
Adding Flexibility to a Remote Memory Pager

Evangelos P� Markatos George Dramitinos

Computer Architecture and VLSI Lab
Institute of Computer Science �ICS�

Foundation for Research � Technology � Hellas �FORTH�
P�O�Box ����	 Heraklio	 Crete	 GR
���
�� GREECE

fmarkatos	 dramitg
ics�forth�gr

Proceedings of the Fourth International Workshop on Object Orientation in Operating Systems�

Abstract
Traditional operating systems use magnetic disks as

paging devices� although the cost of each page fault
measured in processor cycles continues to increase� In
this paper we argue that applications should be given
the opportunity to use as backing store either mag�
netic disk or the memory of idle workstations within
the same LAN� We have implemented a pager that pro�
vides this �exibility� measured its performance over an
Ethernet� and found it to be superior to traditional
disk paging� We conclude that as the available net�
work bandwidth increases� the use of network memory
as backing store becomes a evenmore attractive alter�
native�

� Introduction
Traditional operating systems use magnetic disks

as paging devices� In such systems� pages that can�t
be placed in main memory are stored on the mag�
netic disk� and recalled to main memory when needed�
Because magnetic disks speed does not keep up with
processor speed� the cost of paging �measured in pro�
cessor cycles� increases with time� For example� only
�ve years ago� the cost of a page fault was ��� to ��	
million processor cycles 
��� Currently� a page transfer
from disk to main memory takes an average of �� to

� ms� which corresponds to an equivalent of 
�� mil�
lion processor cycles on a modern 
�� MHz processor�
Thus� the cost of a page fault over the last �ve years�
has increased by almost an order of magnitude relative
to processor speed� a cost most applications are not
willing to pay� To make matters worse� disk�latency�
hiding methods like multiprogramming� are not going
to hide the latency of paging� because multiprogram�
ming implies that more applications will contend for
the same main memory and will probably produce an
even higher number of page faults� leading to thrash�
ing�

There are two ways that will make paging e��
cient and thus useful for applications that require large
amounts of main memory�

� Provide fast paging devices�

� Give systems the �exibility to choose among the
available paging devices� and tune the paging pa�
rameters to the needs of each application�

��� Fast Paging Devices
Traditional operating systems force all applications

to page to the local disk of their host computer or to
a remote disk� However� in most systems there is a
variety of paging devices that an application may use
for paging� For example� in workstation clusters� the
unused main memory of all workstations can be col�
lectively used for paging� Experimental results sug�
gest that remote memory paging may have substan�
tial performance improvements over local disk paging

��� An another example� computer systems which
are equipped with Redundant Arrays of Inexpensive
Disks

� provide higher throughput than a single disk�
thereby reducing the cost of paging�

In this paper we argue that systems should use re�
mote memory as an alternative paging device�This ap�
proach bene�ts from

� high data rates provided by modern networks�

� diverting some load from the disk that can now
be used solely for �le system I�O�

��� Flexibility
There exist several devices for paging that provide

a wide range of performance� cost� and fault�tolerance
levels� The best paging device for each application de�
pends on several factors including �i� the performance
requirements of the application� �ii� the application�s
fault�tolerance needs� and �iii� the current load of each
paging device� etc�

Traditional operating systems do not provide any
�exibility in their paging system� A noticeable ex�
ception are operating systems that support user�level
memory management 
��� In these systems each ob�
ject is managed by a user�level process� the memory
manager� which is responsible for storing and retriev�
ing the object from the paging device� Although �ex�
ible� user�level memory managers induce several sys�



tem calls and protection domain crossings� which usu�
ally result in large amounts of overhead�

In this paper we describe the implementation of a
pager that� although provides a high degree of �ex�
ibility� avoids traditional overheads� A prototype of
our pager has been implemented as an external de�
vice driver linked to the DEC�OSF�� operating sys�
tem� Our pager is faster than user�level pagers� and
can be used in any system that runs DEC�OSF��� be�
cause not a single change was made to the operating
system kernel� The rest of the paper is organized as
follows� section 
 describes the implementation� sec�
tion � presents some preliminary performance results
and section � presents our conclusions�

� The Implementation of a Flexible
Pager

We have already implemented a pager that sup�
ports either the local disk� or another workstation�s
mainmemory as the paging device� It is robust enough
to be used during the development and compilation of
the system itself� It consists of a client issuing paging
requests and a server satisfying these requests� The
client side has been integrated in the DEC�OSF�� ker�
nel of a DEC�Alpha ���� model ��� with �
 MB main
memory as a block device driver that handles all page�
in and page�out requests� In order to service these
requests� it may forward them either to a user level
client running on another host� or to the local disk�
The DEC�OSF�� kernel is not even aware whether
we use remote main memory or a magnetic disk as a
paging device� It just performs ordinary paging activ�
ities using a block device� This design minimizes the
modi�cations needed in order to port the system to
another operating system and avoids modi�cations to
the DEC�OSF�� operating system kernel�

��� Fault�Tolerance
Workstations may crash at any time� If their mem�

ory is used as a paging device by some applications�
then the data will be lost and the applications will
not be able to complete their execution� To avoid this
problem� the pager may implement a fault�tolerance
policy� which will recover the lost data� Currently we
are experimenting with two policies taken from the
domain of disk arrays 

�� mirroring� and parity� In
mirroring� each swapped out page is sent to two pag�
ing servers� if one of them crashes� the data can still be
found in the other� In parity� all pages are partitioned
into sets� In each set of pages� only one page of each
server can participate� For each set of pages there is
a parity page� that contains the parity of all the other
pages in the set� When a server crashes� its pages can
be recovered by XORing the rest of the pages in each
set�

Both the described policies can tolerate the crash
of only one server� Policies that tolerate the crash of
several servers can be added as well� The choice of the
suitable policy for each application depends on several
factors including the application�s requirements� and
the type of hardware used� For example� on top of a
broadcast network� like Ethernet� or FDDI� mirroring
can be simply and e�ciently implemented� because

each page need to be sent �broadcasted� only once�
for all the paging servers to receive it� On the other
hand� on top of an interconnection based network� like
ATM� the parity policy may be more appropriate be�
cause it needs less memory than mirroring to keep the
redundant information�

A detailed study of fault�tolerance policies is out�
side the scope of this paper� The interested reader is
refered to 
���

��� Performance Monitoring Tools
To make accurate decisions� the pager needs infor�

mation about the load and response of each paging de�
vice� so as to be able to make the best choice� We are
currently working on developing a tool that will mon�
itor several dynamic performance metrics and make
them available to pagers� The metrics monitored in�
clude disk tra�c� networks tra�c� main memory un�
used� etc� Based on these metrics� a pager can choose
the best available paging device each time�

� Sample Performance Results
In this section� we evaluate the use of remote mem�

ory for paging and predict the performance of our
pager on top of high bandwidth networks�

��� Experimental Environment
We run a number of representative applications on

top of our pager�� The applications can use either
the disk� or the remote memory for paging� The local
disk used is a DEC RZ�� providing ��Mbits�sec band�
width� and an average seek time of �	 ms� Remote
memory paging was done on top of standard Ethernet
that provides the same bandwidth as the disk� All
workstations used were DEC Alpha ���� model ����
Our applications include GAUSS� a gaussian elimina�
tion� QSORT� a quicksort program� FFT� a Fast�Fourier
Transform� MVEC� a matrix�vector multiplication and
NBODY� a program calculating the gravity forces among
particles� To ensure repeatability of our results� all ex�
periments were run after system reboot�

��� Remote Memory vs Disk
We measured the completion time of the ap�

plications using either paging device �DISK� or
REMOTE MEMORY� and plotted the results in �gure ��
We see that the use of remote memory paging even
over a low bandwidth interconnection network like
Ethernet yields signi�cant improvement in the com�
pletion time of all the applications tested� The perfor�
mance gain is proportional to the number of pageins
and pageouts performed during the execution of each
application and ranges from ������ for NBODY to
�����
� for GAUSS�

In table � we measure the cost of a pagein
or pageout operation using either the DISK or the
REMOTE MEMORY� The detailed description of the way
this measurement is performed can be found in 
���
We see that the time to service a pagein or pageout
request using the DISK is more than twice the time to
service the request using the REMOTE MEMORY�

�We distribute the source code of our pager along

with the test programs freely using anonymous ftp from

ftp�ics�forth�gr�pub�pager



MVEC QSORT FFT GAUSS N-BODY
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

C
om

pl
et

io
n 

T
im

e 
(S

ec
s)

REMOTE_MEMORY

DISK

Figure �� Performance of applications using ei�
ther the DISK� or the REMOTE MEMORY as paging
device� We see that for all applications� the use of
REMOTE MEMORY results in signi�cantly faster execu�
tion� All applications were run on a DEC Alpha ����
model ��� workstation� The input sizes for QSORT
was ���� records� for GAUSS� a 
����
��� matrix�
for MVEC� a 
����
��� matrix� for FFT an array with
������ elements� and for NBODY an array with ������
elements�

The cost of a page transfer to�from DISK varies from
����	ms to 

��� ms� Since the disk bandwidth is ��
Mb�s� it takes 	�
� ms to read�write an � KB page�
thus the average seek time ranges from ���� ms to
����� ms depending on the application�s memory ac�
cess pattern� For an application that performs only
pageouts� like MVEC� the average seek time is mini�
mal since most paged out pages are written consecu�
tively to the disk� On the other hand� for applications
like NBODY that have an almost random access pattern
leading to pageins of pages scattered over the disk� the
average seek time increases considerably�

We also see that the cost per page transfer for
REMOTE MEMORY ranges from ���
 ms for MVEC to ��	�
ms for QSORT� MVEC is an application that performs
only pageouts� many of them not causing it to block�
That�s why it exhibits the lowest cost per page trans�
fer� For the rest of the applications� the cost of the
page transfer depends on the interleaving of pageins
and pageouts and on the amount of computation per�
formed per page� that determine the amount of over�
lapping between computation and paging� That�s why
QSORT that performs much lower amount of computa�
tion per page than all other applications exhibits the
highest cost per page transfer�

To understand how the completion time scales with
input size� we chose one application �QSORT� and plot�
ted its completion time versus its input size in �gure

� We see that as soon as the input size exceeds the
available main memory ��	 MB�� paging starts� which
leads to unacceptable performance when the local disk

Application DISK �ms� REMOTE MEMORY �ms�
MVEC ����	 ���

QSORT ����� ��	�
FFT ����� ���
GAUSS ����� ���

NBODY 

��� ��
�

Table �� Cost of a page transfer using either the
DISK or the REMOTE MEMORY as a paging device�

0

50

100

150

200

250

0 5 10 15 20 25 30 35

T
ot

al
 C

om
pl

et
io

n 
tim

e 
(s

ec
s)

 

Size of Input (in Mbytes)

DISK
REMOTE_MEMORY

Figure 
� Performance of QSORT using either the
DISK� or the REMOTE MEMORY as paging device�

is used for paging� The improvement in completion
time using REMOTE MEMORY is as high as �
� for input
size equal to 
� MB�

��� Performance Prediction over High
Bandwidth Networks

We see that the cost of disk paging makes it essen�
tially useless� REMOTE MEMORY over Ethernet improves
the situation� but it still su�ers from signi�cant over�
head� Fortunately� Ethernet is a slow old technology
that will eventually be replaced by faster networks like
FDDI and ATM�

To evaluate the performance of the applications on
top of modern �faster� networks� we extrapolate from
the measurements of QSORT we made on top of the
Ethernet� Assuming that an X times faster intercon�
nection network will reduce the bandwidth�dependent
blocking time by a factor of X� and leave the rest of
the user and system time the same� we can predict
the completion time of the application on the faster
network�

We made all these measurements on our QSORT ap�
plication� and predict its performance on a system
with an interconnection network which is ten times
as fast as the Ethernet ���� Mbps ETHERNET�� We
also predict its completion time on a system that has
enough memory to hold all the working set of the ap�
plication �ALL DRAM�� The predicted execution times�
along with the measured execution times of DISK and
REMOTE MEMORY �shown as �� Mbps ETHERNET� are
plotted in �gure �� We see that ��� Mbps ETHERNET



0

50

100

150

200

250

10 20 30 40 50 60T
ot

al
 C

om
pl

et
io

n 
tim

e 
(s

ec
s)

Size of Input (in Mbytes)

DISK

10 Mbps ETHERNET

100 Mbps ETHERNET
ALL DRAM

Figure �� Performance of QSORT for various Architecture Alternatives� Measured performance for DISK
and REMOTE MEMORY� Predicted performance for ETHERNET���� ALL MAIN MEMORY is the predicted completion time
of QSORT when we use the same workstation but with enough memory to hold its entire working set�

performs very close to ALL DRAM� and signi�cantly bet�
ter than both �� Mbps ETHERNET and DISK� Thus� our
approach to remote memory paging� on top of fast
interconnection networks can e�ectively use the col�
lective memory of a workstation cluster� and give ap�
plications the illusion that the physical memory they
have available locally is su�ciently large�

� Conclusions
In this paper we argue that the cost of paging to

magnetic disks continues to increase with time because
magnetic disks speed does not keep up with processor
speed� Fortunately� the remote memory of idle work�
stations within the same LAN can be used as backing
store� We describe the implementation of a pager that
uses either remote idle memories or magnetic disks as
backing store� and measure the performance of a num�
ber of applications using this pager� We see that even
over low bandwidth networks� like the Ethernet� pag�
ing to remote memory is twice as fast as paging to
traditional disk� Evermore� our pager avoids the tra�
ditional overhead associated with user�level memory
managers� because it is being implemented as a device�
driver linked to the DEC�OSF�� kernel� resulting in
fewer system calls� protection domain crossings� and
data copying� We predict the performance of QSORT
over high bandwidth networks and �nd that the per�
formance of the application over a ��� Mbps network
is very close to the performance of a system that has
enough main memory to hold the entire working set
of the application� We conclude that as the network
bandwidth increases� the use of remote memory for
paging provides an attractive alternative to disk pag�
ing at no extra hardware cost�

Acknowledgments
This work was developed in the ESPRIT�HPCN

project �SHIPS�� and will form a test application for
the ACTS project �ASICCOM�� funded by the Euro�
pean Union �DG III and DG XIII�� We deeply appre�
ciate this �nancial support� without which this work

would have not existed�
We would like to thank Catherine Chronaki and

Manolis Katevenis for useful comments in earlier
drafts of this paper� A� Alexandrakis is involved in the
implementation of performance monitoring tools�

References

�� M� Accetta� R� Baron� W� Bolosky� D� Golub�

R� Rashid� A� Tevanian� and M� Young� Mach�
A New Kernel Foundation for UNIX Development�
In Proceedings of the Summer ���� USENIX Tech�
nical Conference and Exhibition� pages �����
�
Pittsburgh� PA� June ���	�



� Peter M� Chen� Edward K� Lee� Garth A� Gibson�
Randy H� Katz� and David A� Patterson� RAID�
High�Performance� Reliable Secondary Storage�
ACM Computing Surveys� 
	�
���������� June
�����


�� J� L� Hennessy and D� A� Patterson� Computer
Architecture� A Quantitative Approach� Morgan
Kaufmann Publishers� Inc�� �����


�� E�P� Markatos� G� Dramitinos� and K� Pa�
pachristos� Implementation of a Remote Mem�
ory Pager� Technical Report TR�
�� In�
stitute of Computer Science� FORTH� March
����� available via anonymous ftp from
ftp�ics�forth�gr��tech�reports������


