Adding Flexibility to a Remote Memory Pager

Evangelos P. Markatos

George Dramitinos

Computer Architecture and VLSI Lab
Institute of Computer Science (ICS)
Foundation for Research & Technology — Hellas (FORTH)
P.O.Box 1385, Heraklio, Crete, GR-711-10 GREECE
{markatos, dramit}@ics.forth.gr

Proceedings of the Fourth International Workshop on Object Orientation in Operating Systems.

Abstract

Traditional operating systems use magnetic disks as
paging devices, although the cost of each page fault
measured in processor cycles continues to increase. In
this paper we argue that applications should be given
the opportunity to use as backing store either mag-
netic disk or the memory of idle workstations within
the same LAN. We have implemented a pager that pro-
vides this flexibility, measured its performance over an
Ethernet, and found it to be superior to traditional
disk paging. We conclude that as the available net-
work bandwidth increases, the use of network memory
as backing store becomes a evenmore attractive alter-
native.

1 Introduction

Traditional operating systems use magnetic disks
as paging devices. In such systems, pages that can’t
be placed in main memory are stored on the mag-
netic disk, and recalled to main memory when needed.
Because magnetic disks speed does not keep up with
processor speed, the cost of paging (measured in pro-
cessor cycles) increases with time. For example, only
five years ago, the cost of a page fault was 0.1 to 0.6
million processor cycles [3]. Currently, a page transfer
from disk to main memory takes an average of 10 to
20 ms, which corresponds to an equivalent of 2-4 mil-
lion processor cycles on a modern 200 MHz processor!
Thus, the cost of a page fault over the last five years,
has increased by almost an order of magnitude relative
to processor speed, a cost most applications are not
willing to pay. To make matters worse, disk-latency-
hiding methods like multiprogramming, are not going
to hide the latency of paging, because multiprogram-
ming implies that more applications will contend for
the same main memory and will probably produce an
even higher number of page faults, leading to thrash-
ing.

There are two ways that will make paging effi-
cient and thus useful for applications that require large
amounts of main memory:

e Provide fast paging devices.

o Give systems the flezibility to choose among the
available paging devices, and tune the paging pa-
rameters to the needs of each application.

1.1 Fast Paging Devices

Traditional operating systems force all applications
to page to the local disk of their host computer or to
a remote disk. However, in most systems there is a
variety of paging devices that an application may use
for paging. For example, in workstation clusters, the
unused main memory of all workstations can be col-
lectively used for paging. Experimental results sug-
gest that remote memory paging may have substan-
tial performance improvements over local disk paging
[4. An another example, computer systems which
are equipped with Redundant Arrays of Inexpensive
Disks[2] provide higher throughput than a single disk,
thereby reducing the cost of paging.

In this paper we argue that systems should use re-
mote memory as an alternative paging device.This ap-
proach benefits from

e high data rates provided by modern networks.

e diverting some load from the disk that can now
be used solely for file system I/O.

1.2 Flexibility

There exist several devices for paging that provide
a wide range of performance, cost, and fault-tolerance
levels. The best paging device for each application de-
pends on several factors including (i) the performance
requirements of the application, (i1) the application’s
fault-tolerance needs, and (iii) the current load of each
paging device, etc.

Traditional operating systems do not provide any
flexibility in their paging system. A noticeable ex-
ception are operating systems that support user-level
memory management [1]. In these systems each ob-
ject 1s managed by a user-level process, the memory
manager, which is responsible for storing and retriev-
ing the object from the paging device. Although flex-
ible, user-level memory managers induce several sys-

tem calls and protection domain crossings, which usu-
ally result in large amounts of overhead.

In this paper we describe the implementation of a
pager that, although provides a high degree of flex-
ibility, avoids traditional overheads. A prototype of
our pager has been implemented as an external de-
vice driver linked to the DEC/OSF-1 operating sys-
tem. Our pager is faster than user-level pagers, and
can be used in any system that runs DEC/OSF-1, be-
cause not a single change was made to the operating
system kernel. The rest of the paper is organized as
follows: section 2 describes the implementation, sec-
tion 3 presents some preliminary performance results
and section 4 presents our conclusions.

2 The Implementation of a Flexible
Pager

We have already implemented a pager that sup-
ports either the local disk, or another workstation’s
main memory as the paging device. It is robust enough
to be used during the development and compilation of
the system itself. It consists of a client issuing paging
requests and a server satisfying these requests. The
client side has been integrated in the DEC-OSF /1 ker-
nel of a DEC-Alpha 3000 model 300 with 32 MB main
memory as a block device driver that handles all page-
in and page-out requests. In order to service these
requests, it may forward them either to a user level
client running on another host, or to the local disk.
The DEC-OSF/1 kernel is not even aware whether
we use remote main memory or a magnetic disk as a
paging device. It just performs ordinary paging activ-
itles using a block device. This design minimizes the
modifications needed in order to port the system to
another operating system and avoids modifications to
the DEC/OSF-1 operating system kernel.

2.1 Fault-Tolerance

Workstations may crash at any time. If their mem-
ory is used as a paging device by some applications,
then the data will be lost and the applications will
not be able to complete their execution. To avoid this
problem, the pager may implement a fault-tolerance
policy, which will recover the lost data. Currently we
are experimenting with two policies taken from the
domain of disk arrays [2]: marroring, and parity. In
mirroring, each swapped out page is sent to two pag-
ing servers; if one of them crashes, the data can still be
found in the other. In parity, all pages are partitioned
into sets. In each set of pages, only one page of each
server can participate. For each set of pages there is
a parity page, that contains the parity of all the other
pages in the set. When a server crashes, its pages can
be recovered by XORing the rest of the pages in each
set.

Both the described policies can tolerate the crash
of only one server. Policies that tolerate the crash of
several servers can be added as well. The choice of the
suitable policy for each application depends on several
factors including the application’s requirements, and
the type of hardware used. For example, on top of a
broadcast network, like Ethernet, or FDDI, mirroring
can be simply and efficiently implemented, because

each page need to be sent (broadcasted) only once,
for all the paging servers to receive it. On the other
hand, on top of an interconnection based network, like
ATM, the parity policy may be more appropriate be-
cause 1t needs less memory than mirroring to keep the
redundant information.

A detailed study of fault-tolerance policies is out-
side the scope of this paper. The interested reader is
refered to [4].

2.2 Performance Monitoring Tools

To make accurate decisions, the pager needs infor-
mation about the load and response of each paging de-
vice, so as to be able to make the best choice. We are
currently working on developing a tool that will mon-
itor several dynamic performance metrics and make
them available to pagers. The metrics monitored in-
clude disk traffic, networks traffic, main memory un-
used, etc. Based on these metrics, a pager can choose
the best available paging device each time.

3 Sample Performance Results

In this section, we evaluate the use of remote mem-
ory for paging and predict the performance of our
pager on top of high bandwidth networks.

3.1 Experimental Environment

We run a number of representative applications on
top of our pager'. The applications can use either
the disk, or the remote memory for paging. The local
disk used is a DEC RZ55 providing 10Mbits/sec band-
width, and an average seek time of 16 ms. Remote
memory paging was done on top of standard Ethernet
that provides the same bandwidth as the disk. All
workstations used were DEC Alpha 3000 model 300.
Our applications include GAUSS, a gaussian elimina-
tion, QSORT, a quicksort program, FFT, a Fast-Fourier
Transform, MVEC, a matrix-vector multiplication and
NBODY, a program calculating the gravity forces among
particles. To ensure repeatability of our results, all ex-
periments were run after system reboot.

3.2 Remote Memory vs Disk

We measured the completion time of the ap-
plications using either paging device (DISK, or
REMOTE MEMORY) and plotted the results in figure 1.
We see that the use of remote memory paging even
over a low bandwidth interconnection network like
Ethernet yields significant improvement in the com-
pletion time of all the applications tested. The perfor-
marnce gain is proportional to the number of pageins
and pageouts performed during the execution of each
application and ranges from 40.45% for NBODY to
108.72% for GAUSS.

In table 1 we measure the cost of a pagein
or pageout operation using either the DISK or the
REMOTE MEMORY. The detailed description of the way
this measurement is performed can be found in [4].
We see that the time to service a pagein or pageout
request using the DISK is more than twice the time to
service the request using the REMOTE_MEMORY.

IWe distribute the source code of our pager along
with the test programs freely using anonymous ftp from
ftp.ics.forth.gr:pub/pager

2200
2000

1800
] REMOTE_MEMORY

1600 [oisk

1400
1200
1000

800

600

400

200 |_|_| ’—H
0 e

MVEC QSORT FFT GAUSS N-BODY

Completion Time (Secs)

Figure 1: Performance of applications using ei-
ther the DISK, or the REMOTE MEMORY as paging
device. We see that for all applications, the use of
REMOTE MEMORY results in significantly faster execu-
tion. All applications were run on a DEC Alpha 3000
model 300 workstation. The input sizes for QSORT
was 4000 records, for GAUSS, a 2000x2000 matrix,
for MVEC, a 2100x2100 matrix, for FFT an array with
900000 elements, and for NBODY an array with 140000
elements.

The cost of a page transfer to/from DISK varies from
11.36ms to 22.14 ms. Since the disk bandwidth is 10
Mb/s, it takes 6.25 ms to read/write an 8 KB page,
thus the average seek time ranges from 5.11 ms to
15.89 ms depending on the application’s memory ac-
cess pattern. For an application that performs only
pageouts, like MVEC, the average seek time is mini-
mal since most paged out pages are written consecu-
tively to the disk. On the other hand, for applications
like NBODY that have an almost random access pattern
leading to pageins of pages scattered over the disk, the
average seek time increases considerably.

We also see that the cost per page transfer for
REMOTE MEMORY ranges from 7.02 ms for MVEC to 9.63
ms for QSORT. MVEC is an application that performs
only pageouts, many of them not causing it to block.
That’s why it exhibits the lowest cost per page trans-
fer. For the rest of the applications, the cost of the
page transfer depends on the interleaving of pageins
and pageouts and on the amount of computation per-
formed per page, that determine the amount of over-
lapping between computation and paging. That’s why
QSORT that performs much lower amount of computa-
tion per page than all other applications exhibits the
highest cost per page transfer.

To understand how the completion time scales with
input size, we chose one application (QSORT) and plot-
ted its completion time versus its input size in figure
2. We see that as soon as the input size exceeds the
available main memory (16 MB), paging starts, which
leads to unacceptable performance when the local disk

Application | DISK (ms) | REMOTE MEMORY (ms)
MVEC 11.36 7.02
QSORT 17.89 9.63
FFT 18.77 8.7
GAUSS 18.74 8.42
NBODY 22.14 8.21

Table 1: Cost of a page transfer using either the
DISK or the REMOTE MEMORY as a paging device.

250 ;
DISK ——
REMOTE_MEMORY -+
g 200 t 1
2
= 150 1
c A
S
T
g 100 1
Q
]
8
2 50 + 1
0 1

0 5 10 15 20 25 30 35
Size of Input (in Mbytes)

Figure 2: Performance of QSORT using either the
DISK, or the REMOTE MEMORY as paging device.

is used for paging. The improvement in completion
time using REMOTE MEMORY is as high as 82% for input
size equal to 24 MB.

3.3 Performance Prediction over High
Bandwidth Networks

We see that the cost of disk paging makes it essen-
tially useless. REMOTE _MEMORY over Ethernet improves
the situation, but it still suffers from significant over-
head. Fortunately, Ethernet is a slow old technology
that will eventually be replaced by faster networks like
FDDI and ATM.

To evaluate the performance of the applications on
top of modern (faster) networks, we extrapolate from
the measurements of QSORT we made on top of the
Ethernet. Assuming that an X times faster intercon-
nection network will reduce the bandwidth-dependent
blocking time by a factor of X, and leave the rest of
the user and system time the same, we can predict
the completion time of the application on the faster
network.

We made all these measurements on our QSORT ap-
plication, and predict its performance on a system
with an interconnection network which is ten times
as fast as the Ethernet (100 Mbps ETHERNET). We
also predict its completion time on a system that has
enough memory to hold all the working set of the ap-
plication (ALL_DRAM). The predicted execution times,
along with the measured execution times of DISK and
REMOTE MEMORY (shown as 10 Mbps ETHERNET) are
plotted in figure 3. We see that 100 Mbps ETHERNET

10 20

250 : : - : :

é}, DISK

Q 200 t 1
E 150 | 10 Mbps ETHERNET

.-6 -

= 100 r 1
5

O S0 r 100 Mbps ETHERNET

e 0 o @H2 " “ALL DRAM

S

30 40 50 60

Size of Input (in Mbytes)

Figure 3: Performance of QSORT for various Architecture Alternatives. Measured performance for DISK
and REMOTE MEMORY. Predicted performance for ETHERNET*10. ALL _MAIN MEMORY is the predicted completion time
of QSORT when we use the same workstation but with enough memory to hold its entire working set.

performs very close to ALL_DRAM, and significantly bet-
ter than both 10 Mbps ETHERNET and DISK. Thus, our
approach to remote memory paging, on top of fast
interconnection networks can effectively use the col-
lective memory of a workstation cluster, and give ap-
plications the illusion that the physical memory they
have available locally is sufficiently large.

4 Conclusions

In this paper we argue that the cost of paging to
magnetic disks continues to increase with time because
magnetic disks speed does not keep up with processor
speed. Fortunately, the remote memory of idle work-
stations within the same LAN can be used as backing
store. We describe the implementation of a pager that
uses elther remote idle memories or magnetic disks as
backing store, and measure the performance of a num-
ber of applications using this pager. We see that even
over low bandwidth networks, like the Ethernet, pag-
ing to remote memory is twice as fast as paging to
traditional disk. Evermore, our pager avoids the tra-
ditional overhead associated with user-level memory
managers, because it is being implemented as a device-
driver linked to the DEC/OSF-1 kernel, resulting in
fewer system calls, protection domain crossings, and
data copying. We predict the performance of QSORT
over high bandwidth networks and find that the per-
formance of the application over a 100 Mbps network
is very close to the performance of a system that has
enough main memory to hold the entire working set
of the application. We conclude that as the network
bandwidth increases, the use of remote memory for
paging provides an attractive alternative to disk pag-
ing at no extra hardware cost.

Acknowledgments

This work was developed in the ESPRIT/HPCN
project “SHIPS”, and will form a test application for
the ACTS project “ASICCOM”, funded by the Euro-
pean Union (DG III and DG XIII). We deeply appre-
ciate this financial support, without which this work

would have not existed.

We would like to thank Catherine Chronaki and
Manolis Katevenis for useful comments in earlier
drafts of this paper. A. Alexandrakis is involved in the
implementation of performance monitoring tools.

References

[1] M. Accetta, R. Baron, W. Bolosky, D. Golub,
R. Rashid, A. Tevanian, and M. Young. Mach:
A New Kernel Foundation for UNIX Development.
In Proceedings of the Summer 1986 USENIX Tech-
nical Conference and FEzhibition, pages 93-112,
Pittsburgh, PA, June 1986.

[2] Peter M. Chen, Edward K. Lee, Garth A. Gibson,
Randy H. Katz, and David A. Patterson. RAID:
High-Performance, Reliable Secondary Storage.
ACM Computing Surveys, 26(2):145-185, June
1994.

[3] J. L. Hennessy and D. A. Patterson. Computer
Architecture: A Quantitative Approach. Morgan
Kaufmann Publishers, Inc., 1990.

[4] E.P. Markatos, G. Dramitinos, and K. Pa-
pachristos. Implementation of a Remote Mem-
ory Pager. Technical Report TRI129, In-
stitute of Computer Science, FORTH, March
1995. available via anonymous ftp from
ftp.ics.forth.gr:/tech-reports/1995.

