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Abstract

Traditional operating systems use magnetic
disks as paging devices� even though the cost of a
disk transfer measured in processor cycles contin�
ues to increase�

In this paper we explore the use of remote
main memory for paging� We describe the de�
sign� implementation and evaluation of a pager
that uses main memory of remote workstations
as a faster�than�disk paging device and provides
reliability in case of single workstation failures�
Our pager has been implemented as a block de�
vice driver linked to the DEC OSF�� operating
system� without any modi�cations to the kernel
code� Using several test applications we measure
the performance of remote memory paging over
an Ethernet interconnection network and �nd it
to be faster than traditional disk paging� We eval�
uate the performance of various reliability policies
and prove their feasibility even over low bandwidth
networks� like Ethernet�

We conclude that the bene�ts of reliable re�
mote memory paging in workstation clusters are
signi�cant today and will probably increase in the
near future�

� Introduction

Applications like multimedia� windowing
systems� scienti�c computations� engineering sim�
ulations� etc� running on workstation clusters
�or networks of PCs� require an ever increasing
amount of memory� usually more than any single
workstation has available� To alleviate the mem�

�The authors are also with the University of Crete�

ory shortage problem� an application could use the
virtual memory paging provided by the operating
system� and have some of its data in main mem�
ory and the rest on the disk� Unfortunately� as
the disparity between processor and disk speeds
becomes ever increasing� the cost of paging to a
magnetic disk becomes unacceptable� Faster swap
disks would only temporarily remedy the situa�
tion� because processor speeds are improving at a
much higher rate than disk speeds ��	
� Clearly�
if paging is going to have reasonable overhead� a
new paging device is needed� This device should
provide high bandwidth and low latency� Fortu�
nately� a device with these characteristics exists in
most distributed systems and it is not used most
of the time� It is the collective memory of all com�
puters in the distributed system� hereafter called
remote memory�

Remote memory provides high transfer rates
which are mainly dictated by the interconnection
network� Fortunately� most of the time remote
main memory is unused and thus can be exploited
by remote memory paging systems� To verify this
claim� we pro�led the unused memory of the work�
stations in our lab� for the duration of one week�
�� workstations with a total of �� MBytes of main
memory� Figure � plots the free memory as a func�
tion of the day of the week� We see that for sig�
ni�cant periods of time more than ��� Mbytes are
unused� especially during the nights� and the week�
end� Although during business hours the amount
of free memory falls� it is rarely lower than 	��
Mbytes�

�We expect that more main memory will be available in

places that have lighter load� Our workstations are heavily

used running VERILOG simulations for most of the time�



Architecture and software developments sug�
gest that the use of remote memory for paging
purposes is desirable� possible and e�cient�

� Memory to memory transfer rates

between workstations have increased

sharply in the last few years� Local
Area Networks �like ATM and FDDI� have
a high throughput and �usually� low latency�
This increase in communication bandwidth
implies a dramatic decrease in network trans�
fer time for large messages �like operating sys�
tem pages�� On the other hand� the disk tech�
nology has not shown a similar increase in
transfer rates� Moreover� disk accesses suf�
fer from seek and rotation latency which is
not expected to be reduced from advances in
semiconductor technology�

� Application�s working sets have in�

creased dramatically over the last few

years� Modern processors provide �	�bit ad�
dress spaces� which make it possible for the
processor to address an enormous amount of
memory� Thus� software that takes advantage
of a large address space is being developed�
memory�mapped �les and databases� sophis�
ticated window interfaces� and multimedia�
are a few examples that require an enormous
amount of main memory�

� Modern architectures provide low la�

tency remote memory accesses� Mod�
ern distributed systems provide a variety of
e�cient access operations to remote mem�
ories� The SCI�to�SBUS interface provides
SPARC workstations with the ability to ac�
cess the memories of other workstations in a
network using simple load and store opera�
tions ���
� Similar ability is provided by Tele�
graphos ���
� Hamlyn ��
� Memory Channel
���
� and SHRIMP �	
� Fast remote mem�
ory accesses have also been implemented in
software using Active Messages ���� �
� pro�
grammed network interfaces ���
� and trap�
based remote invocation ���
� The ability to
perform single remote memory accesses e��
ciently will enhance the performance of a re�
mote memory paging policy� since the appli�
cation can use them to access infrequently
used pages�

In this paper we show that it is both possi�
ble and bene�cial to use remote memory as a re�
liable paging device by building the systems soft�
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Figure �� Unused memory in a workstation

cluster� The �gure plots the idle memory during
a typical week in the workstations of our lab� a
total of �� workstations with about ��� Mbytes of
total memory� We see that memory usage was at
each peak �and thus free memory was scarce� at
noon and afternoon of working days� In all times
though	 more than 
�� Mbytes of main memory
were unused�

ware that transparently transfers operating sys�
tem pages across workstation memories within a
workstation cluster� We describe a pager built as a
device driver of the DEC OSF�� operating system�
Our pager is completely portable to any system
that runs DEC OSF��� because we didn�t modify
the operating system kernel� More important� by
running real applications on top of our memory
manager� we show that even on top of low band�
width interconnection networks �like Ethernet�� it
is e�cient to use remote memory as backing store�
Our performance results suggest that paging to re�
mote memory over Ethernet� rather than paging
to a local disk of comparable bandwidth� results
in up to ��� faster execution times for real ap�
plications� Moreover� we show that reliability and
redundancy comes at no signi�cant extra cost� We
describe the implementationand evaluation of sev�
eral reliability policies that keep some form of re�
dundant information� which enables the applica�
tion to recover its data in case a workstation in
the distributed system crashes� Finally� we use
extrapolation to �nd the performance of paging
to remote memory over faster than Ethernet net�
works like FDDI and ATM� Our extrapolated re�
sults suggest that paging over a ��� Mbits�sec in�
terconnection network� reduces paging overhead to
less than ��� of the execution time of the applica�
tion running over such a network� Faster networks
will reduce this overhead even more�

The rest of the paper is organized as follows�
Section � presents the design of a remote memory
pager and the issues involved� Section � presents



the implementation of the pager as a device driver�
Section 	 presents our performance results which
are very encouraging� Section � presents some as�
pects that we plan to explore as part of our future
work� Section � presents related work� Finally�
section � presents our conclusions�

� The Design of a Remote Memory Pager

��� Selection of Workstations

All workstations� that participate in remote
memory paging are registered in a common �le�
These workstations are known as remote memory
servers� while the workstations that run applica�
tions that use remote memory for swapping are
called clients� Depending on its workload� a work�
station may act either as a server� or as a client�

All server workstations run a remote mem�
ory server that handles requests for pageins� page�
outs� as well as for swap space allocation� When
a client wants to swap out memory it picks the
most promising server� asks for a number of page
frames and starts sending requests to it� When a
server runs out of memory� it denies further swap
space allocation requests� When native memory�
demanding processes start on a server worksta�
tion� part of the server�s memory is swapped out
to disk� Future requests will be serviced from the
disk� and a note will be sent to the client� advising
it to send no more pages to this server� On re�
ception of this message� the client will try to �nd
another server having enough free memory and mi�
grate the pages that were stored by the loaded
server to the new one� If no server having enough
free memory can be found the client�s local disk
will be used to house these pages� Whenever the
client�s local disk is used to store some of it�s paged
out pages� the client periodically checks the mem�
ory load of all possible remote memory servers� If
a server having enough free memory is found� some
of the pages stored at the local disk are replicated
to this server� Future requests concerning these
pages will be served by the remote memory server
rather than the disk�

��� Reliability

In a distributed system� a workstation may
crash at any time� If the crashed workstation
acts as a server� it will lose the pages of several
clients� Clearly� it is not acceptable for applica�
tions running on the client workstation to crash
due to remote server crash� Instead� we would
like to be able to recover their pages� Otherwise

a remote server crash will cause a client crash as
well� since all programs that have some of their
pages swapped out �including programs like init
and system daemons� will not be able to continue
execution�

There are many types of crashes� First of
all there may be machine crashes due to a black
out� This situation is not addressed by this paper�
since most computer buildings are equipped with
UPSs� Another cause of failure may be a network
problem �e�g� network partitioning due to a bridge
failure�� In this case� the client can not retrieve
its pages from the servers� As a result it remains
blocked waiting for the network to recover� The
most frequent cause of crash is a software crash�
followed by a hardware error� To avoid loss of
data due to a server crash� some systems write all
network memory pages to the disk as well ���� ��
��
Instead we implement a reliable remote memory
paging system that is able to reconstruct the lost
pages�

To provide this level of reliability� some form
of redundancy must be used� The main issues that
must be taken into account regarding the form of
redundancy used are�

� The runtime overhead introduced must be
minimal since it is a cost paid even when no
server crashes�

� The memory overhead introduced must be as
low as possible because the memory reserved
for reliability could be used in order to store
memory pages of other workstations�

� The crash recovery overhead� that is the time
it takes to recover from a server crash� This
overhead is not as important as the previous
two� since it is a�ordable to devote a few more
seconds whenever a server crashes� which hap�
pens rather rarely�

We explore three di�erent policies� mirror�
ing� parity� and parity logging�

Mirroring� The simplest form of redundancy is
mirroring� In mirroring� there exist two copies of
each page� When the client swaps out a page�
the page is sent to two di�erent servers� Even
when one of the servers crashes� the application is
able to complete its execution� because all pages
of the crashed server exist on the mirror servers�
Obviously the crash recovery overhead� in case of



mirroring� is minimal� However� the runtime over�
head is rather high� since each pageout requires
two page transfers� To make matters worse� mir�
roring wastes half of the remote memory used�

Parity� To reduce the main memory waste
caused by mirroring� we can use parity�based re�
dundancy schemes much like the ones used in
RAIDS ��
� Suppose� for example� that we have
S servers� each having P pages� Page �i� j� is the
jth page that resides on server i� Assume� that
we have P parity pages� where parity page j is
formed by taking the XOR of all the jth pages in
all servers� We say that all these jth pages belong
to the same parity group� If a server crashes� all its
pages can be restored by XORing all pages within
each parity group�

When the client swaps out a page it has to
update the parity to re�ect the change� This up�
date is done in two steps�

�� The client sends the swapped out page to the
server� which computes the XOR of the old
and the new page�

�� The server sends the just computed XOR to
the parity server� which XORs it with the old
parity� forming the new parity�

Unfortunately� this method involves two page
transfers� one from client to server� and one from
server to parity� Moreover� the client should not
discard the page just swapped out� because the
server may crash before the new parity is com�
puted� thus� making it impossible to restore the
swapped out page� This parity method increases
the amount of remote main memory only by a fac�
tor of �����S� minimizing the memory overhead�
but it still imposes a signi�cant runtime overhead�

Parity Logging� To avoid the additional page
transfers induced by the basic parity method� we
have developed a parity logging scheme� The key
idea is that a given page need not be bound to a
particular server or parity group� Instead� every
time a page is paged out� a new server and a new
parity group may be used to host the page�

Suppose the client uses S servers� Each
paged out page is XORed with a page size bu�er
maintained by the client �which is initially �lled
with zeros� and then is transfered to a server fol�
lowing a round robin policy� Whenever S pages
have been transfered� the bu�er is also transfered

to a parity server� Using this technique� the run�
time overhead is minimal� since for each paged out
page �� ��S page transfers are required� When a
server crashes� all of its pages can be restored by
XORing the pages in their group with the corre�
sponding parity page� �

Every time a page is repaged out� it is
marked in the old parity group containing it as in�
active� � When all the pages of a parity group are
marked as inactive� all the memory server pages
and the corresponding parity page can be reused�
It is obvious that each memory server must have
some extra over�ow memory to support parity
logging since many versions of a given page may
be present simultaneously at the servers� memory�
Also� due to this situation� it is possible that some
server runs out of memory� In this case� one has
to perform garbage collection freeing parity sets
by combining their active pages to new ones� In
our experiments� 	 servers were used devoting ���
more memory to support parity logging and we
never had to perform garbage collection�

� Implementation

The proposed system has been built and is in
everyday use� It consists of a client issuing paging
requests and servers satisfying these requests� It is
also able to use the local disk for paging and may
support either mirroring or parity logging� The
client side has been linked with the DEC OSF��
kernel of a DEC�Alpha ���� model ��� with ��
MB main memory as a block device driver that
handles all pagein and pageout requests� In order
to service these requests� it may forward them ei�
ther to user level servers running on other hosts�
or to the local disk� The DEC OSF�� kernel is
not even aware that we use remote main mem�
ory instead of magnetic disk as a paging device�
It just performs ordinary paging activities using a
block device� This design minimizes the modi�ca�
tions needed in order to port the system to another
operating system and avoids modi�cations to the
operating system kernel�

�Note that since the parity page is computed by the

client� it is not necessary to wait for acknowledgments from

the servers before transfering the parity page in order to be

able to recover from a single server crash�
�However� the old version of the page is not deleted from

the server�s memory� because if it were� the old parity page

should be updated� leading to more page transfers�



��� The Remote Memory Pager

Normally the Remote Memory Pager �RMP
for short� is a client which forwards the paging
requests to a remote server using sockets over an
Ethernet� The RMP connects to the remote mem�
ory servers using sockets over TCP�IP� One ded�
icated paging daemon issues pagein and pageout
requests to the server and receives the data sent
by them� When mirroring is used� it is responsible
for selecting two servers for each paged out page
and transfer the data to them� When parity log�
ging is used� it maintains all the data structures
related to page and parity group management and
computes the parity pages� Security is ensured by
allowing access to our device only to the superuser
and by using privileged ports for the communica�
tion among the client and the servers�

RMP is also capable of forwarding the re�
quests to the local disk using either a speci�ed
partition or a �le� In the former case� it invokes a
routine that places the request in the disk queue�
In the later case it issues a read or write opera�
tion through the VFS layer routines� When no
server can be found in order to satisfy the client�s
requests� paging to local disk is used�

Although the current implementation runs
on top of a low bandwidth �� Mbps Ethernet� re�
mote paging is up to � times faster than using a
local disk of the same bandwidth� It takes about
�	 ms to transfer an KB page through the net�
work� while transferring a page to�from the local
disk takes about �� ms� Faster networks such as
ATM� or FDDI should o�er even more promising
performance� especially when faster communica�
tion protocols are used ���
�

��� The Remote Memory Server

The server is a user level program listening
to a socket and accepting connections from clients�
Each client is served by a new instance of the
server which uses portion of the local workstation�s
main memory to store the client�s pages� When
the client requests a pagein� the server transfers
the requested page�s� over the socket� When the
client requests a pageout� the server reads the in�
coming pages from the socket� and stores them
in its main memory� The server is also respon�
sible for swap space allocation and for providing
periodically information to the client concerning
the memory load of its host� A parity server is
by no means di�erent than a memory server� It
just performs pageins and pageouts responding to

client requests without knowing whether it stores
memory pages or parity pages�

� Performance Results

To evaluate the performance of our remote
memory pager� and compare it to traditional disk
paging� we conducted a series of performance mea�
surements using a number of representative ap�
plications that require a large amount of mem�
ory� Our applications include GAUSS� a gaus�
sian elimination� QSORT� a quicksort program� FFT�
a Fast�Fourier Transform� MVEC� a matrix�vector
multiplication� FILTER� a two pass separable im�
age sharpening �lter described in ���
 and CC� a
kernel build after modifying the code of our de�
vice driver� All applications were executed on
the DEC�Alpha ���� model ���� and were com�
piled with the standard C compiler with the op�
timization enabled� All workstations that con�
tributed their main memory for paging purposes
were DEC�Alpha ���� model ���� connected via
a standard ��Mbits�sec Ethernet� In all experi�
ments the amount of idle memory was larger than
the amount of memory needed for paging and
was equally distributed among all workstations�
The local disk that was used for paging is a DEC
RZ��� providing ��Mbits�sec bandwidth� and av�
erage seek time of �� msec�

��� Performance of Remote Memory Pag�

ing Over the Ethernet

In our �rst experiment we evaluate four
methods for paging�

� NO RELIABILITY� which uses only main mem�
ory of other workstations as a paging de�
vice� In this experiment two remote memory
servers were used� The measurements were
done on an �almost� idle Ethernet to ensure
repeatability�

� PARITY LOGGING� which uses 	 servers plus a
parity server� all devoting ��� over�ow mem�
ory�

� MIRRORING� which uses one primary memory
server and one mirror memory server�

� DISK� which uses the local DEC RZ�� disk for
paging� In this case the page transfer requests
go directly from the DEC OSF�� kernel to
the disk driver without the intervention of our
pager�
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Figure �� Performance of applications using either the disk� or the remote memory as paging

device� We see that for all applications	 the use of remote memory results in signi�cantly faster execution�
All applications were run on a DEC�Alpha 
��� model 
�� workstation� The input sizes for QSORT was

��� records	 for GAUSS	 a ��������� matrix	 for MVEC	 a ������� matrix	 for FFT an array with ��� K
elements	 for FILTER a � MB image	 and the whole DEC OSF�� V
� kernel for CC�

The completion time of the applications is plot�
ted in �gure �� We see that in all cases the
use of remote memory results in signi�cant per�
formance improvements� For example� for the
GAUSS application� the NO RELIABILITY results in
��� faster execution time than DISK� Even for the
MVEC application which performed very little pag�
ing� NO RELIABILITY results in ��� faster execu�
tion time� The reliability methods induce some
runtime overhead as expected but still perform
much better than DISK� PARITY LOGGING results
in 	��	� faster execution time for QSORT and in
����� faster time for GAUSS� MIRRORING also per�
forms better than DISK for all applications except
MVEC� since MVEC performs many pageouts and al�
most no pageins�

In order to evaluate the use of remote mem�
ory for a more realistic application� we measured
the completion time of a kernel build after modi�
fying the code of our device driver� As can be seen
in �gure �� NO RELIABILITY performs ������ bet�
ter than disk� PARITY LOGGING performs �	����
better and MIRRORING performs just ���� bet�
ter� We see that PARITY LOGGING performs very
close to NO RELIABILITY� As the number of the
remote memory servers used increases� the di�er�
ence in performance between NO RELIABILITY and

PARITY LOGGING becomes lower�

Our performance results suggest that paging
to remote memory over an Ethernet interconnec�
tion network is simply faster than paging to the
disk� Even though both the disk and the Ethernet
have similar data transfer rates� remote memory
does not su�er from seek and rotational latency as
DISK does�

Our experimental results verify that even
when the network data transfer rate is as low
as the disk transfer rate� the performance of re�
mote memory is signi�cantly higher than the per�
formance of disk� Moreover the performance re�
quirements of reliability are surprisingly small�
Since architecture trends suggest that modern
high speed networks provide much higher data
transfer rates than modern disks� the performance
improvements of remote memory over disk are
bound to increase�

��� Scaling the Input

To understand the impact of the working set
size on the paging policy� we measure the execu�
tion time of one of our applications �FFT�� as a
function of its input size� The completion time of
FFT both under PARITY LOGGING and under DISK
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Figure �� Performance of FFT as a function

of input size when either the disk� or remote

memory are used as backing store�

is plotted in �gure �� We see that as soon as the
working set size exceeds � MBytes� the paging
starts� and the completion time of the application
rises sharply� Most users would not be willing
to tolerate such a high overhead in order to run
an application that does not �t in main memory�
Fortunately� remote memory reduces this overhead
substantially�

��� Scaling the Network Bandwidth

Although �gure � suggests that the perfor�
mance of remote memory �parity logging� is sig�
ni�cantly better than the performance of disk�
the completion time of an application even un�
der remote memory may be unacceptably high�
Hopefully� the performance of remote memory will
be improved as soon as the Ethernet intercon�
nection network is substituted by a faster one
�e�g� FDDI� ATM� FCS� etc��� To evaluate the
performance of the applications on top of faster
networks we make detailed performance measure�
ments that separate the completion time of the ap�
plication into the following factors� �i� user time
�utime�� �ii� system time �systime� �iii� initial�
ization time �inittime� �iv� page transfer time
�ptime�� Using the provided time command we
measure the utime� systime� and elapsed time
�etime� for each application� Subtracting the
utime and systime from the etime for instances
of the applications that perform no paging we cal�
culate the inittime� that is the time it takes the
operating system to load and start executing the
application� The ptime consists of the protocol
processing time �pptime� and the bandwidth de�
pendent blocking time �btime�� We measured the
pptime and found it to be equal to ��� ms per

page for TCP�IP� We calculate the btime using
the formula � btime � �etime�utime�systime�
inittime � no of page transfers � pptime�� As�
suming that a network with X times higher band�
width will decrease btime by a factor of X� we
can predict the etime of the application over this
high bandwidth network� Thus� the formula used
is � Expected elapsed time � utime � systime �
inittime�number of page transfers � pptime�
btime�X�

Wemade all these measurements on our FFT
application� and predict its performance on a sys�
tem with an interconnection network which pro�
vides ten times more bandwidth than the Ether�
net� We also predict its completion time on a sys�
tem that has enough memory to hold all the work�
ing set of the application �ALL MEMORY� by adding
the utime� systime and inittime� The predicted ex�
ecution times� along with the measured execution
times of DISK and PARITY LOGGING are plotted in
�gure 	� We see that ETHERNET��� performs very
close to ALL MEMORY� and signi�cantly better than
both ETHERNET and DISK�

To understand the results shown in �gure
	� we analyze the execution time of FFT with
�	MBytes of input when PARITY LOGGING is used�
The measured elapsed time is ������ seconds� con�
sisting of ����� sec of useful user time� ����� sec
of system time� ���� sec of initialization time and
������ sec of page transfer time� During the same
run� the application su�ered ��� pageouts and
���� pageins� Since 	 servers were used plus a par�
ity server the number of page transfers was equal
to ���� � ���� � �	��� Thus the protocol over�
head was equal to �	�� � ������� or about ����
sec� The bandwidth dependent blocking time was
equal to ������� ����� or about ������ sec� Us�
ing a ten times faster interconnection network� the
bandwidth dependent waiting time will be reduced
to ����� sec� Thus� the total completion time of
FFT would be ���������������������������
sec� or ��	�� sec� divided as follows� ����	��
in user time� ����	� in system time� ������ in
initialization time and ����	� in page transfer
time� We see that a ��� Mbit�sec interconnection
network reduces the total paging overhead to less
than ��� of the total application execution time�
We believe that most users would be willing to
pay such an overhead in order to run an applica�
tion that does not �t in main memory� After all�
the only other option they have is to su�er from
disk thrashing�
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Figure 	� Performance of FFT for various

Architecture Alternatives� DISK is the mea�
sured completion time when paging to a local disk�
ETHERNET is the measured completion time of par�
ity logging to remote memory on top of the Eth�
ernet� ETHERNET��� is the predicted completion
time when using remote memory as a paging de�
vice	 on top of a network that provides ten times
more bandwidth than the Ethernet interconnec�
tion network� ALL MEMORY is the predicted com�
pletion time of FFT when we use the same work�
station but with enough memory to hold its entire
working set�

��� The Latency of Remote Memory Pag�

ing

As explained previously� the paging latency
for FFT with input size equal to �	 MB is ������
sec� or ����	 ms per page transfer� From these�
��� ms were spent during protocol processing and
���	 ms were spent transferring each page on the
Ethernet�

Previous measurements have reported that a
	 KByte page takes about 	� ms over an Ethernet
for each pagein ���
� Of those 	� ms� �� ms were
spent on TCP overhead� 	 ms were spent on Mach
IPC overhead� ��� ms were spend on the Ether�
net� and the rest were spent on the computer�s
I�O bus� The total software latency of our im�
plementation� is only ��� ms� The reason for this
signi�cant di�erence in performance is threefold�

� The I�O bus of the DEC�Alpha ���� model
��� we use is signi�cantly faster and does not
pose a problem in performance�

� We use a DEC�Alpha processor� which is ��	
times faster than the �� processor used in
���
�

� Finally� our pager is implemented as a block

device driver� while in ���
 it was implemented
as a user�level memory manager on top of
Mach� Although user�level memory man�
agement gives increasing �exibility it induces
large overhead�

In general� although our approach may have
less �exibility than a full��edged user�level pager�
it has much better performance� Moreover�
our device�driver implementation provides bet�
ter performance than traditional �local� disk pag�
ing� while user�level implementations have not
reported performance results to support similar
claims ���
�

��	 Using Busy Workstations as Servers

In all our experiments so far� the remote
memory servers run on idle workstations� How�
ever� workstations that are able to donate their
memory for paging purposes may not be com�
pletely idle� as they may run interactive appli�
cations� Thus� we would like to investigate how
our performance �gures change when a non�idle
workstation is used as a memory server� So� we
conducted the following experiment�

On each server workstation we started an
X�window environment� and an instance
of the vi editor which was continuously
used for editing� Then� we run the ap�
plications of the experiment in �gure ��
The same inputs� and the same clients
were used� The only di�erence was that
the remote memory server processes were
run on busy instead of idle workstations��

We were surprised to see that for the FFT� GAUSS�
and MVEC applications� their completion times
were within � sec of their completion times when
the server ran on an idle workstation� Only QSORT
su�ered a �� overhead in its completion time�
probably the kernel swapped out some of the re�
mote memory server�s pages on the disk� However�
in order to �nd out how the completion time of
our applications changes with server load� we ran
FFT and QSORT under NO RELIABILITY using two
remote memory servers� On one of them a cpu
bound program �performing a �while����� loop�

�One could argue that an X�window environmentand an

editor� induce almost no load on the workstation� But� this

is exactly the point� a typical workstation� even when it is

used� it is very lightly loaded� The rest of the workstations

that are heavily loaded do not donate their main memory

for remote paging�



was initiated� To our surprise� even then the com�
pletion times of our applications were within ��
of their completion times when the server ran on
an idle workstation�

Our performance �gures suggest that most
of the time the remote memory servers were able
to satisfy the client�s requests immediately� even
on busy workstations� Our results agree with the
measurements in �gure � which report that a sig�
ni�cant portion of all workstation�s memory is un�
used even at business hours� thus no overhead is
expected to be seen when some other server pro�
cess uses the extra pages�

In the same course of experiments� we would
like to see what is the overhead that remote paging
induces on the server workstation� Thus� we mea�
sured the CPU utilization of the �otherwise idle�
remote memory server for all our experiments� and
found it always to be less than ���� Thus� the
computational overhead imposed on the remote
workstation is so low that will not be noticed by
the workstation�s owner�

��
 Using Remote Memory Paging over a

Loaded Ethernet

All the experiments presented so far were
done over an almost idle Ethernet to ensure re�
peatability of our results� However� we would like
to �nd out how the performance of remote mem�
ory paging is a�ected by the load of the network�
That is why we repeated our experiments using
an already loaded Ethernet� The results showed a
performance degradation even when the Ethernet
was lightly loaded� This situation is by no means
surprising since the paging itself uses all the band�
width it can get� Adding more sources of traf�
�c leads to an enourmous demand for bandwidth
causing repeated collisions and lowering the e�ec�
tive bandwidth of the network� leading to through�
put collapse�

Fortunately� this ine�ciency is not inher�
ent to remote memory paging but rather to the
CSMA�CD protocol employed by the Ethernet
��	
� This means that it is still bene�cial to use re�
mote memory paging over networks that employ
other technologies �e�g� token ring�� as long as
they are able to provide to remote memory paging
an e�ective bandwidth of �� or more Mbps�

��� Using the Local Disk to Increase Reli�

ability

In our work we use remote main memory
to store redundant information that will be used
to recover from workstation crashes� Another ap�
proach would be to store all remote pages to the
local disk as well ���
� e�ectively treating remote
memory as a write�through cache of the disk� We
will now compare the two approaches to �nd out
the circumstances under which the one approach
is preferable to the other�

Both approaches use the remote memory to
satisfy the read requests� This means that both
approaches perform reads at the same speed and
avoid disk head movements due to reads� thus out�
performing the local disk� Parity logging transfers
����N pages per paged out page� due to the par�
ity computation �in our experiments N was equal
to 	�� On the other hand� write through trans�
fers each paged out page both to disk to the re�
mote memory� These two page transfers are exe�
cuted in parallel� This means that the choice of
the right approach depends on the e�ective band�
width o�ered by the disk and the network� If the
network bandwidth is much higher than the disk
bandwidth� then the disk will be the bottleneck for
write through making it an unwise choice� If how�
ever the e�ective bandwidth o�ered by the disk is
comparable to the bandwidth o�ered by the net�
work and the system can overlap disk transfers
with network transfers then it is unclear which
method is best to use� In our experimental envi�
ronment the disk and network bandwidth are both
equal to �� Mbps� When write through is used the
efective disk bandwidth is close to �� Mbps� since
there are no head movements for reads and writes
are performed in large chunks� In this environ�
ment write through performs better than parity
logging and slightly worse than our no�reliability
implementation in most cases� as shown in �gure
� � However� when a modern high bandwidth net�
work is used� parity logging will probably be the
best approach� since write through will eventually
be limited by the local disk bandwidth�

	 Discussion � Future work

Our implementation suggests that it is pos�
sible to build a reliable e�cient remote memory
pager without making any modi�cations to the op�
erating system kernel� Although our system con�
tains all necessary mechanisms to support remote
memory paging� there are a few more issues con�
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Figure �� Performance of parity logging and

write through for various applications� The
input sizes for QSORT was 
��� records	 for GAUSS	
a ��������� matrix	 for MVEC a ������� ma�
trix	 and for FFT an array with ��� K elements�

cerning the overall policy that deserve further in�
vestigation� Some of these issues are discussed be�
low�

Network load� Although remote paging is
faster than using the local disk� sometimes the
network tra�c may be so high that the bandwidth
used by RMP will be limited� In this case the cost
of using the network� especially in the case of old
low bandwidth networks like Ethernet� may be�
come higher than the cost of using the local disk�
Such a situation could be handled by the RMP by
measuring the time it takes to satisfy a request and
using a threshold to determine whether it should
continue to use the network to route pageout re�
quests or it would be better to switch to the local
disk�

Heterogeneous networks� The current imple�
mentation assumes a network of workstations that
all have the same order of magnitude of physical
memory and are interconnected by a local area
network� It would be interesting to explore the
requirements that heterogeneous networks pose to
the design of the remote pager� For example� on
a wider area network the time it takes to trans�
fer a page may not be identical for each server�
In this case there may be more than three lev�
els in the memory hierarchy �local memory� re�
mote memory� disk�� depending on the variance of
the cost of communication among the hosts of the
network� Connecting machines that have an enor�
mous amount of memory �e�g� a supercomputer�
to a network of workstations also poses some prob�

lems� When the supercomputer memory is idle� it
may not always be easy to �nd enough free re�
mote workstation memory in order to be able to
use reliability policies� In this case� a no reliability
policy can be used� since all remote memory will
be provided by a single host �the supercomputer��


 Related Work

Several research groups have studied the is�
sues in using remote memory in a workstation clus�
ter to improve paging performance ��� ��� �� ��� ���
�
�

Felten and Zahorjian ���
 have implemented
a remote paging system on top of a traditional
Ethernet based system� and presented an ana�
lytical model to predict its performance� Their
performance results� although preliminary� are en�
couraging towards using remote memory paging
systems� Schilit and Duchamp ���
 have imple�
mented a remote memory paging system on top
of Mach ��� for portable computers� Their remote
memory paging system has performance similar
to local disk paging� The cost of a single remote
memory pagein over an Ethernet� they quote� is
about 	� ms for a 	Kbyte page� which is rather
high� According to their measurements� a signif�
icant percentage of this time �close to �� ms� is
spend executing Mach IPC and TCP code� Comer
and Gri�oen ��
 have implemented and compared
remote memory paging vs� remote disk paging�
over NFS� on an environment with diskless work�
stations� Their results suggest that remote mem�
ory paging can be ��� to ���� faster than remote
disk paging� depending on the disk access pattern�
Anderson et� al� have proposed the use of net�
work memory as backing store ��
� Their simu�
lation results suggest that using remote memory
over a ���Mbits�s ATM network �is � to �� times
faster than thrashing to disk� ��
� In their subse�
quent work ��
� they outline the implementation
of a remote memory pager on top of an ATM based
network�

Our work di�ers from previous approaches
to remote memory paging in the following aspects�
�i� we use a variety of real applications to evaluate
and demonstrate the feasibility of remote memory
paging� and �ii� we explore the issues in build�
ing a reliable remote memory system that is re�
silient to individual workstation failures� Previ�
ous approaches either ignore workstation failures�
or write dirty pages both to the disk and the re�
mote memory� limiting their performance by the



available disk throughput�

Recently� research groups start to explore the
issue of using remote memory to improve �le sys�
tem performance ���� �� 
� Feeley et� al� have
implemented a global memory management sys�
tem in a workstation cluster� using the idle mem�
ory in the cluster to store clean pages of mem�
ory loaded workstations ���
� Anderson et� al�
have implemented xFS� a serverless network �le
system ��� �
� Both network memory systems
have been incorporated inside the kernel of exist�
ing operating systems and their performance has
been demonstrated� Although improvements in
�le system performance may ultimately lead to
paging performance improvements� solutions de�
veloped for �le systems may be cumbersome� or
too general for remote memory paging systems�
�i� in �le systems� client processes may share �le
data� leading to cooperative remote memory man�
agement policies� In paging instead� clients never
share their swap spaces� Thus� policies developed
to optimize a client�server approach to �le I�O�
and facilitate cooperation among client processes
that share data� do not necessarily apply to a pag�
ing system where no single paging server is used�
and no sharing �of swap spaces� between client
processes takes place� Finally� we use the network
memory for storing both clean and dirty pages us�
ing our novel parity�based approach� Thus� page
out �write� operations can be acknowledged at the
speed of remote memory� while in ���� �
 page out
operations are acknowledged at the speed of disk�

Although the area of reliability in network
memory systems is new� it shares several of the
ideas developed for other areas of reliable memory
management� For example� parity based methods
have been extensively used for Redundant Arrays
of Inexpensive Disks �RAIDs� ��
�

Log based methods have been used for Log
based �le systems� that send all updates to a �le
to be written in sequential blocks of the disk ���
�
Thus� the head of the disk does not make random
seek movements� and the e�ective data transfer
rate of the disk increases� Log based �le systems�
alike our LOGGING methods� create a fragmented
space that needs to be cleaned� Although the gen�
eral ideas may be similar� there are substantial dif�
ferences between a log based �le system and the
log based reliable network memory we propose�
For example� �i� Fragmentation in log based �le
systems occurs in large chunks �several Mbytes��
while fragmentation in log based reliable network

memory occurs in small parity groups� and �ii� Log
based reliable network memory systems may use
parity groups as soon as they are emptied� but
log based �le systems may not used emptied disk
blocks� because this would require a head move�
ment� �iii� Cleaning in log based �le system is
much more infrequent than it is in network mem�
ory� thus it must be made more e�cient� and �iv�
the objective of log based network memory sys�
tems is to reduce page transfers� while the objec�
tive of log based �le systems is to reduce disk head
movements� For the above reasons� methods de�
veloped for log based �le systems do not necessar�
ily apply �as is� to network memory systems�

Our work bears some similarity with dis�
tributed shared memory systems ���� ��
 in that
both approaches use remote memory to store an
application�s data� Our main di�erence is that we
focus on sequential applications where pages are
not �or rarely� shared� while distributed�shared�
memory projects deal with parallel applications�
where the main focus is to reduce the cost of page
sharing�

� Conclusions

In this paper we explore the use of remote
main memory for paging� We describe our pro�
totype implementation of a remote memory pager
implemented on top of the DEC OSF�� operat�
ing system as a device driver� No modi�cations
were made to the kernel of the �monolithic� DEC
OSF�� operating system� We run several applica�
tions that use our pager on top of a DEC�Alpha�
based workstation cluster to measure the perfor�
mance of the system� The contributions of this
paper are�

� We describe how to build a reliable remote
memory paging system� we propose a novel
parity�based policy that is resilient to single
workstation failures�

� We show that reliable paging to remote mem�
ory results in substantial performance im�
provements over local disk paging�

Based on our implementation and our perfor�
mance results we conclude�

� Paging to remote memory results in signif�
icant performance improvement over paging
to disk� Applications that use our pager even
when running on top of traditional Ethernet



technology show performance improvements
of up to ��� �see �gure ��� Extrapolating
from our results� we show that on top of
a faster interconnection network even higher
performance improvements are realizable�

� Paging to remote memory is an inexpensive
way to let applications use more main mem�
ory than a single workstation provides� Re�
mote memory paging provides good perfor�
mance with almost no extra hardware sup�
port� The only way for magnetic disks to
provide comparable performance is to use ex�
pensive disk arrays�

� Reliability in remote memory paging comes
at low cost� Parity logging based pag�
ing provides reliability at low runtime and
memory overhead� performs very close to
NO RELIABILITY and much faster than disk
paging�

� The bene�ts of paging to remote memory will
only increase with time� Current architecture
trends suggest that the gap between proces�
sor and disk speed continues to widen� Disks
are not expected to provide the bandwidth
needed by paging unless a breakthrough in
disk technology occurs� On the other hand�
interconnection network bandwidth keeps in�
creasing at a much higher rate than �single�
disk bandwidth� thereby increasing the per�
formance bene�ts of paging to remote mem�
ory�

Based on our performance measurements we
believe that remote memory paging is a cost�
e�ective and performance�e�ective way to exe�
cute memory�limited applications on a network of
workstations�
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Availability
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