SCAMPI - A Scaleable Monitoring Platform for the I nternet

Jan Coppens
IMEC

E-mail: Jan. Coppens@ nt ec. ugent . be

Jifi Novotny
Masaryk University
E-mail: novot ny@ cs. nuni . cz

Vladimir Smotlacha
CESNET
E-mail: vs@esnet . cz

Abstract

In this paper we describe the architecture of SCAMPI (A
Scaleable Monitoring Platform for the Internet). SCAMPI
allows easy writing of monitoring applications, which can
run on top of different network adapters without chang-
ing the code and which can provide detailed monitoring
of high-speed Internet circuits. This is made possible
by MAPI (Monitoring API) and the SCAMPI adapter, a
programmable hardware monitoring adapter with built-in
monitoring functionality.

1 Monitoring of high-speed networks

Most backbone Internet circuits currently operate at
speeds ranging from 1 Gb/s to 10 Gb/s. In order to ver-
ify operational, performance and security characteristics of
the network and to enable problem resolution we need a
high-speed network monitoring system. We need to mea-
sure elementary network performance characteristics, such
as throughput, delay, packet loss rate and jitter. And we
also need to search for traffic patterns indicating possible
security problems, such as intrusion or denial of service
attacks. Finally, we need a platform for creation of moni-
toring applications that can provide a view on network state
at higher level of abstraction based on network monitoring.

We can recognize three types of network monitoring ac-
cording to how information about network is obtained:

e Processing data from network components (e.g.,
SNMP counters and Netflow records)

e Active monitoring, which injects testing packets into

Evangelos Markatos
FORTH
E-mail: mar kat os@ cs. forth. gr

Michalis Polychronakis
FORTH
E-mail: m kepo@ cs. forth. gr

Sven Ubik
CESNET
Email: ubi k@esnet . cz

the network and processes them as they are received
in another part of the network

e Passive monitoring, which analyzes existing traffic in
the network

All types of monitoring have their advantages and dif-
ficulties. Processing data from network components pro-
vides continuous per-hop information, but tends to be un-
reliable due to problems with router software. Active mon-
itoring is the easiest way to measure one-way delay, but it
is generally unsuitable for other network characteristics, as
it measures characteristics experienced by testing packets,
rather than by existing traffic. Therefore, passive monitor-
ing, which does not influence existing traffic, has become
a popular method of precise and reliable network monitor-
ing.

However, passive network monitoring is becoming in-
creasingly demanding on computing resources. The reason
is that the physical network speed tends to increase faster
than the computer processor speed. We already cannot
monitor current high-speed network links just by tapping
traffic with a regular network adapter, catching all packets
with tcpdump and processing them even on the most pow-
erful PCs.

2 SCAMPI architecture

SCAMPI is a two-and-a-half year European project to
develop a scaleable monitoring platform for the Internet.
SCAMPI concentrates on passive monitoring. It has two
main goals:

e To enable easy writing of portable monitoring appli-
cations

Application 1 Application 2 Application 3

' ' l

MAPI implementation

' ' '

Adapter 1 Adapter 2 Adapter 3

Figure 1. SCAMPI architecture

e To enable detailed monitoring of high-speed Internet

The first goal is realized by providing MAPI - Monitor-
ing API, which enables application developers to start at
higher level of abstraction of flows and monitoring func-
tions.

The second goal is realized by performing certain time-
critical functions needed for most monitoring tasks inside
the SCAMPI adapter, a specialized programmable moni-
toring adapter. The data rate going further to the host com-
puter is thus significantly reduced.

The project development effort therefore includes, go-
ing from bottom up, the SCAMPI adapter, MAPI and mon-
itoring applications.

SCAMPI architecture is illustrated in Fig. 1. Several
applications run concurrently on top of MAPI, which in
turn runs on top of various network adapters. Currently, we
support the SCAMPI adapter, DAG adapters and regular
Ethernet NIC cards. Owing to the modular MAPI imple-
mentation, support for other network adapters can be added
easily. Therefore, applications are portable between com-
puters equipped with any of these adapters. When certain
adapter provides some monitoring function in its hardware
or firmware, MAPI will automatically use it. If it is not
provided by the adapter, MAPI will use its own software
implementation of the particular function.

We will describe individual components of the SCAMPI
architecture in more detail, going again from bottom up.

3 SCAMPI adapter

An important part of the SCAMPI project is design, de-
velopment and manufacturing of a specialized monitoring
adapter. If we want to do detailed per-packet monitoring on
high-rate traffic, we need to perform certain time-critical
operations in hardware and its firmware. Pure software
passive monitoring run on top of regular NIC card cannot
even capture all packets on Gigabit Ethernet link even with
advanced kernel-based accelerations [1]. And we need to

monitor faster links, such as 10 Gigabit Ethernet and per-
form statistic calculations on captured packets.

Flexibility was one of the primary design goals. There-
fore, the hardware is split into two cards - the universal
motherboard and the interface card connected to the main-
board as a daughter board. In this way different interface
cards can be used to connect to different network link types.

The SCAMPI adapters comes in two versions - Phase |
and Phase Il. The Phase | adapter consists of four compo-
nents:

o COMBOG6 mainboard

e 4-port SFP (optical) or TX (electrical) Gigabit Ether-
net interface card

e Timestamp unit

o Firmware

The Phase | mainboard and two interface cards were ac-
tually developed as part of Liberouter project and 6NET
European project. The original purpose was hardware ac-
celerated IPv6 router, hence the name COMBO6. As the
design was flexible, the adapter could be easily adapted
for monitoring purposes. The timestamp unit, which pro-
vides each incoming packet with precise timestamp and
firmware, which implements adapter functionality were de-
veloped in the SCAMPI project.

The Phase Il adapter now being developed in the
SCAMPI project will consist of three components:

e New mainboard

2-port XFP 10-Gigabit Ethernet interface card

Timestamp unit

New firmware

The new mainboard will support the faster interface
card. One port on the interface card will be used for mon-
itoring, whereas the other port can repeat packets from the
first port. The new firmware will provide more function-
ality directly on the adapter including support of multiple
simultaneous applications with different filtering require-
ments and it will enable faster packet processing.

Another well-known monitoring adapter is the DAG
card from Endace [2]. When compared to DAG, the
SCAMPI adapter will provide more functionality, it will
be an open system allowing users to download their own
firmware into the adapter and it is expected to be signifi-
cantly less expensive. The estimated cost of the Phase 11
adapter (operating at 10 Gb/s) is 11000 Euro.

Interchangeable transceivers should allow monitoring of
other physical and link layers, such as OC-192 and DWDM

Figure 2. COMBO6 mainboard

links. Modifications in firmware will be required to support
these links. We plan to work on these enhancements after
the SCAMPI project.

The functionality of both the mainboard and the in-
terface card has been programmed using Virtex Il FPGA
chips. The FPGA on the interface card has smaller num-
ber of gates than the FPGA on the mainboard. The adapter
includes CAM (Content Addressable Memory) and other
types of fast memory for packet processing. Sockets for
regular DRAM chips for packet storage are provided. The
COMBO6 mainboard is shown in Fig. 2.

4 Firmware

Firmware implements functionality of the adapter. Dur-
ing the SCAMPI project, we want to provide the following
monitoring functions directly on the adapter:

e Header filtering (BPF syntax)
e Packet sampling (deterministic and probabilistic)
e Payload string searching (multiple strings)

e \arious packet and byte statistics

Header filtering and possibly also sampling should sig-
nificantly reduce volume of data transfered over the PCI
bus to the host computer. Some applications will not need
to capture any packets at all and will just read statistics
computed on the adapter. Payload string searching allows
to look for suspicious patterns, such as computer viruses.

The firmware is split into functional blocks which are
separately designed. Some blocks can be used repeatedly
in different projects. Recycling of blocks already designed
(e.g., for IP header parsing) simplifies the VHDL design
process.

Some of the blocks (such as HFE and LUP, which will
be described later) are implemented as machines that we
call “nanoprocessors”, running dedicated programs. The
nanoprocessor complexity lies between a Finite State Ma-
chine (FSM) and RISC processors. Nanoprocessors have

Control bus

‘ Host
PCIC IH‘H 5

PCI bus

Figure 3. Structure of the adapter firmware

limited instruction sets. The nanoprogram is interpreted by
a firmware block stored either in FPGA’s BlockRAM or ex-
ternal SRAM. Instruction sets are designed especially for
each nanoprocessor. The advantage of the nanoprocessor
approach is the possibility to change block functionality at
run time. There is no need to rewrite the source code (such
as in VHDL), synthesize it and download the configuration
data into the FPGA. It also makes the code design smaller
and more efficient. The structure of the firmware is illus-
trated in Fig. 3.

HFE Header field extractor is a preprocessing unit which
extracts valid data from IP and TCP headers and stores
them in a unified header structure suitable for further
processing.

LUP Lookup processor matches patterns in a packet
header using 272-bit wide CAM with 8000 lines.

TSU Timestamp unit assigns high resolution timestamps
to packets derived from the local clock. Timestamp is
represented by a 64-bit value in a fixed point format,
where 32 bits represent the fraction of a second.

DRAM Dynamic RAM stores received packets. It is di-
rectly accessible from the user space.

SAU Sampler unit is designed to reduce data exchange rate
over the PCI bus when only samples are required. The
unit provides both deterministic (i.e., each n-th packet
is passed through) and probabilistic sampling (i.e., a
packet is passed through with probability 1/n).

STU Statistic unit supports statistics computing. It counts
packets and calculates >" z and Y 22 (where x is the
length of the packet) for each of up to 256 categories
of subflows defined by any 8 bits of the header.

PCK Payload checker performs content-based filtering. It
can search up to 500 substrings of 16 bytes in the
packet payload.

5 MAPI - Monitoring API

MAPI is SCAMPI middleware layer providing monitor-
ing applications with an uniform access to monitoring ca-
pabilities across all low-layer network adapters and drivers.
MAPI structure is illustrated in Fig. 4. MAPI is imple-
mented as a mapi d daemon running on the machine where
network adapters are installed, reading data packets. Ap-
plications are linked with MAPI stub library and can run
on the same or different machine. The stub library com-
municates with the mapi d daemon using UDP sockets. It
sends to mapi d the application requests, such flow cre-
ation or application of a function to the created flow. It
also reads from mapi d the function results, such as com-
puted statistics. MAPI provides a set of predefined func-
tions for header filtering, sampling, payload string search
and packet counters. Users can also write their own func-
tions and apply them to flows. When whole packets or their
parts should be passed all the way up to the application,
they are transfered from mapi d to the stub library using
shared memory. We plan to implement a zero-copy packet
mapping all the way from the kernel space.

The mapi d daemon uses its mapi dcomcomponent to
communicate with the stub library. The requests obtained
from applications are forwarded to one of so called MAPI
drivers, depending on which particular network adapter
is used. MAPI drivers, such as mapi conbo6drv for
the SCAMPI adapter, mapi dagdrv for DAG cards or
mapi ni cdrv for regular NICs are user-space compo-
nents providing a device-independent interface to network
adapter functionality. MAPI uses a configuration file and
its data structures to describe what functionality is pro-
vided by which network adapter and what functionality has
to be provided by functions in MAPI itself. MAPI driver
then communicates with a library and device driver pro-
vided by the manufacturer of a particular network adapter.
For the SCAMPI adapter, we have developed our own
scanpi | i b library and conbo6dr v device driver.

MAPI also provides performance optimisation by elim-
inating duplicate functions on the same packet. For exam-
ple, when more applications specify header filters includ-
ing the same term, such asdst port 2000, the compar-
ison of each packet against this term is performed only once
for all applications. This optimisation can be performed ei-
ther for filtering implemented in software or for filtering
implemented on the adapter, in which case the specific ar-
chitecture of CAM and lookup processor must be consid-
ered. Performance evaluation of the MAPI implementation
was presented in [3].

Finally, MAPI implements admission control based on
the KeyNote trust-management system [4]. A separate dae-
mon aut hd communicating with mapi d via shared mem-
ory is used for this purpose. The admission decision is

= =
applicationl application2
mapi mapi
L. L
-
. mapid ’
Y rd
o 4
mapidcom resourcectrl
e s 5
mapidlib ” I \
+functl(£ J A
+funct2(’ |
e < ' 5\
T LT - !
/\ ~ 1
| ~ -
e - Lo \
|« [i1 y
mapicomboédrv apidagd mapinicdry

T

¥ |
scampilib |
|

I |

|

t

NIC kernel modules

[7
combobdiv

funal funa2

combob

Figure 4. MAPI internal structure

made after the user opens a flow and specifies its options,
so that they can be considered in decision process.

As an example, a simple application, which opens a
flow, applies to it a header filter and a payload string search
and which counts the number of passed packets can look as
follows:

f d=mapi _create_fl ow"/dev/ scanpi/0");
mapi _appl y_function(fd, BPF_FILTER

"src port 2000");
ctr_idl=mapi _appl y_function(fd, PKT_COUNTER);
mapi _apply_function(fd, STR_SEARCH,

"malicious string", 0, 1500);

ctr_i d2=mapi _appl y_function(fd, PKT_COUNTER);
mapi _connect (fd);

while(l) {
sl eep(1);
mapi _read_resul ts(fd, ctr_idl, &ctr_nuntl);
mapi _read_results(fd, ctr_id2, &ctr_numl);
I* . *]

}

6 Applications

Next to the design and implementation of a scalable
monitoring platform, the SCAMPI project also developed
several monitoring applications. This section will roughly
describe the functionality of these applications and the way
they fit into the project. All developed applications fo-
cus on different capabilities of the monitoring system and
use different techniques to deal with high-speed networks.
Pure packet capture for instance focuses on the elimina-
tion of packets that are of no interest to the application.
Flow record applications reduce the size of the captured
data, without losing any valuable information, in order to
deal for example with the limitations of memory capacity
and PCI bus speed. Threshold alerting and QoS monitoring
gather statistics of the flows and use sampling methods to
reduce the captured network flow. Security applications,
such as Intrusion Detection Systems, often need to ana-
lyze all captured data. In this case, efficient algorithms are
needed in both the monitoring platform and the application.

6.1 Packet Capture and Libpcap-to-MAPI Inter-
face

Packet Capture is a very basic monitoring application,
which simply captures packets from the wire and does
some additional processing. For instance, the incoming
stream of packets can be filtered to obtain only those pack-
ets that the application is interested in. Furthermore, only
certain parts of the packet (e.g., packet header) can be pro-
cessed or saved to disk for a follow-up analysis. When we
use a network adapter with built-in header filtering, such
as the SCAMPI adapter, the volume of data is reduced be-
fore transferring to the host computer, enabling monitoring
of high-speed traffic and reducing load of host computer
CPU.

The libpcap-to-MAPI interface on the other hand trans-
lates libpcap functions to MAPI calls. This interface al-
lows the execution of any libpcap-based application on a
SCAMPI enabled platform. By using this interface, legacy
applications can experience the performance of a SCAMPI
system.

6.2 Flow Record Applications

Today, NetFlow is one of the most commonly used tech-
nologies for monitoring network usage and collecting in-
formation about network traffic. The work of collecting
flow records is usually done by routers, which export the
flow records to some collector. However, as the network
speed increases, most routers are not able to do full flow
analysis and have to use sampling to keep up.

The flow record export application uses the SCAMPI
platform to export IPFIX flow records and will be used
at high speeds where routers can not deliver flow records
without using sampling. The flow-based reporting appli-
cation on the other hand uses these flow records to pro-
duce a broad range of reports, showing various information
about the network traffic. The user can access the reports
through a web-based interface. Finally, the host tracking
application focuses on the development of a flow probe
and collector based on the CAPI (Collector API), a new
API, defined by SCAMPI, that eases the creation of collec-
tor applications. CAPI is responsible for collecting flows,
storing them persistently and providing facilities for per-
forming queries on the flows for the purpose of traffic ac-
counting and activity tracking.

6.3 Billing and Accounting

Internet and Application Service Providers use an ac-
counting application to bill their customers based on their
actual traffic or network usage. Porting such an applica-
tion on SCAMPI will provide an ISP the ability to accu-
rately measure various characteristics of network traffic,
improve their services and provide advanced billing mech-
anisms and policies. The accounting application will gather
input data from many SCAMPI probes, in order to obtain
aggregated statistics or a more comprehensive “picture” of
the whole network usage.

SCAMPI can provide the means to efficiently measure
network performance and behaviour at high speeds, in or-
der to feed billing components with the meaningful events
and billable information. Henceforth, the perspective role
of SCAMPI is to empower and encourage the adoption of
modern economic and product models in the telecommuni-
cations and networking market.

6.4 Threshold Alerting for Traffic Engineering

Threshold alerting is a common part of network man-
agement platforms and is supported in both SNMP and
COPS. There are several uses for these type of alerts, which
all share a common requirement to the SCAMPI platform:
applications want to receive information asynchronously
(events).

The above mechanism is incorporated as part of a short-
term traffic engineering research. In this context we need to
split traffic entering a router on two outgoing paths accord-
ing to a given weight distribution. The main goal of this
application is to show the functionality of the event-based
reaction to monitoring. This is accomplished by building
a feedback loop between the MAPI, a local tunnel man-
agement point, and a possible resulting reconfiguration (re-

mapping).
6.5 Quality of Service Monitoring

QoS monitoring analyzes the behaviour of a specified
(e.g., SLS monitoring) or random stream (e.g., CoS mon-
itoring) throughout a system under observation (ranging
from a single link to a concatenation of ISPs). In this ap-
plication, a two-layered architecture for QoS monitoring is
implemented, i.e. a QoS monitoring layer and an appli-
cation layer. The monitoring layer, belonging to a single
Internet Service Provider (ISP), provides end-to-end QoS
statistics of the observed network to the application layer.
Statistics such as packet loss, delay and jitter are provided
in a non-intrusive way throughout hashing-based sampling
(trajectory sampling) in the ISP access/peering points. The
measurements of the individual observation points are cor-
related and processed in a centralized database. Any appli-
cation in the upper layer can request these end-to-end QoS
statistics from the monitoring layer.

6.6 Security Application

NDISs (Network Intrusion Detection Systems) are an
important part of any modern network security architec-
ture. A NIDS constantly monitors network traffic, trying
to detect attacks or suspicious activity by matching packet
data against well-defined patterns. Such patterns, or rules,
identify attacks by matching fields in the header and pay-
load of the packet. For example, a packet directed to port
80 and containing the string / bi n/ per | . exe inits pay-
load is probably an indication of a malicious user attack-
ing a web server. This attack can be detected by a rule
which checks the destination port number, and defines a
string search for / bi n/ per| . exe in the packet payload.

Implementing a NIDS is rather a complicated task. Sev-
eral basic operations like packet decoding, filtering, and

classification, TCP/IP stream reconstruction, and string
searching, must be crafted together to form a fully func-
tional system. Each one of these operations alone requires
deliberate decisions for its design, and considerable pro-
gramming effort for its implementation. Furthermore, the
resulting system is usually targeted to a specific hardware
platform. For instance, the majority of current NIDSes
are built on top of | i bpcap [5] packet capture library
using commodity network interfaces set in promiscuous
mode. As aresult, giventhat| i bpcap provides only basic
packet delivery and filtering capabilities, the programmer
has to provide considerable amount of code to implement
the large and diverse space of operations and algorithms
required by a NIDS.

In contrast, MAPI inherently supports the majority of
the above operations in the form of functions which can be
applied to network flows, and thus, can be effectively used
for the development of a complete NIDS. Consequently, a
great burden is released from the programmer who has now
a considerably easier task. As a matter of fact, we have
developed a Network Intrusion Detection System based on
MAPI. Based on the observation that a rule which describes
a known intrusion threat can be represented by a corre-
sponding network flow, overall implementation is straight-
forward. As an example, consider the following rule taken
from the popular Snort [6] NIDS, which describes an IMAP
buffer overflow attack:

alert tcp any any -> 139.91/16 143 (flags: PA
content:"| EBQOFFFFFF| / bi n";
msg: "1 MAP buffer overflow';)

All packets that match this particular rule can also be re-
turned by the following network flow, after the application
of the appropriate MAPI functions:

fd = mapi _create_flowdev);
mapi _appl y_function(fd, BPF_FILTER
"tcp and dst host 139.91 and dst port 143");
mapi _apply_function(fd, TCP_FLAGS, "PA");
mapi _apply_function(fd, STR_SEARCH,
" | EBCOFFFFFF| / bin");

Our MAPI-based NIDS operates as follows: During
program start-up, the files that contain the set of rules are
parsed, and for each rule, a corresponding network flow is
created. Rules are written in the same description language
used by Snort. Snort rules are converted by a separate mod-
ule to the appropriate MAPI function elements, which are
then applied to the related network flow. The rest of the
functionality is left to MAPI, which will optimize the func-
tional components of all the defined rules and deliver the
packets that match any of them.

Implementing the above intrusion detection application
using | i bpcap would have resulted in longer code and
higher overheads. As shown in Figure 5, our implemen-
tation takes no more than 2000 lines of code, while the

~30.000 lines

Snort |+ » libpcap
Snort
rules ~2000 lines
MAPI
based » MAPI
IDS

Figure 5. Comparison between Snort NIDS
and MAPI-based NIDS.

~10.000 lines

custom
firewall

Y

libpcap

firewall

rules ~1000 lines

MAPI
based
firewall

Y

MAPI

Figure 6. Comparison between custom and
MAPI-based firewall applications.

core functionality of other popular NIDSes, such as Snort,
consists of roughly 30.000 lines of code. For example,
| i bpcap does not provide any string searching facility,
and thus the programmer would have to provide a signif-
icant chunk of code for the implementation of the chosen
string searching algorithm. Instead of forcing the program-
mer to provide all this mundane code, MAPI already pro-
vides this frequently used functionality.

Note that a NIDS based on MAPI is not restricted to
a specific hardware platform. MAPI operates on top of a
diverse range of monitoring hardware, including more so-
phisticated lower level components like network proces-
sors, and thus, can further optimize overall system per-
formance, considering that certain MAPI functions can be
pushed to the hardware. Additionally, the functionality of
the MAPI daemon can be shared by multiple concurrently
running applications. For example, along with the intru-
sion detection application, one can develop a firewall ap-

1Although the functionality of the two systems is not identical, it is
clearly depicted a difference in code length of at least one order of mag-
nitude.

plication in the same fashion (i.e., in a few lines of code),
as shown in Figure 6, adding this way extra capabilities to
the overall system. Again, instead of providing code for the
whole firewall operations, the programmer can use MAPI
to reduce the development effort, and to effectively share
resources by pushing the core firewall functionality into the
MAPI daemon.

7 Statusof work and future plans

The Gigabit Ethernet version of the SCAMPI adapter is
ready and available for monitoring. The 10 Gigabit Ether-
net version and firmware blocks for packet processing are
being developed and planned to be released in Fall 2004.

We plan to continue work on SCAMPI-based passive
monitoring platform in the proposed Lobster (Large Scale
Monitoring for Broadband Internet Infrastructure) project,
which concentrates on deployment of passive monitoring
for security applications. We also want to add more fea-
tures for performance and security monitoring to the pro-
grammable monitoring adapter within the proposed GN2
project.

References

[1] L. Deri. Improving passive packet capture: beyond device
polling. To be published.

[2] DAG cards. Endace
http://ww. endace. com

[3] M. Polychronakis, K. G. Anagnostakis, E. P. Markatos, Arne
Dslebg. Design of an application programming interface for
IP network monitoring. To appear in the Proceedings of the
9th IEEE/IFIP Network Operations and Management Sym-
posium (NOMS2004), Seoul, Korea, 19.-23. April 2004.

[4] M. Blaze, J. Feigenbaum, J. loannidis, A. Keromytis. The
KeyNote trust-management system version 2. Request For
Comments 2704, Internet Engineering Task Force, Septem-
ber 1999.

[5] S. McCanne, C. Leres and V. Jacobson. libpcap. Lawrence
Berkeley Laboratory, Berkeley, CA, available via anonymous
ftptoftp. ee. | bl . gov.

[6] M. Roesch. Snort: Lightweight Intrusion Detec-
tion for Networks. November 1999, available from
http://ww. snort. org.

Measurement ~ Systems,

