet and ATM connections are not uncommon. These
connections provide a bandwidth of 100-155 Mbps. Multi-Gigabit-per-second networks
have also appeared in the market. Thus, interconnection network bandwidth is now
comparable (within the same order of magnitude) to main memory bandwidth, which
implies that memory to memory transfers between workstations can happen at a rate
similar to memory-to-memory transfers within a workstation, and of course much faster
than disk-to-memory transfers.

e The Latency of Local Area Networks has decreased significantly: several com-
puter networks provide end-to-end latency as low as a few microseconds [5, 13, 19, 23].



Optimized software implementation on standard ATM networks provide latency as low
as a few tens of microseconds [24, 25]. Thus, the transfer of small amounts of informa-
tion between main memories takes only few tens of microseconds, while disk-to-memory
transfers require at least a few milliseconds, even for very small amounts of information.

The above architecture trends suggest that memory to memory transfers between worksta-
tions in the same LAN is significantly faster than disk to memory transfers. Both the latency
and the bandwidth of remote memory are orders of magnitude better than these of magnetic
disks. Thus, an implementation of NVRAM based on memory-to-memory transfers is bound to
be significantly faster than an implementation of NVRAM based on memory-to-disk transfers.

In this paper we describe such a software-only implementation of an NVRAM system. Sec-
tion 2 places our work in the context of the current state of the art. Section 3 describes the
design of our system on a network of workstations. Section 4 presents our performance results.
Finally, section 5 summarizes our work, and concludes the paper.

2 Related Work

Wu and Zwaenepoel have designed and simulated eNVy [27], a large non-volatile main memory
storage system built primarily with FLASH memory. Their simulation results suggest that a
2 Gbyte eNVy system can support I/O rates corresponding to 30,000 transactions per second.
To avoid frequent writes to FLASH memory, eNVy uses about 24 Mbytes of battery-backed
SRAM per Gbyte of FLASH memory.

Baker et al. have proposed the use of NVRAM to improve file system performance [2].
Through trace-driven simulation they have shown that even a small amount of NVRAM reduces
disk accesses between 20% and 90% even for write-optimized file systems, like log-based file
systems. Their main concern, however, was that NVRAM may not be cost effective yet. Our
work is complementary to that of Baker et al., since we propose an inexpensive software-only
method to implement NVRAM, and realize the performance benefits they have predicted.

Recently, research groups have started exploring the issues in using remote memory in a
workstation cluster to improve file system performance [1, 9, 11, 20] and paging performance
[4, 12, 14, 18]. While all these systems use remote memory as a large file system cache, we
propose to use remote memory as a fast non-volatile storage medium. That is, most of the
previous work has used remote memory to improve read accesses (through caching), while we
propose to use remote memory to improve synchronous write accesses (through the creation of
a non-volatile buffer). We view our work as complimentary to previous work, in that they can
easily be extended to incorporate our approach. Most of the mentioned file systems already
keep at least two copies of several pages for performance reasons, and thus can be extended to
use these copies for reliability reasons as well. In that sense our NVRAM system can improve
the performance of Persistent and Recoverable main memory systems [6, 22].

The Harp file system uses replicated file servers to tolerate single server failures [16] and
speedups write operations as follows: each file server is equipped with a UPS to tolerate power
failures, and disk accesses are removed from the critical path, by being replaced with commu-
nication between the primary and backup servers. Although our work and Harp use similar
approaches (redundant power supplies and information replication) to survive both hardware
and software failures, there are several differences, the most important being that we view net-



work memory as a temporary non-volatile buffer space, while Harp uses full data mirroring to
survive server crashes.

The Rio file system avoids destroying its main memory contents in case of a crash [7]. Thus,
if a workstation is equipped with a UPS and the Rio file system, it can survive all failures: power
failures do not happen (due to the UPS), and software failures do not destroy the contents of
the main memory. However, even Rio may lead to data loss in case of UPS malfunction. In
these cases, our approach that keeps two copies of sensitive data in two workstations connected
to two different power supplies, will be able to avoid data loss. In effect, Rio makes a single
workstation more reliable, while our approach achieves reliability through redundancy. It is like
making a single disk more reliable vs. using a RAID. Vista [17] is a recoverable memory library
being implemented on top of Rio.

Toanidis et al. have proposed the use of remote memory to speed up synchronous write
operations used in the Write Ahead Log (WAL) protocol [15]. In their approach, they replicate
the Log file in two main memories and substitute synchronous disk write operations with syn-
chronous remote memory write operations and asynchronous disk write operations. PERSEAS
[21] is another user-level transaction library that uses (remote main memory) mirroring to sur-
vive crashes. In contrary to [15] and [21], we describe and evaluate a kernel-level system that
will benefit all applications running on top of it, not only applications that have been compiled
and linked with the special libraries described in [15, 21].

Our work is also related to previous work in RAIDs [8, 26], in that we both use redundancy
to improve reliability and recover lost data in case of a crash. However, our work focuses in
recovering lost main memory information, while the work in RAIDs focuses on recovering lost
disk information.

Compared to previous approaches in developing NVRAM systems, our work has the follow-
ing advantages:

e We propose an inezpensive way to built NVRAM systems. Our system uses the existing
and otherwise idle main memory in a workstation cluster. Previous approaches to building
NVRAM were either too expensive (e.g. battery-backed SRAM systems), or too slow (e.g.
magnetic disks), or suitable for systems that require hundreds of MBytes of NVRAM (e.g.
FLASH memory).

e Our approach provides a fast and light-weight recovery mechanism. In traditional NVRAM
systems, if the workstation that has the battery-backed SRAM chips, or the FLASH
chips crashes and takes a long time to come up again (e.g. possibly due to irrecoverable
hardware problems), the information contained in the NVRAM system is not accessible.
The only way to access the information is to manually remove the NVRAM cards from
the workstation, plug them in another workstation, and access them from their new place.
This procedure may induce several minutes, or even hours of idle time - which is in several
cases as frustrating as data loss. In our NVRAM system, if the client workstation crashes,
the data are still accessible, since they are in the main memory of another workstation
and can be accessed through the network within milliseconds. If, on the other hand, the
server crashes, the data are still in the main memory of the client and are being scheduled
to be (asynchronously) written on the disk. Data loss would occur only if both client and

server do down at the same time. !

n this case, however, we could use two or even three servers to make data available even after the crash of two-



3 Remote Memory NVRAM

The computing environment we assume for this paper is a workstation cluster: a set of workstations?

connected with a high-speed network. Applications that need to use non-volatile RAM are called
client applications and the workstations on which they execute on, are called client worksta-
tions. Within the same cluster, there exist some server workstations that run NVRAM server
processes. Server workstations are either connected to a different power supply from client
workstations, or they are connected to a Uninterrupted Power Supply (UPS). In this way, a
power failure in a client workstation will not imply a power failure in the server workstation as
well, leading to data loss.

The purpose of the NVRAM servers is to accept data from clients so that data reside in
at least two workstations: the client and at least one server. Each NVRAM server allocates a
main memory segment (hereafter called the NVRAM segment) which it uses to write the data
it accepts from the clients. A client that wants to store its data into stable storage, before being
able to proceed, sends its data to the NVRAM server and asynchronously sends the data to the
disk. As soon as the NVRAM server acknowledges the receipt of the data, the client is free to
proceed with its own work.

An NVRAM server continually reads data sent by the clients, and stores them in its own
memory. If its NVRAM segment fills up, the server sends a message back to the client telling it
to synchronously write to the disk all its data that correspond to the NVRAM segment. 3 After
the client flushes its data to the disk, it sends a message to the server to recycle the space used
by those data. Effectively, the server acts as a fast non-volatile buffer between the client and its
disk. This fast non-volatile buffer may improve the performance of the file system significantly
as we will see in section 4.

It is possible that a client workstation crashes after it sends its data to the NVRAM server,
but before the data are safely written to the disk. In this case, the data are not lost, and can still
be found in the main memory of the NVRAM server. When the crashed workstation reboots,
it will read its data back from the NVRAM server.

If the server detects a lost client, it sends all its main memory data to a magnetic disk.
If the client detects a lost server, or a disconnected network, it synchronously writes all its
data to disk, and continue doing so for all msync (synchronous disk write) operations, until
the server, or the network is up and running again. We should emphasize that all the above
situations do not lead to data loss, but only a graceful degradation of system performance.
Since, however, workstation crashes and network disconnections do not last for long, we expect
the performance degradation due to them to be unnoticeable. Our system will experience data
loss, only when both the client and the server crash within a short time interval, an event with
very low probability. If for example, the client and the server crash independent from each other
once a month, both of them will crash at the same time interval (of e.g. one minute) once every
a thousand years. It is true, however, that several machines may go down within a short time
interval, but this is usually a result of a scheduled shutdown, in which case our system can also

three workstations. Although high degrees of data replication seems to add significant overhead our performance
results suggest that sending data to remote main memories over a fast network in negligible compared to sending
data to a magnetic disk.
2In this paper we will use the term workstation to mean either a workstation or a high-end personal computer.
3Most probably all these data would already reside in the disk, since they were asynchronously written to the
disk when they were initially sent to the NVRAM server.



shut down gracefully (i.e. flush dirty data to magnetic disk) as well.

Our NVRAM system instead of using a synchronous disk write operation at commit time
(to force the data to the disk), it uses a synchronous network write operation (to force a copy
of the data to the remote server), plus an asynchronous disk write operation. Since both the
latency and the bandwidth of modern networks are significantly better than the latency and
the bandwidth of modern magnetic disks, we expect that the latency of a synchronous network
write operation to be much lower than that of a synchronous disk operation.

4 Performance Evaluation

4.1 Experimental Evaluation

Our experimental environment consists of a network of DEC Alpha 2000 workstations, running
at 233 MHz equipped with 128 MBytes of main memory each. The workstations are connected
through a 100 Mbps FDDI, and an Ethernet interconnection network. Each workstation is
equipped with a 6GB local disk.

In our experiments we will demonstrate how our software-based NVRAM system can improve
the performance of software systems that make frequent use of synchronous disk write operations
(like file systems and databases). Traditionally, synchronous disk write operations block the
system, until the data are safely written to disk. In our NVRAM system instead, a synchronous
disk write operation will be implemented as a synchronous network write operation, and an
asynchronous disk write operation. Thus, instead of waiting for the data to be safely written
to the disk, the system will send a copy of the data to the remote memory server, and wait
for the data to be written to the remote memory. In this way, our NVRAM system replaces a
synchronous disk write operation with a synchronous network write operation, which we expect
to result in performance improvement.

We have experimented with three system configurations:

e DISK: This is a traditional system unmodified. Synchronous write operations are handled
by the operating system without our intervention. The operating system sends the write
requests to the disk and waits for them to complete.

e NVRAM-FDDI: This is our NVRAM system. Synchronous write operations to the disk are
synchronously written to remote memory and asynchronously to disk. Client and server
applications communicate via an FDDI interconnection network.

e NVRAM-ETHERNET: This is the same system as previously, with the exception that client

and server applications communicate via an Ethernet interconnection network.

4.1.1 Sequential Accesses

The first question we set out to answer about our experimental remote memory NVRAM system,
is its performance. Specifically, we would like to know how many non-volatile write operations
(per second) our system is able to handle, and how it is compared with traditional non-volatile
systems (e.g. magnetic disks). Thus, we constructed the following experiment:

We open a reasonably large file (100 Mbytes long), and write sequentially to it in
blocks 8 Kbytes long. After each block is modified, we call the msync operation to



DISK | NVRAM-ETHER | NVRAM-FDDI
Operations per second | 22.57 51.2821 86.2069

Table 1: Performance (in operations per second) for various system configurations (NVRAM
Segment Size = 1 Mbyte). We see that our NVRAM system achieves 2-4 times higher perfor-
mance than the traditional magnetic disk system.

make sure that the block is written into stable memory, and continue with writing
the next block.

The number of Non-Volatile block write operations per second is shown in Table 1 for the three
systems: DISK, NVRAM-FDDI, NVRAM-ETHERNET. We immediately notice that the performance of
NVRAM-FDDI, and NVRAM-ETHERNET is 2-4 times better than the performance of DISK.

4.1.2 The influence of NVRAM Segment Size

Next, we set to find out how the size of the NVRAM Segment influences the performance of
the system. Our intuition suggests that the larger the size of the remote main memory is used
for NVRAM, the better the performance of the system will be. However, we would like to
know just how much of remote main memory would be enough to decouple the performance of
user applications that need non-volatile storage from the high disk overheads. So, we repeat
the previous experiment, but instead of varying the block size, we vary the size of the remote
memory used by the NVRAM server. Figure 1 plots the performance of the system as a function
of the NVRAM size for the NVRAM-FDDI, NVRAM-ETHERNET, and DISK policies. We immediately
see that the performance of the DISK is not influenced by the size of the NVRAM memory, which
is expected. We also see that the performance of the software-based NVRAM systems improves
with the size of the NVRAM memory. Initially, both NVRAM-FDDI and NVRAM-ETHERNET increase
sharply with the size of the NVRAM memory, and then they flattened out. Figure 1 suggests
that using 512 Kbytes of remote memory is enough to achieve (almost) the best performance
attained. Increasing the size of the NVRAM memory up to 10 Mbytes does not improve
performance significantly. These results are encouraging, and suggest that an NVRAM server
can support multiple clients with only modest memory requirements.

4.2 Simulation

To further study the performance of the NVRAM approach under more realistic conditions and
under varying system parameters, we used trace-driven simulation.

4.2.1 Workload

The workload that drives our simulations consists of traces taken from database processing
benchmarks. We use the same benchmarks used by Lowell and Chen [17] to measure the
performance of RVM [22], and Vista [17]. The benchmarks used include:

o debit-credit: a processes banking transactions very similar to the TPC-B.
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Figure 1: Performance of NVRAM (on top of Ethernet and FDDI) and comparison to syn-
chronous DISK performance, as a function of the size of the available remote RAM. We see that
as little as 1 Mbyte of remote RAM is enough to achieve significant performance improvements
compared to DISK.

e order-entry: a benchmark that follows TPC-C and models the activities of a wholesale
supplier.

We run the benchmarks and obtained traces of their transaction_commit operations. For
each transaction, we recorded -at commit time- a list of all the database regions that are modified
and must be sent to stable storage. Our traces record the regions at the locking boundary of
the application, and are therefore more detailed than block-based traces. Later, we map each
of these regions into (possibly multiple) operating system pages or disk blocks.

4.2.2 The simulator
We simulate three system configurations:

e DISK: At each transaction_commit time we invoke the (simulated) msync system call
which synchronously sends to the magnetic disk all operating system pages that have
been modified by the transaction. We use the disk simulator provided by Greg Ganger,
Bruce Worthington, and Yale Patt from http://www.ece.cmu.edu/"ganger/disksim/.
The disk simulated is a Seagate ST41601N (modified to include a cache of 320 Kbytes).

e DISK-ASYNC: This is the same system as DISK with the difference that the write oper-
ations to disk proceed asynchronously, that is, the transaction_commit operation re-
turns as soon as the data have been scheduled to be written (at some later time) on
disk. It is obvious that this configuration does not provide the reliability implied by
transaction_commit or by msync. However, we use it as a upper bound on the perfor-
mance of any system that would use layer of Non-volatile memory between the file system
disk and the disk.

e NVRAM: This is our proposed system, which when the msync system call is invoked, it
writes data to remote memory synchronously and to the magnetic disk asynchronously.
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Figure 2: Performance (in transactions per second) of the three system configurations for our
two applications.The disk simulated is a Seagate ST41601N.

The msync system call returns as soon as the data have been safely written to remote

memory.

Our simulations were run on a cluster of SUN ULTRA II workstations connected with an
ATM switch. The disk access times are simulated times provided by the disk simulator, while
the data that should be sent to remote memory (in the simulated system) are actually sent to
the remote server’s memory using TCP/IP on top of ATM.

Figure 2 shows the (simulated) performance of our system as compared to traditional disk-
based systems for a block size of 8Kbytes. We see that a synchronous disk suffers a significant
penalty compared to an asynchronous one (roughly 1/3rd to 1/4th of the performance); this
result is of course expected and represents the cost of a simple implementation of reliability.
Furthermore, we see that our NVRAM system achieves almost the same throughput of the
asynchronous disk (within 3%); compared to the synchronous disk, the NVRAM system per-
formance is between 3 to 4 times better. As we describe earlier, the NVRAM system achieves
this performance improvement by decoupling all the synchronous transaction operations from
the disk. In addition, the asynchronous disk operations may (and actually do) overlap with
the synchronous network operations, with the net effect of hiding some part of the synchronous
operations. Note however, that even the NVRAM system is still limited by the disk because is
is fast enough to saturate the effective bandwidth of the asynchronous disk.

Sophisticated database systems use group-commit to improve the performance of their trans-
actions. In group commit, transactions are commited in groups. All transactions in the group



Benchmark | NVRAM (ATM) | Group-Commit
debit-credit 96.4 92.8
order-entry 70.8 50.04

Table 2: Performance (in transactions per second) of NVRAM and group commit configurations
for our two applications.

perform their (synchronous) disk write operations at the group commit time. Thus, the mag-
netic disk receives several write accesses which can be scheduled and merged effectively, reducing
seek and rotational latency.

Table 2 shows the performance of our system vs. the performance of a group commit system
that commits 100 transactions at a time (requiring a little more than 3 Mbytes of intermediate
buffer space). We see that our approach results in 4%-40% performance improvement, mostly
due to the fact that group commit has to make a synchronous disk write operation (every 100
transactions) while our system can proceed fully asynchronously. Even if group commit had
the same performance as our system, it would still have two major disadvantages:

e QOur approach can speed-up synchronous disk write operations that originate from any
application running on the system, while group commit applies only to databases, and
only to those that it has been explicitly programmed in.

e Group commit results in significant transaction latency, since the first transaction of the
group cannot commit until the last transaction of the group starts, executes, and commits.
Thus, the latency experienced by each transaction may easily reach up to several seconds.
On the contrary, the latency experienced by each transaction in our system is in the order
of a few milliseconds.

Figure 3 presents the performance of four system configurations when the simulated disk
is a Quantum Viking IT 4.55S (4.5 Gbyte disk). As previously, we see that our approach is
significantly (3-4 times) faster than the synchronous disk. It achieves 5-40% higher throughput
(and two orders of magnitude lower latency) than group-commit. Finally, our approach is within
2-3% of asynchronous disk.

Summarizing, our performance results suggest that our approach combines the performance
of asynchronous disk operations (within 3%) with the reliability of synchronous disk accesses.

5 Conclusions

Traditional Non Volatile Memory (NVRAM) systems are constructed either from battery-backed
SRAM boards, or from EEPROM (FLASH) memories. Both approaches make the cost of an
NVRAM system prohibitively high for low-cost commodity workstations. In this paper we
present a software-based NVRAM system, which uses redundancy to improve data reliability,
and survive power failures and system crashes. In our approach, instead of writing the data
to non-volatile memory, we write the data to (at least) two volatile memories, i.e. to the main
memories of two workstations in a workstation cluster, that are connected to different power
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Figure 3: Performance (in transactions per second) of four system configurations. The disk
simulated is a Quantum Viking IT 4.55S.

supplies, or to a UPS. Our system will experience data loss only if all workstations that have
a copy of the data fail, an event with extremely low probability.

We have implemented our system on a workstation cluster, evaluated its performance and
compared it against the performance of disk-based systems. Based on our experience we con-
clude:

e Network Memory provides an attractive alternative to hardware battery-backed NVRAM
systems. The main advantage of our system is its low cost. It uses existing (and otherwise
unused) resources to create a non-volatile memory buffer.

e Network Memory has (practically) the same performance as methods that provide no re-
liability. Our results suggest that the performance of our system is the same as the that
of a system doing asynchronous disk write operations.

e The performance benefits of software-based NVRAM will increase with time. Current ar-
chitecture trends suggest that the gap between processor and disk speed continues to
widen. Disks are not expected to provide the bandwidth and latency needed by syn-
chronous write operations, unless a breakthrough in disk technology occurs. On the other
hand, interconnection network bandwidth and latency keeps improving at a much higher
rate than (single) disk bandwidth and latency, thereby increasing the performance benefits
of using remote memory in software-based NVRAM systems. Meanwhile, the amount of
memory in workstation increases, reducing in this way the cost of an NVRAM server.

Based on our experience in building the NVRAM system, and our performance measure-
ments, we believe that software-based NVRAM is an inexpensive alternative to hardware



NVRAM systems, and can be used to speed up several system components, including file sys-
tems and databases.
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