
Implementation of a Reliable Remote Memory Pager

Evangelos P� Markatos and George Dramitinos�

Computer Architecture and VLSI Systems Group
Institute of Computer Science �ICS�

Foundation for Research � Technology � Hellas �FORTH�� Crete
To appear in the proceedings of the USENIX �� Technical Conference�

San Diego� Ca� January ����

Abstract

Traditional operating systems use magnetic
disks as paging devices� even though the cost of a
disk transfer measured in processor cycles contin�
ues to increase�

In this paper we explore the use of remote
main memory for paging� We describe the de�
sign� implementation and evaluation of a pager
that uses main memory of remote workstations
as a faster�than�disk paging device and provides
reliability in case of single workstation failures�
Our pager has been implemented as a block de�
vice driver linked to the DEC OSF�� operating
system� without any modi�cations to the kernel
code� Using several test applications we measure
the performance of remote memory paging over
an Ethernet interconnection network and �nd it
to be faster than traditional disk paging� We eval�
uate the performance of various reliability policies
and prove their feasibility even over low bandwidth
networks� like Ethernet�

We conclude that the bene�ts of reliable re�
mote memory paging in workstation clusters are
signi�cant today and will probably increase in the
near future�

� Introduction

Applications like multimedia� windowing
systems� scienti�c computations� engineering sim�
ulations� etc� running on workstation clusters
�or networks of PCs� require an ever increasing
amount of memory� usually more than any single
workstation has available� To alleviate the mem�

�The authors are also with the University of Crete�

ory shortage problem� an application could use the
virtual memory paging provided by the operating
system� and have some of its data in main mem�
ory and the rest on the disk� Unfortunately� as
the disparity between processor and disk speeds
becomes ever increasing� the cost of paging to a
magnetic disk becomes unacceptable� Faster swap
disks would only temporarily remedy the situa�
tion� because processor speeds are improving at a
much higher rate than disk speeds ��	
� Clearly�
if paging is going to have reasonable overhead� a
new paging device is needed� This device should
provide high bandwidth and low latency� Fortu�
nately� a device with these characteristics exists in
most distributed systems and it is not used most
of the time� It is the collective memory of all com�
puters in the distributed system� hereafter called
remote memory�

Remote memory provides high transfer rates
which are mainly dictated by the interconnection
network� Fortunately� most of the time remote
main memory is unused and thus can be exploited
by remote memory paging systems� To verify this
claim� we pro�led the unused memory of the work�
stations in our lab� for the duration of one week�
�� workstations with a total of �� MBytes of main
memory� Figure � plots the free memory as a func�
tion of the day of the week� We see that for sig�
ni�cant periods of time more than ��� Mbytes are
unused� especially during the nights� and the week�
end� Although during business hours the amount
of free memory falls� it is rarely lower than 	��
Mbytes�

�We expect that more main memory will be available in

places that have lighter load� Our workstations are heavily

used running VERILOG simulations for most of the time�

Architecture and software developments sug�
gest that the use of remote memory for paging
purposes is desirable� possible and e�cient�

� Memory to memory transfer rates

between workstations have increased

sharply in the last few years� Local
Area Networks �like ATM and FDDI� have
a high throughput and �usually� low latency�
This increase in communication bandwidth
implies a dramatic decrease in network trans�
fer time for large messages �like operating sys�
tem pages�� On the other hand� the disk tech�
nology has not shown a similar increase in
transfer rates� Moreover� disk accesses suf�
fer from seek and rotation latency which is
not expected to be reduced from advances in
semiconductor technology�

� Application�s working sets have in�

creased dramatically over the last few

years� Modern processors provide �	�bit ad�
dress spaces� which make it possible for the
processor to address an enormous amount of
memory� Thus� software that takes advantage
of a large address space is being developed�
memory�mapped �les and databases� sophis�
ticated window interfaces� and multimedia�
are a few examples that require an enormous
amount of main memory�

� Modern architectures provide low la�

tency remote memory accesses� Mod�
ern distributed systems provide a variety of
e�cient access operations to remote mem�
ories� The SCI�to�SBUS interface provides
SPARC workstations with the ability to ac�
cess the memories of other workstations in a
network using simple load and store opera�
tions ���
� Similar ability is provided by Tele�
graphos ���
� Hamlyn ��
� Memory Channel
���
� and SHRIMP �	
� Fast remote mem�
ory accesses have also been implemented in
software using Active Messages ���� �
� pro�
grammed network interfaces ���
� and trap�
based remote invocation ���
� The ability to
perform single remote memory accesses e��
ciently will enhance the performance of a re�
mote memory paging policy� since the appli�
cation can use them to access infrequently
used pages�

In this paper we show that it is both possi�
ble and bene�cial to use remote memory as a re�
liable paging device by building the systems soft�

300

350

400

450

500

550

600

650

700

750

800

Thursday Friday Saturday Sunday Monday Tuesday Wednesday

U
ns

ue
d

M
em

or
y

(M
by

te
s)

Week of Feb 2nd till 8th 1995

Idle DRAM during a Week

Figure �� Unused memory in a workstation

cluster� The �gure plots the idle memory during
a typical week in the workstations of our lab� a
total of �� workstations with about ��� Mbytes of
total memory� We see that memory usage was at
each peak �and thus free memory was scarce� at
noon and afternoon of working days� In all times
though	 more than
�� Mbytes of main memory
were unused�

ware that transparently transfers operating sys�
tem pages across workstation memories within a
workstation cluster� We describe a pager built as a
device driver of the DEC OSF�� operating system�
Our pager is completely portable to any system
that runs DEC OSF��� because we didn�t modify
the operating system kernel� More important� by
running real applications on top of our memory
manager� we show that even on top of low band�
width interconnection networks �like Ethernet�� it
is e�cient to use remote memory as backing store�
Our performance results suggest that paging to re�
mote memory over Ethernet� rather than paging
to a local disk of comparable bandwidth� results
in up to ��� faster execution times for real ap�
plications� Moreover� we show that reliability and
redundancy comes at no signi�cant extra cost� We
describe the implementationand evaluation of sev�
eral reliability policies that keep some form of re�
dundant information� which enables the applica�
tion to recover its data in case a workstation in
the distributed system crashes� Finally� we use
extrapolation to �nd the performance of paging
to remote memory over faster than Ethernet net�
works like FDDI and ATM� Our extrapolated re�
sults suggest that paging over a ��� Mbits�sec in�
terconnection network� reduces paging overhead to
less than ��� of the execution time of the applica�
tion running over such a network� Faster networks
will reduce this overhead even more�

The rest of the paper is organized as follows�
Section � presents the design of a remote memory
pager and the issues involved� Section � presents

the implementation of the pager as a device driver�
Section 	 presents our performance results which
are very encouraging� Section � presents some as�
pects that we plan to explore as part of our future
work� Section � presents related work� Finally�
section � presents our conclusions�

� The Design of a Remote Memory Pager

��� Selection of Workstations

All workstations� that participate in remote
memory paging are registered in a common �le�
These workstations are known as remote memory
servers� while the workstations that run applica�
tions that use remote memory for swapping are
called clients� Depending on its workload� a work�
station may act either as a server� or as a client�

All server workstations run a remote mem�
ory server that handles requests for pageins� page�
outs� as well as for swap space allocation� When
a client wants to swap out memory it picks the
most promising server� asks for a number of page
frames and starts sending requests to it� When a
server runs out of memory� it denies further swap
space allocation requests� When native memory�
demanding processes start on a server worksta�
tion� part of the server�s memory is swapped out
to disk� Future requests will be serviced from the
disk� and a note will be sent to the client� advising
it to send no more pages to this server� On re�
ception of this message� the client will try to �nd
another server having enough free memory and mi�
grate the pages that were stored by the loaded
server to the new one� If no server having enough
free memory can be found the client�s local disk
will be used to house these pages� Whenever the
client�s local disk is used to store some of it�s paged
out pages� the client periodically checks the mem�
ory load of all possible remote memory servers� If
a server having enough free memory is found� some
of the pages stored at the local disk are replicated
to this server� Future requests concerning these
pages will be served by the remote memory server
rather than the disk�

��� Reliability

In a distributed system� a workstation may
crash at any time� If the crashed workstation
acts as a server� it will lose the pages of several
clients� Clearly� it is not acceptable for applica�
tions running on the client workstation to crash
due to remote server crash� Instead� we would
like to be able to recover their pages� Otherwise

a remote server crash will cause a client crash as
well� since all programs that have some of their
pages swapped out �including programs like init
and system daemons� will not be able to continue
execution�

There are many types of crashes� First of
all there may be machine crashes due to a black
out� This situation is not addressed by this paper�
since most computer buildings are equipped with
UPSs� Another cause of failure may be a network
problem �e�g� network partitioning due to a bridge
failure�� In this case� the client can not retrieve
its pages from the servers� As a result it remains
blocked waiting for the network to recover� The
most frequent cause of crash is a software crash�
followed by a hardware error� To avoid loss of
data due to a server crash� some systems write all
network memory pages to the disk as well ���� ��
��
Instead we implement a reliable remote memory
paging system that is able to reconstruct the lost
pages�

To provide this level of reliability� some form
of redundancy must be used� The main issues that
must be taken into account regarding the form of
redundancy used are�

� The runtime overhead introduced must be
minimal since it is a cost paid even when no
server crashes�

� The memory overhead introduced must be as
low as possible because the memory reserved
for reliability could be used in order to store
memory pages of other workstations�

� The crash recovery overhead� that is the time
it takes to recover from a server crash� This
overhead is not as important as the previous
two� since it is a�ordable to devote a few more
seconds whenever a server crashes� which hap�
pens rather rarely�

We explore three di�erent policies� mirror�
ing� parity� and parity logging�

Mirroring� The simplest form of redundancy is
mirroring� In mirroring� there exist two copies of
each page� When the client swaps out a page�
the page is sent to two di�erent servers� Even
when one of the servers crashes� the application is
able to complete its execution� because all pages
of the crashed server exist on the mirror servers�
Obviously the crash recovery overhead� in case of

mirroring� is minimal� However� the runtime over�
head is rather high� since each pageout requires
two page transfers� To make matters worse� mir�
roring wastes half of the remote memory used�

Parity� To reduce the main memory waste
caused by mirroring� we can use parity�based re�
dundancy schemes much like the ones used in
RAIDS ��
� Suppose� for example� that we have
S servers� each having P pages� Page �i� j� is the
jth page that resides on server i� Assume� that
we have P parity pages� where parity page j is
formed by taking the XOR of all the jth pages in
all servers� We say that all these jth pages belong
to the same parity group� If a server crashes� all its
pages can be restored by XORing all pages within
each parity group�

When the client swaps out a page it has to
update the parity to re�ect the change� This up�
date is done in two steps�

�� The client sends the swapped out page to the
server� which computes the XOR of the old
and the new page�

�� The server sends the just computed XOR to
the parity server� which XORs it with the old
parity� forming the new parity�

Unfortunately� this method involves two page
transfers� one from client to server� and one from
server to parity� Moreover� the client should not
discard the page just swapped out� because the
server may crash before the new parity is com�
puted� thus� making it impossible to restore the
swapped out page� This parity method increases
the amount of remote main memory only by a fac�
tor of �����S� minimizing the memory overhead�
but it still imposes a signi�cant runtime overhead�

Parity Logging� To avoid the additional page
transfers induced by the basic parity method� we
have developed a parity logging scheme� The key
idea is that a given page need not be bound to a
particular server or parity group� Instead� every
time a page is paged out� a new server and a new
parity group may be used to host the page�

Suppose the client uses S servers� Each
paged out page is XORed with a page size bu�er
maintained by the client �which is initially �lled
with zeros� and then is transfered to a server fol�
lowing a round robin policy� Whenever S pages
have been transfered� the bu�er is also transfered

to a parity server� Using this technique� the run�
time overhead is minimal� since for each paged out
page �� ��S page transfers are required� When a
server crashes� all of its pages can be restored by
XORing the pages in their group with the corre�
sponding parity page� �

Every time a page is repaged out� it is
marked in the old parity group containing it as in�
active� � When all the pages of a parity group are
marked as inactive� all the memory server pages
and the corresponding parity page can be reused�
It is obvious that each memory server must have
some extra over�ow memory to support parity
logging since many versions of a given page may
be present simultaneously at the servers� memory�
Also� due to this situation� it is possible that some
server runs out of memory� In this case� one has
to perform garbage collection freeing parity sets
by combining their active pages to new ones� In
our experiments� 	 servers were used devoting ���
more memory to support parity logging and we
never had to perform garbage collection�

� Implementation

The proposed system has been built and is in
everyday use� It consists of a client issuing paging
requests and servers satisfying these requests� It is
also able to use the local disk for paging and may
support either mirroring or parity logging� The
client side has been linked with the DEC OSF��
kernel of a DEC�Alpha ���� model ��� with ��
MB main memory as a block device driver that
handles all pagein and pageout requests� In order
to service these requests� it may forward them ei�
ther to user level servers running on other hosts�
or to the local disk� The DEC OSF�� kernel is
not even aware that we use remote main mem�
ory instead of magnetic disk as a paging device�
It just performs ordinary paging activities using a
block device� This design minimizes the modi�ca�
tions needed in order to port the system to another
operating system and avoids modi�cations to the
operating system kernel�

�Note that since the parity page is computed by the

client� it is not necessary to wait for acknowledgments from

the servers before transfering the parity page in order to be

able to recover from a single server crash�
�However� the old version of the page is not deleted from

the server�s memory� because if it were� the old parity page

should be updated� leading to more page transfers�

��� The Remote Memory Pager

Normally the Remote Memory Pager �RMP
for short� is a client which forwards the paging
requests to a remote server using sockets over an
Ethernet� The RMP connects to the remote mem�
ory servers using sockets over TCP�IP� One ded�
icated paging daemon issues pagein and pageout
requests to the server and receives the data sent
by them� When mirroring is used� it is responsible
for selecting two servers for each paged out page
and transfer the data to them� When parity log�
ging is used� it maintains all the data structures
related to page and parity group management and
computes the parity pages� Security is ensured by
allowing access to our device only to the superuser
and by using privileged ports for the communica�
tion among the client and the servers�

RMP is also capable of forwarding the re�
quests to the local disk using either a speci�ed
partition or a �le� In the former case� it invokes a
routine that places the request in the disk queue�
In the later case it issues a read or write opera�
tion through the VFS layer routines� When no
server can be found in order to satisfy the client�s
requests� paging to local disk is used�

Although the current implementation runs
on top of a low bandwidth �� Mbps Ethernet� re�
mote paging is up to � times faster than using a
local disk of the same bandwidth� It takes about
�	 ms to transfer an KB page through the net�
work� while transferring a page to�from the local
disk takes about �� ms� Faster networks such as
ATM� or FDDI should o�er even more promising
performance� especially when faster communica�
tion protocols are used ���
�

��� The Remote Memory Server

The server is a user level program listening
to a socket and accepting connections from clients�
Each client is served by a new instance of the
server which uses portion of the local workstation�s
main memory to store the client�s pages� When
the client requests a pagein� the server transfers
the requested page�s� over the socket� When the
client requests a pageout� the server reads the in�
coming pages from the socket� and stores them
in its main memory� The server is also respon�
sible for swap space allocation and for providing
periodically information to the client concerning
the memory load of its host� A parity server is
by no means di�erent than a memory server� It
just performs pageins and pageouts responding to

client requests without knowing whether it stores
memory pages or parity pages�

� Performance Results

To evaluate the performance of our remote
memory pager� and compare it to traditional disk
paging� we conducted a series of performance mea�
surements using a number of representative ap�
plications that require a large amount of mem�
ory� Our applications include GAUSS� a gaus�
sian elimination� QSORT� a quicksort program� FFT�
a Fast�Fourier Transform� MVEC� a matrix�vector
multiplication� FILTER� a two pass separable im�
age sharpening �lter described in ���
 and CC� a
kernel build after modifying the code of our de�
vice driver� All applications were executed on
the DEC�Alpha ���� model ���� and were com�
piled with the standard C compiler with the op�
timization enabled� All workstations that con�
tributed their main memory for paging purposes
were DEC�Alpha ���� model ���� connected via
a standard ��Mbits�sec Ethernet� In all experi�
ments the amount of idle memory was larger than
the amount of memory needed for paging and
was equally distributed among all workstations�
The local disk that was used for paging is a DEC
RZ��� providing ��Mbits�sec bandwidth� and av�
erage seek time of �� msec�

��� Performance of Remote Memory Pag�

ing Over the Ethernet

In our �rst experiment we evaluate four
methods for paging�

� NO RELIABILITY� which uses only main mem�
ory of other workstations as a paging de�
vice� In this experiment two remote memory
servers were used� The measurements were
done on an �almost� idle Ethernet to ensure
repeatability�

� PARITY LOGGING� which uses 	 servers plus a
parity server� all devoting ��� over�ow mem�
ory�

� MIRRORING� which uses one primary memory
server and one mirror memory server�

� DISK� which uses the local DEC RZ�� disk for
paging� In this case the page transfer requests
go directly from the DEC OSF�� kernel to
the disk driver without the intervention of our
pager�

Application id �� ���������	
 ����	
 ������ �������� ����

���� ����� ����� ����� �����

�� !! ���"� ���# "���� ���"�

$!%&' ����" #���� ����"� ����#

((' ��#��� ����"� ��#�#" ���

()*'�& #���# ����� �����# ��"�"�

�� ����"� ������ ������ ��#��

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

�

��

��

��

��

���

���

���

���

���	
�� ���� ��� ������ 		

�� �����������

AAA
AAA ����� ��!!�"!

AAA
AAA�������"!

#�$%

Figure �� Performance of applications using either the disk� or the remote memory as paging

device� We see that for all applications	 the use of remote memory results in signi�cantly faster execution�
All applications were run on a DEC�Alpha
��� model
�� workstation� The input sizes for QSORT was

��� records	 for GAUSS	 a ��������� matrix	 for MVEC	 a ������� matrix	 for FFT an array with ��� K
elements	 for FILTER a � MB image	 and the whole DEC OSF�� V
� kernel for CC�

The completion time of the applications is plot�
ted in �gure �� We see that in all cases the
use of remote memory results in signi�cant per�
formance improvements� For example� for the
GAUSS application� the NO RELIABILITY results in
��� faster execution time than DISK� Even for the
MVEC application which performed very little pag�
ing� NO RELIABILITY results in ��� faster execu�
tion time� The reliability methods induce some
runtime overhead as expected but still perform
much better than DISK� PARITY LOGGING results
in 	��	� faster execution time for QSORT and in
����� faster time for GAUSS� MIRRORING also per�
forms better than DISK for all applications except
MVEC� since MVEC performs many pageouts and al�
most no pageins�

In order to evaluate the use of remote mem�
ory for a more realistic application� we measured
the completion time of a kernel build after modi�
fying the code of our device driver� As can be seen
in �gure �� NO RELIABILITY performs ������ bet�
ter than disk� PARITY LOGGING performs �	����
better and MIRRORING performs just ���� bet�
ter� We see that PARITY LOGGING performs very
close to NO RELIABILITY� As the number of the
remote memory servers used increases� the di�er�
ence in performance between NO RELIABILITY and

PARITY LOGGING becomes lower�

Our performance results suggest that paging
to remote memory over an Ethernet interconnec�
tion network is simply faster than paging to the
disk� Even though both the disk and the Ethernet
have similar data transfer rates� remote memory
does not su�er from seek and rotational latency as
DISK does�

Our experimental results verify that even
when the network data transfer rate is as low
as the disk transfer rate� the performance of re�
mote memory is signi�cantly higher than the per�
formance of disk� Moreover the performance re�
quirements of reliability are surprisingly small�
Since architecture trends suggest that modern
high speed networks provide much higher data
transfer rates than modern disks� the performance
improvements of remote memory over disk are
bound to increase�

��� Scaling the Input

To understand the impact of the working set
size on the paging policy� we measure the execu�
tion time of one of our applications �FFT�� as a
function of its input size� The completion time of
FFT both under PARITY LOGGING and under DISK

����������� ��
� ��� ����� ������ ��� ������ ��� �������������� ��������

�� ����� � �! �"��# �"��#

� �! !"�"" !$�#" !��!" !��!"

�� "!��# "���# "��#�� "����

���" ����!� ��!��� "��## #!��

�$�� �� ��� ����"� ""��#� �� ���

�� �!#�� �$���" "����� ����$�

���� �"��"� ��$�# " ��$� ��$�#

0

20

40

60

80

100

120

140

160

17 18.5 20 21.6 23.2 24

Input size (MB)

Disk
Parity logging

Figure �� Performance of FFT as a function

of input size when either the disk� or remote

memory are used as backing store�

is plotted in �gure �� We see that as soon as the
working set size exceeds � MBytes� the paging
starts� and the completion time of the application
rises sharply� Most users would not be willing
to tolerate such a high overhead in order to run
an application that does not �t in main memory�
Fortunately� remote memory reduces this overhead
substantially�

��� Scaling the Network Bandwidth

Although �gure � suggests that the perfor�
mance of remote memory �parity logging� is sig�
ni�cantly better than the performance of disk�
the completion time of an application even un�
der remote memory may be unacceptably high�
Hopefully� the performance of remote memory will
be improved as soon as the Ethernet intercon�
nection network is substituted by a faster one
�e�g� FDDI� ATM� FCS� etc��� To evaluate the
performance of the applications on top of faster
networks we make detailed performance measure�
ments that separate the completion time of the ap�
plication into the following factors� �i� user time
�utime�� �ii� system time �systime� �iii� initial�
ization time �inittime� �iv� page transfer time
�ptime�� Using the provided time command we
measure the utime� systime� and elapsed time
�etime� for each application� Subtracting the
utime and systime from the etime for instances
of the applications that perform no paging we cal�
culate the inittime� that is the time it takes the
operating system to load and start executing the
application� The ptime consists of the protocol
processing time �pptime� and the bandwidth de�
pendent blocking time �btime�� We measured the
pptime and found it to be equal to ��� ms per

page for TCP�IP� We calculate the btime using
the formula � btime � �etime�utime�systime�
inittime � no of page transfers � pptime�� As�
suming that a network with X times higher band�
width will decrease btime by a factor of X� we
can predict the etime of the application over this
high bandwidth network� Thus� the formula used
is � Expected elapsed time � utime � systime �
inittime�number of page transfers � pptime�
btime�X�

Wemade all these measurements on our FFT
application� and predict its performance on a sys�
tem with an interconnection network which pro�
vides ten times more bandwidth than the Ether�
net� We also predict its completion time on a sys�
tem that has enough memory to hold all the work�
ing set of the application �ALL MEMORY� by adding
the utime� systime and inittime� The predicted ex�
ecution times� along with the measured execution
times of DISK and PARITY LOGGING are plotted in
�gure 	� We see that ETHERNET��� performs very
close to ALL MEMORY� and signi�cantly better than
both ETHERNET and DISK�

To understand the results shown in �gure
	� we analyze the execution time of FFT with
�	MBytes of input when PARITY LOGGING is used�
The measured elapsed time is ������ seconds� con�
sisting of ����� sec of useful user time� ����� sec
of system time� ���� sec of initialization time and
������ sec of page transfer time� During the same
run� the application su�ered ��� pageouts and
���� pageins� Since 	 servers were used plus a par�
ity server the number of page transfers was equal
to ���� � ���� � �	��� Thus the protocol over�
head was equal to �	�� � ������� or about ����
sec� The bandwidth dependent blocking time was
equal to ������� ����� or about ������ sec� Us�
ing a ten times faster interconnection network� the
bandwidth dependent waiting time will be reduced
to ����� sec� Thus� the total completion time of
FFT would be ���������������������������
sec� or ��	�� sec� divided as follows� ����	��
in user time� ����	� in system time� ������ in
initialization time and ����	� in page transfer
time� We see that a ��� Mbit�sec interconnection
network reduces the total paging overhead to less
than ��� of the total application execution time�
We believe that most users would be willing to
pay such an overhead in order to run an applica�
tion that does not �t in main memory� After all�
the only other option they have is to su�er from
disk thrashing�

����������� ��

� ��� �������� ����������� ��� ������

�� ����� ���� ���� �����

���� ����� � ��� � ��� �!���

!� ����� ���!� ����!��� ������

!��� �!!��� ������ �!��!�� ������

! �! ������ �!���� �������! ������

!� ������ � ���� � ������ ������

!���! ������ �� �� ������!� ���! �

0

20

40

60

80

100

120

140

160

17 18.5 20 21.6 23.2 24

Input size (MB)

Disk
Ethernet
Ethernet*10
All memory

Figure 	� Performance of FFT for various

Architecture Alternatives� DISK is the mea�
sured completion time when paging to a local disk�
ETHERNET is the measured completion time of par�
ity logging to remote memory on top of the Eth�
ernet� ETHERNET��� is the predicted completion
time when using remote memory as a paging de�
vice	 on top of a network that provides ten times
more bandwidth than the Ethernet interconnec�
tion network� ALL MEMORY is the predicted com�
pletion time of FFT when we use the same work�
station but with enough memory to hold its entire
working set�

��� The Latency of Remote Memory Pag�

ing

As explained previously� the paging latency
for FFT with input size equal to �	 MB is ������
sec� or ����	 ms per page transfer� From these�
��� ms were spent during protocol processing and
���	 ms were spent transferring each page on the
Ethernet�

Previous measurements have reported that a
	 KByte page takes about 	� ms over an Ethernet
for each pagein ���
� Of those 	� ms� �� ms were
spent on TCP overhead� 	 ms were spent on Mach
IPC overhead� ��� ms were spend on the Ether�
net� and the rest were spent on the computer�s
I�O bus� The total software latency of our im�
plementation� is only ��� ms� The reason for this
signi�cant di�erence in performance is threefold�

� The I�O bus of the DEC�Alpha ���� model
��� we use is signi�cantly faster and does not
pose a problem in performance�

� We use a DEC�Alpha processor� which is ��	
times faster than the �� processor used in
���
�

� Finally� our pager is implemented as a block

device driver� while in ���
 it was implemented
as a user�level memory manager on top of
Mach� Although user�level memory man�
agement gives increasing �exibility it induces
large overhead�

In general� although our approach may have
less �exibility than a full��edged user�level pager�
it has much better performance� Moreover�
our device�driver implementation provides bet�
ter performance than traditional �local� disk pag�
ing� while user�level implementations have not
reported performance results to support similar
claims ���
�

��	 Using Busy Workstations as Servers

In all our experiments so far� the remote
memory servers run on idle workstations� How�
ever� workstations that are able to donate their
memory for paging purposes may not be com�
pletely idle� as they may run interactive appli�
cations� Thus� we would like to investigate how
our performance �gures change when a non�idle
workstation is used as a memory server� So� we
conducted the following experiment�

On each server workstation we started an
X�window environment� and an instance
of the vi editor which was continuously
used for editing� Then� we run the ap�
plications of the experiment in �gure ��
The same inputs� and the same clients
were used� The only di�erence was that
the remote memory server processes were
run on busy instead of idle workstations��

We were surprised to see that for the FFT� GAUSS�
and MVEC applications� their completion times
were within � sec of their completion times when
the server ran on an idle workstation� Only QSORT
su�ered a �� overhead in its completion time�
probably the kernel swapped out some of the re�
mote memory server�s pages on the disk� However�
in order to �nd out how the completion time of
our applications changes with server load� we ran
FFT and QSORT under NO RELIABILITY using two
remote memory servers� On one of them a cpu
bound program �performing a �while����� loop�

�One could argue that an X�window environmentand an

editor� induce almost no load on the workstation� But� this

is exactly the point� a typical workstation� even when it is

used� it is very lightly loaded� The rest of the workstations

that are heavily loaded do not donate their main memory

for remote paging�

was initiated� To our surprise� even then the com�
pletion times of our applications were within ��
of their completion times when the server ran on
an idle workstation�

Our performance �gures suggest that most
of the time the remote memory servers were able
to satisfy the client�s requests immediately� even
on busy workstations� Our results agree with the
measurements in �gure � which report that a sig�
ni�cant portion of all workstation�s memory is un�
used even at business hours� thus no overhead is
expected to be seen when some other server pro�
cess uses the extra pages�

In the same course of experiments� we would
like to see what is the overhead that remote paging
induces on the server workstation� Thus� we mea�
sured the CPU utilization of the �otherwise idle�
remote memory server for all our experiments� and
found it always to be less than ���� Thus� the
computational overhead imposed on the remote
workstation is so low that will not be noticed by
the workstation�s owner�

��
 Using Remote Memory Paging over a

Loaded Ethernet

All the experiments presented so far were
done over an almost idle Ethernet to ensure re�
peatability of our results� However� we would like
to �nd out how the performance of remote mem�
ory paging is a�ected by the load of the network�
That is why we repeated our experiments using
an already loaded Ethernet� The results showed a
performance degradation even when the Ethernet
was lightly loaded� This situation is by no means
surprising since the paging itself uses all the band�
width it can get� Adding more sources of traf�
�c leads to an enourmous demand for bandwidth
causing repeated collisions and lowering the e�ec�
tive bandwidth of the network� leading to through�
put collapse�

Fortunately� this ine�ciency is not inher�
ent to remote memory paging but rather to the
CSMA�CD protocol employed by the Ethernet
��	
� This means that it is still bene�cial to use re�
mote memory paging over networks that employ
other technologies �e�g� token ring�� as long as
they are able to provide to remote memory paging
an e�ective bandwidth of �� or more Mbps�

��� Using the Local Disk to Increase Reli�

ability

In our work we use remote main memory
to store redundant information that will be used
to recover from workstation crashes� Another ap�
proach would be to store all remote pages to the
local disk as well ���
� e�ectively treating remote
memory as a write�through cache of the disk� We
will now compare the two approaches to �nd out
the circumstances under which the one approach
is preferable to the other�

Both approaches use the remote memory to
satisfy the read requests� This means that both
approaches perform reads at the same speed and
avoid disk head movements due to reads� thus out�
performing the local disk� Parity logging transfers
����N pages per paged out page� due to the par�
ity computation �in our experiments N was equal
to 	�� On the other hand� write through trans�
fers each paged out page both to disk to the re�
mote memory� These two page transfers are exe�
cuted in parallel� This means that the choice of
the right approach depends on the e�ective band�
width o�ered by the disk and the network� If the
network bandwidth is much higher than the disk
bandwidth� then the disk will be the bottleneck for
write through making it an unwise choice� If how�
ever the e�ective bandwidth o�ered by the disk is
comparable to the bandwidth o�ered by the net�
work and the system can overlap disk transfers
with network transfers then it is unclear which
method is best to use� In our experimental envi�
ronment the disk and network bandwidth are both
equal to �� Mbps� When write through is used the
efective disk bandwidth is close to �� Mbps� since
there are no head movements for reads and writes
are performed in large chunks� In this environ�
ment write through performs better than parity
logging and slightly worse than our no�reliability
implementation in most cases� as shown in �gure
� � However� when a modern high bandwidth net�
work is used� parity logging will probably be the
best approach� since write through will eventually
be limited by the local disk bandwidth�

	 Discussion � Future work

Our implementation suggests that it is pos�
sible to build a reliable e�cient remote memory
pager without making any modi�cations to the op�
erating system kernel� Although our system con�
tains all necessary mechanisms to support remote
memory paging� there are a few more issues con�

Application id �� ���������	
 ���	� 	����� ����	
 �������

���� ����� ����� �����

�� !! ���"� ����� ���#

$!%&' ����" ���#� #����

((' ��#��� �����# ����"�

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

�

��

��

��

��

���

���

���

���	
�� ���� ���

�� �����������

AA
AA����� ���� !�

"����� ��!!�#!

Figure �� Performance of parity logging and

write through for various applications� The
input sizes for QSORT was
��� records	 for GAUSS	
a ��������� matrix	 for MVEC a ������� ma�
trix	 and for FFT an array with ��� K elements�

cerning the overall policy that deserve further in�
vestigation� Some of these issues are discussed be�
low�

Network load� Although remote paging is
faster than using the local disk� sometimes the
network tra�c may be so high that the bandwidth
used by RMP will be limited� In this case the cost
of using the network� especially in the case of old
low bandwidth networks like Ethernet� may be�
come higher than the cost of using the local disk�
Such a situation could be handled by the RMP by
measuring the time it takes to satisfy a request and
using a threshold to determine whether it should
continue to use the network to route pageout re�
quests or it would be better to switch to the local
disk�

Heterogeneous networks� The current imple�
mentation assumes a network of workstations that
all have the same order of magnitude of physical
memory and are interconnected by a local area
network� It would be interesting to explore the
requirements that heterogeneous networks pose to
the design of the remote pager� For example� on
a wider area network the time it takes to trans�
fer a page may not be identical for each server�
In this case there may be more than three lev�
els in the memory hierarchy �local memory� re�
mote memory� disk�� depending on the variance of
the cost of communication among the hosts of the
network� Connecting machines that have an enor�
mous amount of memory �e�g� a supercomputer�
to a network of workstations also poses some prob�

lems� When the supercomputer memory is idle� it
may not always be easy to �nd enough free re�
mote workstation memory in order to be able to
use reliability policies� In this case� a no reliability
policy can be used� since all remote memory will
be provided by a single host �the supercomputer��

 Related Work

Several research groups have studied the is�
sues in using remote memory in a workstation clus�
ter to improve paging performance ��� ��� �� ��� ���
�
�

Felten and Zahorjian ���
 have implemented
a remote paging system on top of a traditional
Ethernet based system� and presented an ana�
lytical model to predict its performance� Their
performance results� although preliminary� are en�
couraging towards using remote memory paging
systems� Schilit and Duchamp ���
 have imple�
mented a remote memory paging system on top
of Mach ��� for portable computers� Their remote
memory paging system has performance similar
to local disk paging� The cost of a single remote
memory pagein over an Ethernet� they quote� is
about 	� ms for a 	Kbyte page� which is rather
high� According to their measurements� a signif�
icant percentage of this time �close to �� ms� is
spend executing Mach IPC and TCP code� Comer
and Gri�oen ��
 have implemented and compared
remote memory paging vs� remote disk paging�
over NFS� on an environment with diskless work�
stations� Their results suggest that remote mem�
ory paging can be ��� to ���� faster than remote
disk paging� depending on the disk access pattern�
Anderson et� al� have proposed the use of net�
work memory as backing store ��
� Their simu�
lation results suggest that using remote memory
over a ���Mbits�s ATM network �is � to �� times
faster than thrashing to disk� ��
� In their subse�
quent work ��
� they outline the implementation
of a remote memory pager on top of an ATM based
network�

Our work di�ers from previous approaches
to remote memory paging in the following aspects�
�i� we use a variety of real applications to evaluate
and demonstrate the feasibility of remote memory
paging� and �ii� we explore the issues in build�
ing a reliable remote memory system that is re�
silient to individual workstation failures� Previ�
ous approaches either ignore workstation failures�
or write dirty pages both to the disk and the re�
mote memory� limiting their performance by the

available disk throughput�

Recently� research groups start to explore the
issue of using remote memory to improve �le sys�
tem performance ���� ��
� Feeley et� al� have
implemented a global memory management sys�
tem in a workstation cluster� using the idle mem�
ory in the cluster to store clean pages of mem�
ory loaded workstations ���
� Anderson et� al�
have implemented xFS� a serverless network �le
system ��� �
� Both network memory systems
have been incorporated inside the kernel of exist�
ing operating systems and their performance has
been demonstrated� Although improvements in
�le system performance may ultimately lead to
paging performance improvements� solutions de�
veloped for �le systems may be cumbersome� or
too general for remote memory paging systems�
�i� in �le systems� client processes may share �le
data� leading to cooperative remote memory man�
agement policies� In paging instead� clients never
share their swap spaces� Thus� policies developed
to optimize a client�server approach to �le I�O�
and facilitate cooperation among client processes
that share data� do not necessarily apply to a pag�
ing system where no single paging server is used�
and no sharing �of swap spaces� between client
processes takes place� Finally� we use the network
memory for storing both clean and dirty pages us�
ing our novel parity�based approach� Thus� page
out �write� operations can be acknowledged at the
speed of remote memory� while in ���� �
 page out
operations are acknowledged at the speed of disk�

Although the area of reliability in network
memory systems is new� it shares several of the
ideas developed for other areas of reliable memory
management� For example� parity based methods
have been extensively used for Redundant Arrays
of Inexpensive Disks �RAIDs� ��
�

Log based methods have been used for Log
based �le systems� that send all updates to a �le
to be written in sequential blocks of the disk ���
�
Thus� the head of the disk does not make random
seek movements� and the e�ective data transfer
rate of the disk increases� Log based �le systems�
alike our LOGGING methods� create a fragmented
space that needs to be cleaned� Although the gen�
eral ideas may be similar� there are substantial dif�
ferences between a log based �le system and the
log based reliable network memory we propose�
For example� �i� Fragmentation in log based �le
systems occurs in large chunks �several Mbytes��
while fragmentation in log based reliable network

memory occurs in small parity groups� and �ii� Log
based reliable network memory systems may use
parity groups as soon as they are emptied� but
log based �le systems may not used emptied disk
blocks� because this would require a head move�
ment� �iii� Cleaning in log based �le system is
much more infrequent than it is in network mem�
ory� thus it must be made more e�cient� and �iv�
the objective of log based network memory sys�
tems is to reduce page transfers� while the objec�
tive of log based �le systems is to reduce disk head
movements� For the above reasons� methods de�
veloped for log based �le systems do not necessar�
ily apply �as is� to network memory systems�

Our work bears some similarity with dis�
tributed shared memory systems ���� ��
 in that
both approaches use remote memory to store an
application�s data� Our main di�erence is that we
focus on sequential applications where pages are
not �or rarely� shared� while distributed�shared�
memory projects deal with parallel applications�
where the main focus is to reduce the cost of page
sharing�

� Conclusions

In this paper we explore the use of remote
main memory for paging� We describe our pro�
totype implementation of a remote memory pager
implemented on top of the DEC OSF�� operat�
ing system as a device driver� No modi�cations
were made to the kernel of the �monolithic� DEC
OSF�� operating system� We run several applica�
tions that use our pager on top of a DEC�Alpha�
based workstation cluster to measure the perfor�
mance of the system� The contributions of this
paper are�

� We describe how to build a reliable remote
memory paging system� we propose a novel
parity�based policy that is resilient to single
workstation failures�

� We show that reliable paging to remote mem�
ory results in substantial performance im�
provements over local disk paging�

Based on our implementation and our perfor�
mance results we conclude�

� Paging to remote memory results in signif�
icant performance improvement over paging
to disk� Applications that use our pager even
when running on top of traditional Ethernet

technology show performance improvements
of up to ��� �see �gure ��� Extrapolating
from our results� we show that on top of
a faster interconnection network even higher
performance improvements are realizable�

� Paging to remote memory is an inexpensive
way to let applications use more main mem�
ory than a single workstation provides� Re�
mote memory paging provides good perfor�
mance with almost no extra hardware sup�
port� The only way for magnetic disks to
provide comparable performance is to use ex�
pensive disk arrays�

� Reliability in remote memory paging comes
at low cost� Parity logging based pag�
ing provides reliability at low runtime and
memory overhead� performs very close to
NO RELIABILITY and much faster than disk
paging�

� The bene�ts of paging to remote memory will
only increase with time� Current architecture
trends suggest that the gap between proces�
sor and disk speed continues to widen� Disks
are not expected to provide the bandwidth
needed by paging unless a breakthrough in
disk technology occurs� On the other hand�
interconnection network bandwidth keeps in�
creasing at a much higher rate than �single�
disk bandwidth� thereby increasing the per�
formance bene�ts of paging to remote mem�
ory�

Based on our performance measurements we
believe that remote memory paging is a cost�
e�ective and performance�e�ective way to exe�
cute memory�limited applications on a network of
workstations�

Acknowledgments

This work was developed in the ES�
PRIT�HPCN project �SHIPS�� and will form a
test application for the ACTS project �ASIC�
COM�� funded by the European Union �DG III
and DG XIII�� We deeply appreciate this �nancial
support� without which this work would have not
existed�

We would like to thank Manolis Kateve�
nis� Sotiris Ioannidis and Kosmas Papachristos for
useful comments in earlier drafts of this paper�
Michael J� Feeley and Henry M� Levy pointed out
useful references� Finally� we deeply appreciate

the thoughtful comments of the anonymous refer�
ees�

References

��
 T� E� Anderson� M� D� Dahlin� J� M� Neefe�
D� A� Patterson� D� S� Roselli� and R� Y�
Wang� Serverless Network File Systems� In
Proc� ���th Symposium on Operating Systems
Principles� December �����

��
 Thomas E� Anderson� David E� Culler� and
David A� Patterson� A Case for NOW �Net�
works of Workstations�� IEEE Micro� Febru�
ary �����

��
 G� Bernard and S� Hamma� Remote Mem�
ory Paging in Networks of Workstations� In
Proceedings of the SUUG International Con�
ference on Open Systems� Solutions for Open
Word� April ���	�

�	
 M� Blumrich� K� Li� R� Alpert� C� Dub�
nicki� E� Felten� and J� Sandberg� Virtual
Memory Mapped Network Interface for the
SHRIMP Multicomputer� In Proceedings of
the Twenty�First Int� Symposium on Com�
puter Architecture� pages �	������ Chicago�
IL� April ���	�

��
 Greg Buzzard� David Jacobson� Scott
Marovich� and John Wilkes� Hamlyn� a high�
performance network interface with sender�
based memory management� In Proceedings
of the Hot Interconnects III Symposium� Au�
gust �����

��
 Peter M� Chen� Edward K� Lee� Garth A�
Gibson� Randy H� Katz� and David A� Patter�
son� RAID� High�Performance� Reliable Sec�
ondary Storage� ACM Computing Surveys�
�������	����� June ���	�

��
 D� Comer and J� Gri�oen� A new design
for Distributed Systems� the Remote Mem�
ory Model� In Proceedings of the USENIX
Summer Conference� pages �������� �����

�
 T� Cortes� S� Girona� and J� Labarta� PACA�
A Distributed File System Cache for Paral�
lel MAchines� Performance under Unix�like
workload� Technical Report UPC�DAC������
��� Departament d�Arquitectura de computa�
dors� Universitat Politecnica de Catalunya
�UPC�� June �� �����

��
 M�D� Dahlin� R�Y� Wang� T�E� Anderson�
and D�A� Patterson� Cooperative Cahing�

Using Remote Client Memory to Improve File
System Performance� In First USENIX Sym�
posium on Operating System Design and Im�
plementation� pages ������� ���	�

���
 G� Delp� The Architecture and implementa�
tion of Memnet� A High�Speed Shared Mem�
ory Computer Communication Network� PhD
thesis� University of Delaware� ���

���
 M� J� Feeley� W� E� Morgan� F� H� Pighin�
A� R� Karlin� H� M� Levy� and C� A�
Thekkath� Implementing Global Memory
Management in a Workstation Cluster� In
Proc� ���th Symposium on Operating Systems
Principles� December �����

���
 E� W� Felten and J� Zahorjan� Issues in the
Implementation of a Remote Memory Paging
System� Technical Report TR ��������� Uni�
versity of Washington� November �����

���
 R� Gillet� Memory Channel� In Proceedings of
the Hot Interconnects III Symposium� August
�����

��	
 J� L� Hennessy and D� A� Patterson� Com�
puter Architecture� A Quantitative Approach�
Morgan Kaufmann Publishers� Inc�� �����

���
 L� Iftode� K� Li� and K� Petersen� Memory
Servers for Multicomputers� In Proceedings
of COMPCON ��� �����

���
 J� Kuskin� D� Ofelt� M� Heinrich� J� Hein�
lein� R� Simoni� K� Gharachorloo� J� Chapin�
D� Nakahira� J� Baxter� M� Horowitz�
A� Gupta� M� Rosenblum� and J� Hennessy�
The FLASH Multiprocessor� In Proc� 	��
th International Symposium on Comp� Arch��
pages �������� Chicago� IL� April ���	�

���
 Kai Li and Paul Hudak� Memory Coher�
ence in Shared Virtual Memory Systems�
ACM Transactions on Computer Systems�
��	���������� November ����

��
 A� Mainwaring� C� Yoshikawa� and K�Wright�
NOW White Paper� Network RAM Proto�
type� ���	�
http���now�cs�berkeley�edu�Nram�network�
ram�html�

���
 Evangelos P�
Markatos and Manolis G�H� Katevenis� Tele�
graphos� High�Performance Networking for
Parallel Processing on Workstation Clusters�
In Proceedings of the Second International

Symposium on High�Performance Computer
Architecture
 �HPCA�� San Jose� CA� USA�
February �����

���
 Gary Newman� Organizing Arrays for Paged
Memory Systems� Communications of the
ACM� ������������ July �����

���
 Mendel Rosenblum and John Ousterhout�
The Design and Implementation of a Log�
Structured File System� In Proc� ���th
Symposium on Operating Systems Principles�
pages ����� October �����

���
 B�N� Schilit and D� Duchamp� Adaptive Re�
mote Paging for Mobile Computers� Tech�
nical Report CUCS���	���� University of
Columbia� �����

���
 Dolphin Interconnect Solutions� DIS���
SBus�to�SCI Adapter User�s Guide�

��	
 A� S� Tanenbaum� Computer Networks� chap�
ter �� page ��� Prentice Hall International�
����

���
 C�A� Thekkath� H�M� Levy� and E�D� La�
zowska� E�cient Support for Multicomput�
ing on ATM Networks� Technical Report ���
�	���� Department of Computer Science and
Engineering� University of Washington� April
�� �����

���
 T� von Eicken� D� E� Culler� S� C� Gold�
stein� and K� E� Schauser� Active Messages�
a Mechanism for Integrated Communication
and Computation� In Proc� ���th Interna�
tional Symposium on Comp� Arch�� pages
�������� Gold Coast� Australia� May �����

Biographical information

Evangelos P� Markatos is an Assistant profes�
sor at ICS�FORTH and at the University of Crete�
He received his diploma in Computer Engineer�
ing from the University of Patras in ��� and
the MS and Ph�D� degrees from the University of
Rochester in ���� and ���� respectively� His in�
terestes include parallel and distributed systems�
operating systems and computer architecture�

George Dramitinos is a graduate student in
Computer Science at the University of Crete�
where he received a B�Sc� degree� He has worked
at A�C�R�I� in Lyon� France� participating in the
design and implementation of an OSF�� based op�
erating system for the company�s supercomputer�

He joined ICS�FORTH in ����� His interests in�
clude operating systems� parallel and distributed
programming and computer architecture�

The authors can be contacted at fmarkatos�
dramitg ics�forth�gr� or at their postal address
at Institute of Computer Science �ICS��

FORTH� Science and Technology Park of

Crete� Vassilika Vouton� P�O� Box ���	�

GR
�� �� Heraklion� Crete� Greece�

Availability

The most recent version of the pager along
with the test programs are freely distributed us�
ing ftp from ftp�ics�forth�gr�pub�pager� More in�
formation about the project can be found at
http���www�ics�forth�gr�proj�archvlsi�os�

