
Implementation and Evaluation of a Remote Memory Pager�

Evangelos P� Markatos George Dramitinos

Kosmas Papachristos

Technical Report FORTH�ICS ���
Institute of Computer Science �ICS�

Foundation for Research � Technology � Hellas �FORTH�

P�O�Box ����

Heraklio	 Crete	 GR
���
�� GREECE

markatoscsi�forth�gr

March ����

Abstract

Traditional operating systems use magnetic disks as paging devices� even though the cost of each

page�fault measured in processor cycles continues to increase�

In this paper we explore the use or remote main memory for paging� We describe the design�

implementation and evaluation of a pager that uses main memory of remote workstations as a

faster�than�disk paging device� Our pager has been implemented as a block device driver linked to

the DEC�OSF� operating system� without any modi�cations to the kernel code� Using several test

applications we measure the performance of remote memory paging over an Ethernet interconnection

network and �nd it to be faster than traditional disk paging�

We conclude that the increasing use of fast local area networks will improve the performance of

remote memory paging even more�

� Introduction

Applications like multimedia� windowing systems� scienti�c computations� engineering simulations� etc�

running on workstation clusters �or networks of PCs� require an everincreasing amount of memory�

usually� more than any single workstation has available� To make matters worse� the use of multipro�

gramming and time�sharing further reduces the amount of physical main memory which is available to

each application� To alleviate the memory shortage problem� an application could use the virtual mem�

ory paging provided by the operating system� and have some of its data in main memory and the rest on

the disk� Unfortunately� as the disparity between processor and disk speeds becomes everincreasing� the

cost of paging to a magnetic disk becomes unacceptable� Our performance measurements explained in

section � suggest that the completion time of an application rises sharply when its working set exceeds

the physical memory of the workstation� Faster swap disks would only temporarily remedy the situation�

because processor speeds are improving at a much higher rate than disk speeds ��	� Clearly� if paging

is going to have reasonable overhead� a new paging device is needed� This device should provide high

bandwidth and low latency� Fortunately� a device with these characteristics exists in most distributed

�The authors are also a�liated with the University of Crete� Department of Computer Science� This report is available

via anonymous ftp from ftp�ics�forth�gr�tech�reports���������TR�	��remote memory paging�ps�Z�






systems and it is not used most of the time� It is the collective memory of all the workstations� hereafter

called remote memory�

Remote memory provides high transfer rates which are mainly dictated by the interconnection net�

work� For example� ATM networks provide a data transfer rate of 
�� Mbits�sec per link� a transfer rate

higher than any single disk can provide� A collection of ATM links serving several sources and several

destinations may easily exceed an aggregate transfer rate of 
 Gbit�sec� more than expensive disk arrays

provide Fortunately� most of the time remote main memory is unused� To verify this claim� we pro�led

the unused memory of the workstations in our lab� for the duration of one week� 
� workstations with

a total of ��� Mbytes of main memory� Figure 
 plots the free memory as a function of the day of the

week� We see that for signi�cant periods of time more than ��� Mbytes are unused� especially during the

nights� and the weekend� Although during business hours the amount of free memory falls� it is rarely

lower than ��� Mbytes Thus� even at business hours there is a signi�cant amount of main memory that

could be used by applications that need more memory than a single workstation provides�

Architecture and software developments suggest that the use of remote memory for paging purposes

is possible and e�cient�

� Memory�to�memory transfer rates between workstations have increased sharply in

the last few years� Local Area Networks �like ATM and FDDI� have a high throughput and

�usually� low latency� This increase in communication bandwidth implies a dramatic decrease in

network transfer time for large messages �like operating system pages�� On the other hand� the

disk technology has not shown a similar increase in transfer rates� for most disks� transfer rates

are still in the neighborhood of a few ����� Mbytes� Moreover� disk accesses su�er from seek and

rotation latency which is not expected to be reduced from advances in semiconductor technology�

In contrast� memory�to�memory transfers do not involve any mechanical parts� and therefore� are

expected to take advantage of all improvements in semiconductor technology�

� Application�s working sets have increased dramatically over the last few years� Modern

processors provide ���bits address spaces� which make it possible for the processor to address an

enormous amount of memory� Thus� software that takes advantage of a large address space is

being developed� memory�mapped �le systems and databases� sophisticated window interfaces�

multimedia� are a few examples that require an enormous amount of main memory�

� Modern architectures provide low�latency remote�memory accesses� Modern distributed

systems provide a variety of e�cient access operations to remote memories� The SCI�to�SBUS in�

terface provides SPARC workstations with the ability to access the memories of other workstations

in a network using simple load and store operations �
�	� Similar ability is provided by Telegraphos

��	� and SHRIMP ��	� Fast remote memory accesses have also been implemented using Active

Messages �
�� 
	� programmed network interfaces ��	� and trap�based remote invocation �
�	� All

these sources report that a single remote memory access takes as low as a few �s� The ability to

perform single remote memory accesses e�ciently� will enhance the performance of a remote mem�

ory paging policy signi�cantly� If� for example� an application needs to make just a few accesses

to a page� then it is not worthwhile to bring the entire page from remote memory� replacing an

already resident and potentially more useful page� If the network provides the ability of e�cient

single remote accesses� the application can use these to access infrequently used pages�

In this paper we show that it is both possible and bene�cial to use remote memory as a a paging

device� by building the systems software that transparently transfers operating system pages across

�Our measurements are pessimistic� because in our Lab workstations are heavily used running VERILOG simulations

for most of the time�



300

350

400

450

500

550

600

650

700

750

800

Thursday Friday Saturday Sunday Monday Tuesday Wednesday

U
ns

ue
d 

M
em

or
y 

(M
by

te
s)

Week of Feb 2nd till 8th 1995 

Idle DRAM during a Week

Figure 
� Unused memory in a workstation cluster� The �gure plots the idle memory during a

typical week in the workstations of our lab� a total of �� workstations with about ��� Mbytes of total

memory� We see that memory usage was at each peak �and thus free memory was scarce� at noon and

afternoon� Only exception were days 	
� that were the weekend� In all times though� more than ��

Mbytes of main memory were unused�

workstation memories within a workstation cluster� We describe a pager built as a device driver of the

DEC�OSF
 operating system� Our pager is completely portable to any system that runs DEC�OSF�

because we didn�t modify the operating system kernel y� More important� by running real applications on

top of our memory manager� we show that even on top of slow interconnection networks �like Ethernet��

it is e�cient to use remote memory as backing store� Our performance results suggest that paging to

remote memory over Ethernet� rather than paging to a local disk of comparable bandwidth� results in up

to 

�� faster execution times for real applications� Moreover� we show that reliability and redundancy

comes at no signi�cant extra cost� We describe the implementation and evaluation of several reliability

policies that keep some form of redundant information� which enables the application to recover its

data in case a workstation in the distributed system crashes� Finally� we use extrapolation to �nd the

performance of paging to remote memory over faster networks like FDDI and ATM� Our extrapolated

results suggest that paging over a 
�� Mbits�sec interconnection network� reduces paging overhead to

only ��� of the total execution time� Faster networks will reduce this overhead even more�

The rest of the paper is organized as follows� Section � presents related work� Section � presents the

design of a remote memory pager and the issues involved� Section � presents the implementation of the

pager as a device driver� Section � presents our performance results which are very encouraging� Section

� presents some aspects that we plan to explore as part of our future work� Finally� section � presents

our conclusions�

� Related Work

Li and Petersen �
�	 have implemented a related system where they add main memory module on the

I�O bus �VME bus� of a computer system� This memory module can be used both as backing store� and

as �slow� main memory accessed via simple load and store operations� Although this approach increases

the amount of memory available to a single workstation� this memory module can not be accessed by the

other workstations in the same cluster� Thus� only a single workstation bene�ts from the extra memory�

Instead� our approach uses the existing main memory of workstations in the same cluster for storing an

application�s data� Thus� �i� we do not increase the cost of any workstation by adding main memory to

its I�O bus� �ii� we use the otherwise unused memory in the workstation cluster� and �iii� we scale the

yWe distribute the external pager along with the test programs freely using anonymous ftp from

ftp�ics�forth�gr�pub�pager�



amount of memory available to an application with a factor proportional to the number of workstations

that are part of the same LAN�

Felten and Zahorjian ��	 have implemented a remote paging system on top of a traditional Ethernet�

based system� and presented an analytical model to predict its performance� Unfortunately� they do not

report any results regarding the bene�ts of remote memory paging on real applications�

Schilit and Duchamp �
�	 have implemented a remote memory paging system on top of Mach ��� for

portable computers� Their remote memory paging system has performance similar to local disk paging�

The cost of a single remote memory page�in over an Ethernet� they quote� is about �� ms for an �Kbyte

page� which we believe is rather high� Their implementation is dominated by various overheads induced

by Mach� and the slow local buses of portable computers� Thus� their performance �gures are somewhat

discouraging with respect to the usefulness of remote memory paging� Our implementation instead� has

eliminated all unnecessary overheads� reducing the remote memory page�in time over an Ethernet to as

low as ��� msec for an �Kbyte page�

Comer and Gri�oen ��	 have implemented and compared remote memory paging vs� remote disk

paging� over NFS� on an environment with diskless workstations� Their results suggest that remote

memory paging can be ��� to 
��� faster than remote disk paging� depending on the disk access

pattern� Our work di�ers from ��	 in the following aspects� �i� we argue that local disk paging is slower

than remote memory paging� �which we think is not at all obvious�� while ��	 argues that remote disk

paging is slower than remote memory paging� �ii� Instead of using dedicated servers for remote memory

paging� any workstation in the system can be a remote memory server�

Anderson et� al� have proposed the use of network memory as backing store �
	 and as a �le cache ��	�

Their simulation results suggest that using remote memory over a 
��Mbits�s ATM network �is � to 
�

times faster than thrashing to disk� �
	� In their subsequent work �
�	� they outline the implementation

of a remote memory pager on top of an ATM�based network� Our work di�ers from �
	 in that �i� we

base our results on executing real applications on top of our implemented pager� instead of simulating

them� �ii� we show that even in the case where the interconnection network has as low bandwidth as the

disk� remote memory paging results in signi�cant performance improvements over the disk� and �iii� we

present and evaluate a novel mechanism that provides fault�tolerance in case of a memory server crash�

while it requires only an insigni�cant additional amount of memory�

Our work bares some similarity with distributed�shared�memory systems �

� �	 in that both ap�

proaches use remote memory to store an application�s data� Our main di�erence is that we focus on

sequential applications where pages are not �or rarely� shared� while distributed�shared�memory projects

deal with parallel applications� where the main focus is to reduce the cost of page sharing�

� The Design of a Remote Memory Pager

��� Selection of Workstations

All workstations� that participate in remote memory paging are registered in a common �le� These

workstations are known as remote memory servers� while the workstations that run applications which

use remote memory for swapping are called clients� Depending on its workload� a workstation may act

as a server� or as a client� or as both� but only during a short transition interval� Along with the names�

the load of the servers is also provided� so that prospective clients can locate the least loaded server�

All server workstations run a remote memory server that handles requests for page ins� page outs�

as well as swap space allocation� When a client wants to swap out memory it picks the most promising

server� asks for a number of page frames and starts sending requests to it� When a server runs out of

memory� it denies further swap space allocation requests� When native memory�demanding processes



start on a server workstation� the server�s memory is swapped out to disk� Future requests will be

serviced from the disk� and a note will be sent to the client� advising it to move its pages to another

server� or its local disk�

��� Reliability

In an distributed system� a workstation may crash at any time� In the case of a remote memory server

crash� we would like to be able to complete the execution of the application� and recover its lost pages�

To provide this level of reliability� some form of redundancy must be used� We explore three di�erent

policies� mirroring� parity� and parity caching�

Mirroring The simplest form of redundancy is mirroring� In mirroring� there exist two copies of each

page� When the client swaps out a page� the page is sent to two di�erent servers� Even when one of the

servers crashes� the application is able to complete its execution� because all pages of the crashed server

exist on the mirror servers� On a broadcast network like Ethernet or FDDI� each page is automatically

broadcasted to all remote memory servers� thus eliminating the need to explicitly send each page both

to the main and the mirror server� Nevertheless� mirroring wastes half of the remote memory used�

Parity To reduce the main memory waste caused by mirroring� we can use parity�based redundancy

schemes much like the ones used in RAIDS �
�	� Suppose� for example� that we have S servers� each

having P pages� Page �i� j� is the jth page that resides on server i� Assume� that we have P parity

pages� where parity page j is formed by taking the XOR of all the jth pages in all servers� We say that

all these jth pages belong to the same parity group� If a server crashes� all its pages can be restored by

XORing all pages within each parity group�

When the client swaps out a page it has to update the parity to re�ect the change� This update is

done in two steps�

� The client sends the swapped out page to the server� which computes the XOR of the old and the

new page�

� The server sends the just computed XOR to the parity server� which XORs it with the old parity�

forming the new parity�

Unfortunately� this method involves two page transfers� one from client to server� and one from server

to parity� Moreover� the client should not discard the page just swapped out� because the server may

crash before the new parity is computed� thus� making it impossible to restore the swapped out page�

This parity method increases the amount of remote main memory only by a factor of �
 � 
�S��

Parity Caching To avoid the additional page transfers induced by the basic parity method� we have

developed a parity caching scheme which computes the parity on the client side� instead of sending the

pages to a parity server� Our policy assumes that a small amount �e�g� �� of memory frames on the

client side act as a software cache for parity pages� Parity is updated in two stages�


� When a page is swapped in� its parity is fetched in �if not already in the client�s cache� and the

XOR of the page and the parity is computed and stored into the local parity frame� This operation

�removes� the newly swapped in page from the contents of the parity block�

�� When a page is swapped out� its parity is fetched in �if not already in the client� cache� and the

XOR of the page and the parity is computed and stored into the local parity frame� This operation

�adds� the swapped out page to the parity block�



When a server crashes� all of its pages that do not reside in the client�s memory can be restored by

XORing the pages in its group �that do not reside in the client�s memory� with the parity page�

Compared to its naive ancestor� parity caching results in signi�cantly fewer page transfers� and does

not need to keep pages around waiting for the parity server to complete computing the new parity� Our

performance measurements reported in section ��� show that even when only a small number of frames

��� is used from the client�s memory as a cache for parity frames� parity caching results in at most ��

more page transfers than the case where no reliability policy is used�

� Implementation

A subset of the proposed system has been built and is currently in use� It is robust enough to be used

during the development and compilation of the system itself� It consists of a client issuing paging requests

and a server satisfying these requests� The client side has been integrated in the DEC�OSF�
 kernel

of a DEC�Alpha ���� model ��� with �� MB main memory as a block device driver that handles all

page�in and page�out requests� In order to service these requests� it may forward them either to a user

level client running on another host� or to the local disk� The DEC�OSF�
 kernel is not even aware that

we we use remote main memory instead of magnetic disk as a paging device� It just performs ordinary

paging activities using a block device� This design minimizes the modi�cations needed in order to port

the system to another operating system and avoids modi�cations to the operating systems kernel�

��� The Remote Memory Pager

Normally the Remote Memory Pager �RMP for short� is a multi�threaded client which forwards the

paging requests to a remote server� via sockets over an Ethernet� Our �rst prototype implements a single

remote memory server system used to evaluate the performance of remote paging� The RPM connects

to the remote memory server using a socket over TCP�IP� One client thread issues page�in and page�out

requests to the server� while a second client thread accepts the data sent by the server�

RPM is also capable of forwarding the requests to the local disk using either a speci�ed partition or

a �le� In the former case� it invokes a routine that places the request in the disk queue� In the later

case it issues a read or write operation through the VFS layer routines� When no server can be found in

order the client�s requests� paging to local disk is used�

Although the current implementation runs on top of a slow 
� Mbps Ethernet� remote paging is up

to � times faster than using a local disk of the same bandwidth� It takes about ��� ms to transfer an

�KB page through the network� while transferring a page to�from the local disk takes about 
� ms�

Faster networks such as ATM� or FDDI should o�er even more promising performance� especially when

faster communication protocols are used �
�	� For the time being our performance results suggest the

communication protocol latency for page transfers rarely exceeds ��� even for 
�� Mbits�sec networks�

Although bus�based networks will eventually become a performance bottleneck� the single link ensures

that every request can reach every interested host� This means that the implementation of reliability

using mirroring of parity� can be rather simple� A second prototype� still under development� uses

mirroring in order to ensure the integrity of the pages transferred even when a server crashes� It also

scatters the paged out pages to many servers in order to give the operating system the illusion of a swap

device of high capacity� A dedicated RPM thread uses a socket to broadcast each request� A second

thread waits until some server replies to the pending requests� A server in this case may be primary or

backup� In case of a primary server crash� the second thread will soon be informed� based on a timeout

mechanism� and will ask the backup server responsible for the pages maintained by the crashed server

to ful�ll its requests�



QSORT FFT GAUSS MVEC
0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

850

C
om

pl
et

io
n 

T
im

e 
(S

ec
s)

REMOTE_MEMORY

DISK

Figure �� Performance of applications using either the DISK� or the REMOTE MEMORY as paging

device� We see that for all applications� the use of REMOTE MEMORY results in signi�cantly faster execution�

All applications were run on a DEC Alpha ���� model ��� workstation� The input sizes for QSORT was

���� records� for GAUSS� a ��������� matrix� for MVEC� a �
����
�� matrix� and for FFT an array

with ������ elements�

��� The Remote Memory Server

The server is a user level program listening to a socket and accepting connections from clients� It uses

portion of the local workstation�s main memory to store the client�s pages� When the client requests a

page�in� the server transfers the requested page�s� over the socket� When the client requests a page�out�

the server reads the incoming pages from the socket� and stores them in its main memory� z

A backup server responds to page�out requests much like a primary server� but it does not respond

to page�in requests unless the client has explicitly declared the primary server as crashed�

� Performance Results

To evaluate the performance of our remote memory pager� and compare it to traditional disk paging�

we conducted a series of performance measurements using a number of representative applications that

require a large amount of memory� Our applications include GAUSS� a gaussian elimination� QSORT� a

quicksort program� FFT� a Fast�Fourier Transform and MVEC� a matrix�vector multiplication� All ap�

plications were executed on the DEC�Alpha ���� model ���� and were compiled with the standard C

compiler with the optimization enabled� All workstations that contributed their main memory for paging

purposes were DEC�Alpha ���� model ���� connected via a standard 
�Mbits�sec Ethernet� The local

disk that was used for paging is a DEC RZ��� providing 
�Mbits�sec bandwidth� and average seek time

of 
� msec�

zThe client is allowed to page�out at most a preset number of page frames to each server�



��� Performance of Remote Memory Paging Over the Ethernet

In our �rst experiment we evaluate two methods for paging�

� REMOTE MEMORY� which uses only main memory of other workstations as a paging device� In this

experiment only one remote memory server was used� because it was enough to provide the addi�

tional amount of memory our applications needed� The measurements were done on an �almost�

idle Ethernet to ensure repeatability�

� DISK� which uses the local DEC RZ�� disk for paging�

The completion time of the applications is plotted in �gure �� We see that in all cases the use of

REMOTE MEMORY results in signi�cant performance improvements� For example� for the GAUSS application�

the REMOTE MEMORY results in 

�� faster execution time than DISK� Even for the MVEC application which

performed very little paging� REMOTE MEMORY results in ��� faster execution time�

The reason for the somewhat surprising performance improvements is that paging to remote memory

over an Ethernet interconnection network is simply faster than paging to the disk� Even though� both

the disk and the Ethernet have similar data transfer rates� REMOTE MEMORY does not su�er from seek and

rotational latency as DISK does� The average page�in�page�out service time was measured to be close

to � ms for REMOTE MEMORY� and close to 
� ms for DISK�

Our experimental results verify than even when the network data transfer rate is as low as the

disk transfer rate� the performance of REMOTE MEMORY is signi�cantly higher than the performance of

DISK� Since architecture trends suggest that modern high speed networks provide much higher data

transfer rates than modern disks� the performance improvements of REMOTE MEMORY over disk are bound

to increase�

��� Scaling the Input

To understand the impact of the working set size on the paging policy� we measure the execution time

of one of our applications �FFT�� as a function of its input size� The completion time of FFT both under

REMOTE MEMORY and under DISK is plotted in �gure �� We see that as soon as the working set size exceeds

�� Mbytes� the paging starts� and the completion time of the application rises sharply� Most users would

not be willing to tolerate such a high overhead in order to run an application that does not �t in main

memory� Fortunately� REMOTE MEMORY reduces this overhead by more than a factor of two�

��� Scaling the Network Bandwidth

Although �gure � suggests that the performance of REMOTE MEMORY is signi�cantly better than the

performance of DISK� the completion time of an application even under REMOTE MEMORY may be unac�

ceptably high� Hopefully� the performance of REMOTE MEMORY will be improved as soon as the Ethernet

interconnection network is substituted with a faster one �e�g� FDDI� ATM� FCS� etc��� To evaluate the

performance of the applications on top of faster networks� or faster disks we make detailed performance

measurements that separate the completion time of the application into three factors� �i� bandwidth�

dependent blocking time� �ii� useful user time� and �iii� protocol�dependent systems overhead� Using the

provided time command we measure the elapsed time for each application which is the sum of factors

�i���iii�� The same command also provides the user�time �factor �ii��� and the system time �factor �iii���

If from the elapsed time� we subtract the user plus the system time� we get the time the system was idle

waiting for pages to go through the interconnection network �factor �i��� By dividing this idle time with

the number of page ins plus page outs� we get the average time the application waits for each page to

go through the interconnection network� Assuming that an X times faster interconnection network will



0

50

100

150

200

250

300

350

400

0 5 10 15 20 25 30

T
ot

al
 C

om
pl

et
io

n 
tim

e 
(s

ec
s)

 

Size of Input (in Mbytes)

DISK
REMOTE_MEMORY

Figure �� Performance of FFT as a function of input size when either DISK� or REMOTE MEMORY

are used as backing store�

reduce this waiting time by a factor of X� we can predict the completion time of the application on the

faster network x by adding the measures user and system times� with the predicted blocking time�

We made all these measurements on our FFT application� and predict its performance on a system

with an interconnection network which is two and ten times as fast as the Ethernet� We also predict

its completion time on a system with twice as fast disk �DISK���� and on a system that has enough

memory to hold all the working set of the application �ALL MAIN MEMORY�� The predicted execution

times� along with the measured execution times of DISK and REMOTE MEMORY are plotted in �gure ��

We see that ETHERNET��� performs very close to ALL MAIN MEMORY� and signi�cantly better than both

REMOTE MEMORY and DISK�

To understand the results shown in �gure �� we analyze the execution time of FFT with ��Mbytes

of input� The measured elapsed time is ��� seconds� consisting of ���� sec of useful user time� � sec of

system time� and 
�� sec of network blocking time� spent waiting for pages to go through the Ethernet�

During the same run� the application su�ered ���� page�outs and ���
 page�ins� The average waiting

time for a page transfer �both for page ins and page outs� on top of the Ethernet is 
������������
�� or

about ��� ms� Using a ten times faster interconnection network� the average waiting time will be reduced

at least to ���� ms� Thus� the total completion time of FFT would be at most ����� � � 
���
� � ����

sec� divided as follows� ��� in user time� �� in system time� and 
�� in network blocking time� We

see that a 
�� Mbit�sec interconnection network reduces the total paging overhead to a mere 
�� of the

total applications execution time� We believe that most users would be willing to pay such an overhead

in order to run an application that does not �t in main memory�

��� The Latency of Remote Memory Paging

Based on our measurements above we can compute the paging latency� For example� the elapsed time

of FFT on �� Mbytes of input is ��� seconds� while the user time is ���� seconds� The rest 
���� seconds

should be attributed to paging overhead induced by ���� page�in requests and ���
 page�out requests�

xActually� the predictionwe make is pessimistic because an X times faster network will not only reduce the page transfer

time by a factor of X� but itit will also allow more overlap between computation and network transfer� thus reducing the

average page transfer time by a factor larger than X 
 Thus� future faster networks will result in even better completion

times than the ones we predict here� thereby making our case even stronger�



0

50

100

150

200

250

300

350

400

0 5 10 15 20 25 30 35

T
ot

al
 C

om
pl

et
io

n 
tim

e 
(s

ec
s)

 

Size of Input (in Mbytes)

DISK
DISK *2

REMOTE_MEMORY
ETHERNET *2
ETHERNET*10

ALL_MAIN_MEMORY

Figure �� Performance of FFT for various Architecture Alternatives� DISK is the measured

completion time when paging to a local disk� REMOTE MEMORY is the measured completion time when

paging to remote memory on top of the Ethernet� ETHERNET�� and ETHERNET��� is the predicted

completion time when using remote memory as a paging device� on top of a network that is twice and

ten times as fast as the Ethernet interconnection network� DISK�� is the predicted completion time when

using a twice as fast disk for paging� ALL MAIN MEMORY is the predicted completion time of FFT when

we use the same workstation but with enough memory to hold its entire working set�

Thus� the average latency per request is 
����������� ���
� or ���� ms� From these� ��� ms were spend

transferring each page on the Ethernet� and the rest 
��� ms were the average software latency per paging

request� �

Previous measurements have reported that an � KByte page takes about �� ms over an Ethernet for

each page�in �
�	� Of those �� ms� 
� ms were spent on TCP overhead� � ms were spent on Mach IPC

overhead� ��� ms were spend on the Ethernet� and the rest were spent on the computer�s I�O bus� The

total software latency of our implementation� is only 
��� ms� The reason for this signi�cant di�erence

in performance is threefold�

� The I�O bus of the DEC Alpha ���� model ��� we use is signi�cantly fast and does not pose a

problem in performance�

� The processor we use is a DEC Alpha� which is ��� times faster than the ��� processor used in

�
�	�

� Finally� our pager is implemented as a block device driver� while in �
�	 it was implemented as

a user�level memory manager on top of Mach� Although user�level memory management gives

increasing �exibility it induces large overhead�

In general� although our approach may have less �exibility than a full �edged user�level pager� it

has much better performance� Moreover� our device�driver implementation provides better performance

than traditional disk paging� while user�level implementations have not reported performance results to

support similar claims �
�	�

�We believe that this latency will be reduced if a faster than TCP�IP protocol is used�



��� Using Busy Workstations as Servers

In all our experiments so far� the remote memory servers run on idle workstations� However� workstations

that are able to donate their memory for paging purposes may not be completely idle� as they may run

interactive applications� Thus� we would like to investigate how our performance �gures change when a

non�idle workstation is used as a memory server� So� we conducted the following experiment�

On each server workstation we started an X�window environment� and an editor� Then� we

run the applications of the experiment in �gure �� The same inputs� and the same clients

were used� The only di�erence was that the remote memory server processes were run on

busy instead of idle workstations�

We were surprised to see that for the FFT� GAUSS� and MVEC applications� their completion times were

within 
 sec of their completion times when the server run on an idle workstation� Only QSORT su�ered a

�� overhead in its completion time� probably the kernel swapped out some the remote memory server�s

pages on the disk� Our performance �gures suggest that most of the time the remote memory servers

were able to satisfy the client�s requests immediately� even on busy workstations� Our results agree

with the measurements in �gure 
 which report that a signi�cant portion of all workstation�s memory is

unused even at business hours� thus no overhead is expected to be seen when some other server process

uses the extra pages�

In the same course of experiments� we would like to see what is the overhead that remote paging

induces on the server workstation� Thus� we measured the CPU utilization of the remote memory server

for all our experiments� and found it always to be less than 
��� Thus� the computational overhead

imposed on the remote workstation is so low� that will not be noticed by the workstation�s owner�

��� Reliability

Disks provide a stable storage for data� because their mean time between failures can be several years

�
�	� Unfortunately� main memories do not have such long times to failure� The mean time between

crashes�reboots for a workstation may be from a few weeks to a few months� Thus� some form of

redundancy is necessary to provide applications that page to remote memory with high reliability�

����� Parity Caching

To reduce the main memory requirements of mirroring� and the long latency of parity� we developed the

method of parity caching described in section �� Summarizing� each client reserves a small number of

local pages to hold parity frames� When a page is swapped in or out� its parity frame is swapped in as

well �if not already at the client�s parity frames�� and the new parity is computed� This method increases

the number of page ins and page outs� because besides prorram pages� parity frames are swapped in and

out as well� To measure the additional overhead of parity caching� and compare it to mirroring� we use

execution driven simulation on top of the same DEC Alpha ���� model ��� workstation� We use ATOM

�
�	� an object �le rewriting tool� that executes each application� while at the same time simulates the

reliability policy we want to evaluate� The policies we evaluate are�

� NO RELIABILITY� No redundant information is kept� When a server crashes� the application will

not be able to continue its execution�

� MIRRORING� When a page is swapped out� it is sent to two servers instead of one� so that when one

of them fails� the other will still have all the information the application needs�

� PARITY CACHING� When a page is swapped in or out� its parity frame is swapped in �if not already

there� and is XOR�ed with the page� When a server crashes� its pages which are not in the client�s



main memory can be reconstructed by XORing the relevant pages of the other servers and the

parity frames� In our experiments� we simulated �� memory servers� and a client that caches as

many as � of the parity frames locally� Pages are distributed round robin among the available

servers�

The applications we simulate are�

� MVEC� Matrix vector multiplication of a ��������� matrix�

� GAUSS� Gaussian elimination on a ��������� matrix� k

� SORT� Sorting of an array of �� Mbytes� using the standard quicksort algorithm�

The architecture simulated is a DEC Alpha ���� model ��� workstation with 
� Mbytes of main memory

available to applications� Only eight pages of the main memory were used to hold only parity frames� A

total of �� servers were simulated for each client�

If all workstations are connected via a broadcast interconnection network� no extra page transfers are

needed to implement a reliable policy� For example� in MIRRORING� each swapped�out page needs to be

broadcasted only once over the interconnection network to reach all servers� Similarly� PARITY CACHING

does nor need extra parity frame transfers� If the workstations that keep the parity frames snoop in

the interconnection network� they can intercept all swapped�in and swapped�out pages� and update their

parity records� If� however� the interconnection network is not broadcast�based� then extra page transfers

are needed for the reliable policies� For example� MIRRORING doubles the number of page transfers for

all swapped�out pages� while PARITY CACHING increases the number of page transfers by a factor that

depends on the e�ectiveness of caching� The exact magnitude of this factor is studied in our simulations�

where we measure the number of pages swapped�in �including parity pages�� and swapped�out �including

parity and mirror pages� by each policy� The results are plotted in graphs � and �� We see that the

number of pages swapped in for MIRRORING and NO RELIABILITY are the same� but the number of pages

swapped out for MIRRORING are twice that of the NO RELIABILITY� For PARITY CACHING� both the number

of pages swapped in and swapped out� are within a �� of those for NO RELIABILITY� The reason is that

all applications have some locality of reference� Thus� pages swapped�out within a short time interval

using some LRU policy� will probably be swapped�in also within a short time interval� Pages who were

initially swapped out close to each other� belong to the same parity frame� Thus� as long as these pages

are swapped close in time� their parity frame will reside in the client�s cache� and no extra page transfers

to move the parity will be needed�

We see that reliability comes at little extra cost� actually� from �� to ��� depending on the nature

of the interconnection network� the application� and the policy used� We believe that the little extra

overhead is a small cost to pay for the bene�t provided�

� Discussion � Future work

Our prototype implementation suggests that it is possible to built an e�cient remote memory pager

without making any modi�cations to the operating systems kernel� Although our system contains all

necessary mechanisms to support remote memory paging� there are a few more issues concerning the

overall policy that deserve further investigation� Some of these issues are discussed below�

Choosing servers In the current implementation the choice of the servers used by each client is

hardwired� Clearly this solution is unacceptable for a real system� Workstations should be able to

kBecause the completion times of the simulation were too long� we simulated only the �rst ��� million references�



QSORT GAUSS MVEC
0

5000

10000

15000

P
ag

e 
in

s

NO_RELIABILITY

MIRRORING

PARITY_CACHING

Figure �� Number of Pages swapped in�

become active or inactive servers based on their load� Prospective clients should be able to dynamically

choose the most appropriate server�

Network load Although remote paging is faster than using the local disk� sometimes the network

tra�c may be so high that the bandwidth used by RPM will be limited� In this case the cost of using

the network� especially in the case of old slow networks like Ethernet� may become higher than the cost

of using the local disk� Such a situation could be handled by the RPM by measuring the time it takes

to satisfy a request and using a threshold to determine whether it should continue to use the network to

route pageout requests or it would be better to switch to the local disk�

Thrashing In the case of multiple servers and clients� where clients and servers coexist at the same

machines� there is the possibility of thrashing� This means that it is possible for a number of workstations

to form a chain satisfying each others paging requests leading to network bandwidth waste and to

unacceptable latency� This situation can be avoided if each server refuses to accept future pageout

requests when the memory load of its workstation exceeds some threshold�

Compression Compression may be used in order to reduce the size of the transferred data and increase

network utilization� For slow networks� such as Ethernet� compression would be especially useful� because

the time to compress the page is a small percentage of the time saved due to reduced network tra�c�

However� depending on the network throughput and the processor speed the exact bene�ts of compression

may vary�



QSORT GAUSS MVEC
0

5000

10000

15000

20000

25000

30000

P
ag

e 
O

ut
s

NO_RELIABILITY

MIRRORING

PARITY_CACHING

Figure �� Number of Pages swapped out�

Reliability Clearly� it is not acceptable for an application to fail due to a crash of another workstation

used as a remote memory server� Mirroring is the simplest solution that may be applied but it has a

high memory overhead� Parity caching may be used instead� in which case the latency would increase

in case of a crash� In both cases the network topology should be taken advantage of in order to reduce

the messages needed to achieve reliability� We believe that all three options should be provided �no

reliability� mirroring and parity��

� Conclusions

In this paper we explore the use of remote main memory for paging� We describe our prototype imple�

mentation of a pager on top of the DEC OSF
 operating system as a device driver� No modi�cations

were made to the kernel of the �monolithic� DEC OSF
 operating system� We run several applications

to measure the performance of the system� Based on our implementation and our performance results

we conclude�

� Paging to remote memory results in signi�cant performance improvement over paging to disk�

Applications that use our pager even when running on top of traditional Ethernet technology

show performance improvements of up to 

�� �see �gure ��� Extrapolating from our results� we

show that on top of a faster interconnection network even higher performance improvements are

realizable

� Paging to remote memory is an inexpensive way to let applications use more main memory that

a single workstation provides� Remote memory paging provides good performance with almost no



extra hardware support� The only way for magnetic disks to provide comparable performance is

to use expensive disk arrays�

� The bene�ts of paging to remote memory will only increase with time� Current architecture trends

suggest that the gap between processor and disk speed continues to widen� Disks are not expected

to provide the bandwidth needed by paging unless a breakthrough in disk technology occurs� On

the other hand� interconnection network bandwidth keeps increasing at a much higher rate than

�single� disk bandwidth� thereby increasing the performance bene�ts of paging to remote memory�

� Reliability comes at little extra cost� Our parity caching method introduces at �� more page

transfers than the simple remote memory paging methods that provide no reliability� a small cost

to pay for such a large bene�t�

Based on our performance measurements we believe that remote memory paging is the only cost and

performance e�ective way to execute memory�limited applications� on a network of workstations�

Acknowledgments

This work is being done within ESPRIT project ���� �Supercomputer Highly Parallel System� SHIPS�

funded by the European Union� through DG III of its Commission� HPCN Unit� We deeply appreciate

this �nancial support� without which this work would have not existed�

We would like to thank Catherine Chronaki and Manolis Katevenis for useful comments in earlier

drafts of this paper� A� Labrinidis� and A� Zaras provided useful feedback�

References

�
	 Thomas E� Anderson� David E� Culler� and David A� Patterson� A Case for NOW �Networks of

Workstations�� IEEE Micro� 
����

��	 M� Blumrich� K� Li� R� Alpert� C� Dubnicki� E� Felten� and J� Sandberg� Virtual Memory Mapped

Network Interface for the SHRIMP Multicomputer� In Proceedings of the Twenty�First Int� Sympo�

sium on Computer Architecture� pages 
���
��� Chicago� IL� April 
����

��	 D� Comer and J� Gri�oen� A new design for Distributed Systems� the Remote Memory Model� In

Proceedings of the USENIX Summer Conference� pages 
���
��� 
����

��	 M�D� Dahlin� R�Y� Wang� T�E� Anderson� and D�A� Patterson� Cooperative Cahing� Using Remote

Client Memory to Improve File System Performance� In First USENIX Symposium on Operating

System Design and Implementation� pages �������� 
����

��	 G� Delp� The Architecture and implementation of Memnet� A High�Speed Shared Memory Computer

Communication Network� PhD thesis� University of Delaware� 
����

��	 E� W� Felten and J� Zahorjan� Issues in the Implementation of a Remote Memory Paging System�

November 
��
�

��	 J� L� Hennessy and D� A� Patterson� Computer Architecture� A Quantitative Approach� Morgan

Kaufmann Publishers� Inc�� 
����

��	 Manolis Katevenis� Telegraphos� High�Speed Communication Architecture for Parallel and Dis�

tributed Computer Systems� Technical Report 
��� ICS�FORTH� May 
����



��	 J� Kuskin� D� Ofelt� M� Heinrich� J� Heinlein� R� Simoni� K� Gharachorloo� J� Chapin� D� Nakahira�

J� Baxter� M� Horowitz� A� Gupta� M� Rosenblum� and J� Hennessy� The FLASH Multiprocessor�

In Proc� ���th International Symposium on Comp� Arch�� pages �����
�� Chicago� IL� April 
����

�
�	 K� Li and K� Petersen� Evaluation of Memory System Extensions� In Proc� ���th International

Symposium on Comp� Arch�� pages ������ 
��
�

�

	 Kai Li and Paul Hudak� Memory Coherence in Shared Virtual Memory Systems� ACM Transactions

on Computer Systems� �������
����� November 
����

�
�	 A� Mainwaring� C� Yoshikawa� and K� Wright� NOWWhite Paper� Network RAM Prototype� 
����

�
�	 David Patterson� Garth Gibson� and Randy Katz� A case for redundant arrays of inexpensive disks

�RAID�� In ACM SIGMOD Conference� pages 
���

�� June 
����

�
�	 B�N� Schilit and D� Duchamp� Adaptive Remote Paging for Mobile Computers� Technical Report

CUCS������
� University of Columbia� 
��
�

�
�	 Dolphin Interconnect Solutions� DIS��
 SBus�to�SCI Adapter User�s Guide�

�
�	 Amitabh Srivastava and Alan Eustace� ATOM� A System for Building Customized Program Analysis

Tools� In PROC of the SIGPLAN �	
 PLDI� Orlando� FL� June 
����

�
�	 C�A� Thekkath� H�M� Levy� and E�D� Lazowska� E�cient Support for Multicomputing on ATM

Networks� Technical Report ��������� Department of Computer Science and Engineering� University

of Washington� April 
� 
����

�
�	 T� von Eicken� D� E� Culler� S� C� Goldstein� and K� E� Schauser� Active Messages� a Mechanism for

Integrated Communication and Computation� In Proc� �	�th International Symposium on Comp�

Arch�� pages �������� Gold Coast� Australia� May 
����


