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Abstract

Traditional operating systems use magnetic disks as paging devices, even though the cost of each
page-fault measured in processor cycles continues to increase.

In this paper we explore the use or remote main memory for paging. We describe the design,
implementation and evaluation of a pager that uses main memory of remote workstations as a
faster-than-disk paging device. Our pager has been implemented as a block device driver linked to
the DEC/OSF1 operating system, without any modifications to the kernel code. Using several test
applications we measure the performance of remote memory paging over an Ethernet interconnection
network and find it to be faster than traditional disk paging.

We conclude that the increasing use of fast local area networks will improve the performance of

remote memory paging even more.

1 Introduction

Applications like multimedia, windowing systems, scientific computations, engineering simulations, etc.
running on workstation clusters (or networks of PCs) require an everincreasing amount of memory,
usually, more than any single workstation has available. To make matters worse, the use of multipro-
gramming and time-sharing further reduces the amount of physical main memory which is available to
each application. To alleviate the memory shortage problem, an application could use the virtual mem-
ory paging provided by the operating system, and have some of its data in main memory and the rest on
the disk. Unfortunately, as the disparity between processor and disk speeds becomes everincreasing, the
cost of paging to a magnetic disk becomes unacceptable. Our performance measurements explained in
section b suggest that the completion time of an application rises sharply when its working set exceeds
the physical memory of the workstation. Faster swap disks would only temporarily remedy the situation,
because processor speeds are improving at a much higher rate than disk speeds [7]. Clearly, if paging
is going to have reasonable overhead, a new paging device is needed. This device should provide high

bandwidth and low latency. Fortunately, a device with these characteristics exists in most distributed
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systems and it is not used most of the time. It is the collective memory of all the workstations, hereafter
called remote memory.

Remote memory provides high transfer rates which are mainly dictated by the interconnection net-
work. For example, ATM networks provide a data transfer rate of 155 Mbits/sec per link; a transfer rate
higher than any single disk can provide. A collection of ATM links serving several sources and several
destinations may easily exceed an aggregate transfer rate of 1 Gbit/sec, more than expensive disk arrays
provide! Fortunately, most of the time remote main memory is unused. To verify this claim, we profiled
the unused memory of the workstations in our lab* for the duration of one week: 16 workstations with
a total of 800 Mbytes of main memory. Figure 1 plots the free memory as a function of the day of the
week. We see that for significant periods of time more than 700 Mbytes are unused, especially during the
nights, and the weekend. Although during business hours the amount of free memory falls, it is rarely
lower than 400 Mbytes! Thus, even at business hours there is a significant amount of main memory that
could be used by applications that need more memory than a single workstation provides.

Architecture and software developments suggest that the use of remote memory for paging purposes

is possible and efficient:

e Memory-to-memory transfer rates between workstations have increased sharply in
the last few years: Local Area Networks (like ATM and FDDI) have a high throughput and
(usually) low latency. This increase in communication bandwidth implies a dramatic decrease in
network transfer time for large messages (like operating system pages). On the other hand, the
disk technology has not shown a similar increase in transfer rates: for most disks, transfer rates
are still in the neighborhood of a few (4-6) Mbytes. Moreover, disk accesses suffer from seek and
rotation latency which is not expected to be reduced from advances in semiconductor technology.
In contrast, memory-to-memory transfers do not involve any mechanical parts, and therefore, are

expected to take advantage of all improvements in semiconductor technology.

e Application’s working sets have increased dramatically over the last few years: Modern
processors provide 64-bits address spaces, which make it possible for the processor to address an
enormous amount of memory. Thus, software that takes advantage of a large address space is
being developed: memory-mapped file systems and databases, sophisticated window interfaces,

multimedia, are a few examples that require an enormous amount of main memory.

e Modern architectures provide low-latency remote-memory accesses: Modern distributed
systems provide a variety of efficient access operations to remote memories. The SCI-to-SBUS in-
terface provides SPARC workstations with the ability to access the memories of other workstations
in a network using simple load and store operations [15]. Similar ability is provided by Telegraphos
[8], and SHRIMP [2]. Fast remote memory accesses have also been implemented using Active
Messages [18, 1], programmed network interfaces [9], and trap-based remote invocation [17]. All
these sources report that a single remote memory access takes as low as a few us. The ability to
perform single remote memory accesses efficiently, will enhance the performance of a remote mem-
ory paging policy significantly. If, for example, an application needs to make just a few accesses
to a page, then it is not worthwhile to bring the entire page from remote memory, replacing an
already resident and potentially more useful page. If the network provides the ability of efficient

single remote accesses, the application can use these to access infrequently used pages.

In this paper we show that it is both possible and beneficial to use remote memory as a a paging

device, by building the systems software that transparently transfers operating system pages across

*QOur measurements are pessimistic, because in our Lab workstations are heavily used running VERILOG simulations

for most of the time.
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Figure 1: Unused memory in a workstation cluster. The figure plots the idle memory during a
typical week in the workstations of our lab: a total of 16 workstations with about 800 Mbytes of total
memory. We see that memory usage was at each peak (and thus free memory was scarce) at noon and
afternoon. Only exception were days 2-4 that were the weekend. In all times though, more than 300

Mbytes of main memory were unused.

workstation memories within a workstation cluster. We describe a pager built as a device driver of the
DEC/OSF1 operating system. Our pager is completely portable to any system that runs DEC/OSF,
because we didn’t modify the operating system kernel T. More important, by running real applications on
top of our memory manager, we show that even on top of slow interconnection networks (like Ethernet),
it is effictent to use remote memory as backing store. Our performance results suggest that paging to
remote memory over Ethernet, rather than paging to a local disk of comparable bandwidth, results in up
to 112% faster execution times for real applications. Moreover, we show that reliability and redundancy
comes at no significant extra cost. We describe the implementation and evaluation of several reliability
policies that keep some form of redundant information, which enables the application to recover its
data in case a workstation in the distributed system crashes. Finally, we use extrapolation to find the
performance of paging to remote memory over faster networks like FDDI and ATM. Our extrapolated
results suggest that paging over a 100 Mbits/sec interconnection network, reduces paging overhead to
only 20% of the total execution time. Faster networks will reduce this overhead even more.

The rest of the paper is organized as follows: Section 2 presents related work. Section 3 presents the
design of a remote memory pager and the issues involved. Section 4 presents the implementation of the
pager as a device driver. Section 5 presents our performance results which are very encouraging. Section
6 presents some aspects that we plan to explore as part of our future work. Finally, section 7 presents

our conclusions.

2 Related Work

Li and Petersen [10] have implemented a related system where they add main memory module on the
I/O bus (VME bus) of a computer system. This memory module can be used both as backing store, and
as (slow) main memory accessed via simple load and store operations. Although this approach increases
the amount of memory available to a single workstation, this memory module can not be accessed by the
other workstations in the same cluster. Thus, only a single workstation benefits from the extra memory.
Instead, our approach uses the existing main memory of workstations in the same cluster for storing an
application’s data. Thus, (1) we do not increase the cost of any workstation by adding main memory to

its I/O bus, (ii) we use the otherwise unused memory in the workstation cluster, and (iii) we scale the

tWe distribute the external pager along with the test programs freely using anonymous ftp from

ftp.ics.forth.gr:pub/pager.



amount of memory available to an application with a factor proportional to the number of workstations
that are part of the same LAN.

Felten and Zahorjian [6] have implemented a remote paging system on top of a traditional Ethernet-
based system, and presented an analytical model to predict its performance. Unfortunately, they do not
report any results regarding the benefits of remote memory paging on real applications.

Schilit and Duchamp [14] have implemented a remote memory paging system on top of Mach 2.5 for
portable computers. Their remote memory paging system has performance similar to local disk paging.
The cost of a single remote memory page-in over an Ethernet, they quote, is about 45 ms for an 4Kbyte
page, which we believe is rather high. Their implementation is dominated by various overheads induced
by Mach, and the slow local buses of portable computers. Thus, their performance figures are somewhat
discouraging with respect to the usefulness of remote memory paging. Our implementation instead, has
eliminated all unnecessary overheads, reducing the remote memory page-in time over an Ethernet to as
low as 8.7 msec for an 8Kbyte page.

Comer and Griffoen [3] have implemented and compared remote memory paging vs. remote disk
paging, over NFS, on an environment with diskless workstations. Their results suggest that remote
memory paging can be 20% to 100% faster than remote disk paging, depending on the disk access
pattern. Our work differs from [3] in the following aspects: (i) we argue that local disk paging is slower
than remote memory paging, (which we think is not at all obvious), while [3] argues that remote disk
paging is slower than remote memory paging. (ii) Instead of using dedicated servers for remote memory
paging, any workstation in the system can be a remote memory server.

Anderson et. al. have proposed the use of network memory as backing store [1] and as a file cache [4].
Their simulation results suggest that using remote memory over a 155Mbits/s ATM network “is 5 to 10
times faster than thrashing to disk” [1]. In their subsequent work [12], they outline the implementation
of a remote memory pager on top of an ATM-based network. Our work differs from [1] in that (i) we
base our results on executing real applications on top of our implemented pager, instead of simulating
them, (ii) we show that even in the case where the interconnection network has as low bandwidth as the
disk, remote memory paging results in significant performance improvements over the disk, and (iii) we
present and evaluate a novel mechanism that provides fault-tolerance in case of a memory server crash,
while it requires only an insignificant additional amount of memory.

Our work bares some similarity with distributed-shared-memory systems [11, 5] in that both ap-
proaches use remote memory to store an application’s data. Our main difference is that we focus on
sequential applications where pages are not (or rarely) shared, while distributed-shared-memory projects

deal with parallel applications, where the main focus is to reduce the cost of page sharing.

3 The Design of a Remote Memory Pager

3.1 Selection of Workstations

All workstations, that participate in remote memory paging are registered in a common file. These
workstations are known as remote memory servers, while the workstations that run applications which
use remote memory for swapping are called clients. Depending on its workload, a workstation may act
as a server, or as a client, or as both, but only during a short transition interval. Along with the names,
the load of the servers is also provided, so that prospective clients can locate the least loaded server.
All server workstations run a remote memory server that handles requests for page ins, page outs,
as well as swap space allocation. When a client wants to swap out memory it picks the most promising
server, asks for a number of page frames and starts sending requests to it. When a server runs out of

memory, it denies further swap space allocation requests. When native memory-demanding processes



start on a server workstation, the server’s memory is swapped out to disk. Future requests will be
serviced from the disk, and a note will be sent to the client, advising it to move its pages to another

server, or its local disk.

3.2 Reliability

In an distributed system, a workstation may crash at any time. In the case of a remote memory server
crash, we would like to be able to complete the execution of the application, and recover its lost pages.
To provide this level of reliability, some form of redundancy must be used. We explore three different

policies: mirroring, parity, and parity caching.

Mirroring The simplest form of redundancy is mirroring. In mirroring, there exist two copies of each
page. When the client swaps out a page, the page is sent to {wo different servers. Even when one of the
servers crashes, the application is able to complete its execution, because all pages of the crashed server
exist on the mirror servers. On a broadcast network like Ethernet or FDDI, each page is automatically
broadcasted to all remote memory servers, thus eliminating the need to explicitly send each page both

to the main and the mirror server. Nevertheless, mirroring wastes half of the remote memory used.

Parity To reduce the main memory waste caused by mirroring, we can use parity-based redundancy
schemes much like the ones used in RAIDS [13]. Suppose, for example, that we have S servers, each
having P pages. Page (4,j) is the ji; page that resides on server i. Assume, that we have P parity
pages, where parity page j is formed by taking the XOR of all the j;; pages in all servers. We say that
all these j;;, pages belong to the same parity group. If a server crashes, all its pages can be restored by
XORing all pages within each parity group.

When the client swaps out a page it has to update the parity to reflect the change. This update is

done in two steps:

e The client sends the swapped out page to the server, which computes the XOR of the old and the

new page.

e The server sends the just computed XOR to the parity server, which XORs it with the old parity,

forming the new parity.

Unfortunately, this method involves two page transfers: one from client to server, and one from server
to parity. Moreover, the client should not discard the page just swapped out, because the server may
crash before the new parity is computed, thus, making it impossible to restore the swapped out page.

This parity method increases the amount of remote main memory only by a factor of (1+1/5).

Parity Caching To avoid the additional page transfers induced by the basic parity method, we have
developed a parity caching scheme which computes the parity on the client side, instead of sending the
pages to a parity server. Our policy assumes that a small amount (e.g. 8) of memory frames on the

client side act as a software cache for parity pages. Parity is updated in two stages:

1. When a page is swapped in, its parity is fetched in (if not already in the client’s cache) and the
XOR of the page and the parity is computed and stored into the local parity frame. This operation

“removes” the newly swapped in page from the contents of the parity block.

2. When a page is swapped out, its parity is fetched in (if not already in the client’ cache) and the
XOR of the page and the parity is computed and stored into the local parity frame. This operation
“adds” the swapped out page to the parity block.



When a server crashes, all of its pages that do not reside in the client’s memory can be restored by
XORing the pages in its group (that do not reside in the client’s memory) with the parity page.
Compared to its naive ancestor, parity caching results in significantly fewer page transfers, and does
not need to keep pages around waiting for the parity server to complete computing the new parity. Our
performance measurements reported in section 5.6 show that even when only a small number of frames
(8) is used from the client’s memory as a cache for parity frames, parity caching results in at most 5%

more page transfers than the case where no reliability policy is used.

4 Implementation

A subset of the proposed system has been built and is currently in use. It is robust enough to be used
during the development and compilation of the system itself. It consists of a client issuing paging requests
and a server satisfying these requests. The client side has been integrated in the DEC-OSF/1 kernel
of a DEC-Alpha 3000 model 300 with 32 MB main memory as a block device driver that handles all
page-in and page-out requests. In order to service these requests, it may forward them either to a user
level client running on another host, or to the local disk. The DEC-OSF/1 kernel is not even aware that
we we use remote main memory instead of magnetic disk as a paging device. It just performs ordinary
paging activities using a block device. This design minimizes the modifications needed in order to port

the system to another operating system and avoids modifications to the operating systems kernel.

4.1 The Remote Memory Pager

Normally the Remote Memory Pager (RMP for short) is a multi-threaded client which forwards the
paging requests to a remote server, via sockets over an Ethernet. Our first prototype implements a single
remote memory server system used to evaluate the performance of remote paging. The RPM connects
to the remote memory server using a socket over TCP/IP. One client thread issues page-in and page-out
requests to the server, while a second client thread accepts the data sent by the server.

RPM is also capable of forwarding the requests to the local disk using either a specified partition or
a file. In the former case, it invokes a routine that places the request in the disk queue. In the later
case it issues a read or write operation through the VFS layer routines. When no server can be found in
order the client’s requests, paging to local disk is used.

Although the current implementation runs on top of a slow 10 Mbps Ethernet, remote paging is up
to 2 times faster than using a local disk of the same bandwidth. It takes about 8.7 ms to transfer an
8KB page through the network, while transferring a page to/from the local disk takes about 17 ms.
Faster networks such as ATM, or FDDI should offer even more promising performance, especially when
faster communication protocols are used [18]. For the time being our performance results suggest the
communication protocol latency for page transfers rarely exceeds 5%, even for 100 Mbits/sec networks.

Although bus-based networks will eventually become a performance bottleneck, the single link ensures
that every request can reach every interested host. This means that the implementation of reliability
using mirroring of parity, can be rather simple. A second prototype, still under development, uses
mirroring in order to ensure the integrity of the pages transferred even when a server crashes. It also
scatters the paged out pages to many servers in order to give the operating system the illusion of a swap
device of high capacity. A dedicated RPM thread uses a socket to broadcast each request. A second
thread waits until some server replies to the pending requests. A server in this case may be primary or
backup. In case of a primary server crash, the second thread will soon be informed, based on a timeout
mechanism, and will ask the backup server responsible for the pages maintained by the crashed server

to fulfill its requests.
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Figure 2: Performance of applications using either the DISK, or the REMOTE MEMORY as paging
device. We see that for all applications, the use of REMOTE MEMORY results in significantly faster execution.
All applications were run on a DEC Alpha 3000 model 300 workstation. The input sizes for QSORT was
4000 records, for GAUSS, a 2000x2000 matrix, for MVEC, a 2100x2100 matrix, and for FFT an array
with 900000 elements.

4.2 The Remote Memory Server

The server is a user level program listening to a socket and accepting connections from clients. It uses
portion of the local workstation’s main memory to store the client’s pages. When the client requests a
page-in, the server transfers the requested page(s) over the socket. When the client requests a page-out,
the server reads the incoming pages from the socket, and stores them in its main memory. *

A backup server responds to page-out requests much like a primary server, but it does not respond

to page-in requests unless the client has explicitly declared the primary server as crashed.

5 Performance Results

To evaluate the performance of our remote memory pager, and compare it to traditional disk paging,
we conducted a series of performance measurements using a number of representative applications that
require a large amount of memory. Our applications include GAUSS, a gaussian elimination, QSORT, a
quicksort program, FFT, a Fast-Fourier Transform and MVEC, a matrix-vector multiplication. All ap-
plications were executed on the DEC-Alpha 3000 model 300, and were compiled with the standard C
compiler with the optimization enabled. All workstations that contributed their main memory for paging
purposes were DEC-Alpha 3000 model 300, connected via a standard 10Mbits/sec Ethernet. The local
disk that was used for paging is a DEC RZ55, providing 10Mbits/sec bandwidth, and average seek time

of 16 msec.

{The client is allowed to page-out at most a preset number of page frames to each server.



5.1 Performance of Remote Memory Paging Over the Ethernet

In our first experiment we evaluate two methods for paging:

e REMOTE MEMORY, which uses only main memory of other workstations as a paging device. In this
experiment only one remote memory server was used, because it was enough to provide the addi-
tional amount of memory our applications needed. The measurements were done on an (almost)

idle Ethernet to ensure repeatability.
e DISK, which uses the local DEC RZ55 disk for paging.

The completion time of the applications is plotted in figure 2. We see that in all cases the use of
REMOTE _MEMORY results in significant performance improvements. For example, for the GAUSS application,
the REMOTE _MEMORY results in 112% faster execution time than DISK. Even for the MVEC application which
performed very little paging, REMOTE MEMORY results in 39% faster execution time.

The reason for the somewhat surprising performance improvements is that paging to remote memory
over an Ethernet interconnection network is simply faster than paging to the disk. Even though, both
the disk and the Ethernet have similar data transfer rates, REMOTE_MEMORY does not suffer from seek and
rotational latency as DISK does. The average page-in/page-out service time was measured to be close
to 9 ms for REMOTE MEMORY, and close to 17 ms for DISK.

Our experimental results verify than even when the network data transfer rate is as low as the
disk transfer rate, the performance of REMOTE MEMORY is significantly higher than the performance of
DISK. Since architecture trends suggest that modern high speed networks provide much higher data
transfer rates than modern disks, the performance improvements of REMOTE_MEMORY over disk are bound

to increase.

5.2 Scaling the Input

To understand the impact of the working set size on the paging policy, we measure the execution time
of one of our applications (FFT), as a function of its input size. The completion time of FFT both under
REMOTE MEMORY and under DISK is plotted in figure 3. We see that as soon as the working set size exceeds
20 Mbytes, the paging starts, and the completion time of the application rises sharply. Most users would
not be willing to tolerate such a high overhead in order to run an application that does not fit in main

memory. Fortunately, REMOTE MEMORY reduces this overhead by more than a factor of two.

5.3 Scaling the Network Bandwidth

Although figure 3 suggests that the performance of REMOTE MEMORY is significantly better than the
performance of DISK, the completion time of an application even under REMOTE MEMORY may be unac-
ceptably high. Hopefully, the performance of REMOTE MEMORY will be improved as soon as the Ethernet
interconnection network is substituted with a faster one (e.g. FDDI, ATM, FCS, etc.). To evaluate the
performance of the applications on top of faster networks, or faster disks we make detailed performance
measurements that separate the completion time of the application into three factors: (i) bandwidth-
dependent blocking time, (ii) useful user time, and (iii) protocol-dependent systems overhead. Using the
provided time command we measure the elapsed time for each application which is the sum of factors
(i)-(iii). The same command also provides the user-time (factor (ii)), and the system time (factor (iii)).
If from the elapsed time, we subtract the user plus the system time, we get the time the system was idle
waiting for pages to go through the interconnection network (factor (i)). By dividing this idle time with
the number of page ins plus page outs, we get the average time the application waits for each page to

go through the interconnection network. Assuming that an X times faster interconnection network will



400 T T T . .

350 DISK —— 1
REMOTE_MEMORY -—+--

300 |

250 r

200

150 r

100

Total Completion time (secs)

50 r

0 L L L L L
0 5 10 15 20 25 30
Size of Input (in Mbytes)

Figure 3: Performance of FFT as a function of input size when either DISK, or REMOTE MEMORY

are used as backing store.

reduce this waiting time by a factor of X, we can predict the completion time of the application on the
faster network ? by adding the measures user and system times, with the predicted blocking time.

We made all these measurements on our FFT application, and predict its performance on a system
with an interconnection network which is two and ten times as fast as the Ethernet. We also predict
its completion time on a system with twice as fast disk (DISK#2), and on a system that has enough
memory to hold all the working set of the application (ALL_MAIN MEMORY). The predicted execution
times, along with the measured execution times of DISK and REMOTE MEMORY are plotted in figure 4.
We see that ETHERNET*10 performs very close to ALL_MAIN MEMORY, and significantly better than both
REMOTE_MEMORY and DISK.

To understand the results shown in figure 4, we analyze the execution time of FFT with 28 Mbytes
of input. The measured elapsed time is 208 seconds, consisting of 78.5 sec of useful user time, 5 sec of
system time, and 124 sec of network blocking time, spent waiting for pages to go through the Ethernet.
During the same run, the application suffered 6520 page-outs and 7791 page-ins. The average waiting
time for a page transfer (both for page ins and page outs) on top of the Ethernet is 124/(6520+7791), or
about 8.6 ms. Using a ten times faster interconnection network, the average waiting time will be reduced
at least to 0.86 ms. Thus, the total completion time of FFT would be at most 78.54 5+ 124/10 = 95.9
sec, divided as follows: 82% in user time, 5% in system time, and 13% in network blocking time. We
see that a 100 Mbit/sec interconnection network reduces the total paging overhead to a mere 17% of the
total applications execution time. We believe that most users would be willing to pay such an overhead

in order to run an application that does not fit in main memory.

5.4 The Latency of Remote Memory Paging

Based on our measurements above we can compute the paging latency. For example, the elapsed time
of FFT on 28 Mbytes of input is 208 seconds, while the user time is 78.5 seconds. The rest 129.5 seconds
should be attributed to paging overhead induced by 6520 page-in requests and 7791 page-out requests.

§ Actually, the prediction we make is pessimistic because an X times faster network will not only reduce the page transfer
time by a factor of X, but itit will also allow more overlap between computation and network transfer, thus reducing the
average page transfer time by a factor larger than X! Thus, future faster networks will result in even better completion

times than the ones we predict here, thereby making our case even stronger.
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Figure 4: Performance of FFT for various Architecture Alternatives. DISK is the measured
completion time when paging to a local disk. REMOTE MEMORY is the measured completion time when
paging to remote memory on top of the Ethernet. ETHERNET*2 and ETHERNET*10 is the predicted
completion time when using remote memory as a paging device, on top of a network that is twice and
ten times as fast as the Ethernet interconnection network. DISK*2 is the predicted completion time when
using a twice as fast disk for paging. ALL MAIN MEMORY is the predicted completion time of FFT when

we use the same workstation but with enough memory to hold its entire working set.

Thus, the average latency per request is 129.5/(65204 7791) or 9.05 ms. From these, 7.2 ms were spend
transferring each page on the Ethernet, and the rest 1.85 ms were the average software latency per paging
request. Al

Previous measurements have reported that an 8 KByte page takes about 45 ms over an Ethernet for
each page-in [14]. Of those 45 ms, 19 ms were spent on TCP overhead, 4 ms were spent on Mach IPC
overhead, 7.2 ms were spend on the Ethernet, and the rest were spent on the computer’s I/O bus. The
total software latency of our implementation, is only 1.85 ms. The reason for this significant difference

in performance is threefold:

e The I/O bus of the DEC Alpha 3000 model 300 we use is significantly fast and does not pose a

problem in performance.

e The processor we use is a DEC Alpha, which is 3-4 times faster than the 386 processor used in
[14].

e Finally, our pager is implemented as a block device driver, while in [14] it was implemented as
a user-level memory manager on top of Mach. Although user-level memory management gives

increasing flexibility it induces large overhead.

In general, although our approach may have less flexibility than a full fledged user-level pager, it
has much better performance. Moreover, our device-driver implementation provides better performance
than traditional disk paging, while user-level implementations have not reported performance results to

support similar claims [14].

TWe believe that this latency will be reduced if a faster than TCP/IP protocol is used.



5.5 Using Busy Workstations as Servers

In all our experiments so far, the remote memory servers run on idle workstations. However, workstations
that are able to donate their memory for paging purposes may not be completely idle, as they may run
interactive applications. Thus, we would like to investigate how our performance figures change when a

non-idle workstation is used as a memory server. So, we conducted the following experiment:

On each server workstation we started an X-window environment, and an editor. Then, we
run the applications of the experiment in figure 2. The same inputs, and the same clients
were used. The only difference was that the remote memory server processes were run on

busy instead of idle workstations.

We were surprised to see that for the FFT, GAUSS, and MVEC applications, their completion times were
within 1 sec of their completion times when the server run on an idle workstation. Only QSORT suffered a
7% overhead in its completion time: probably the kernel swapped out some the remote memory server’s
pages on the disk. Our performance figures suggest that most of the time the remote memory servers
were able to satisfy the client’s requests immediately, even on busy workstations. Our results agree
with the measurements in figure 1 which report that a significant portion of all workstation’s memory is
unused even at business hours, thus no overhead is expected to be seen when some other server process
uses the extra pages.

In the same course of experiments, we would like to see what is the overhead that remote paging
induces on the server workstation. Thus, we measured the CPU utilization of the remote memory server
for all our experiments, and found it always to be less than 15%. Thus, the computational overhead

imposed on the remote workstation is so low, that will not be noticed by the workstation’s owner.

5.6 Reliability

Disks provide a stable storage for data, because their mean time between failures can be several years
[13]. Unfortunately, main memories do not have such long times to failure. The mean time between
crashes/reboots for a workstation may be from a few weeks to a few months. Thus, some form of

redundancy is necessary to provide applications that page to remote memory with high reliability.

5.6.1 Parity Caching

To reduce the main memory requirements of mirroring, and the long latency of parity, we developed the
method of parity caching described in section 3. Summarizing, each client reserves a small number of
local pages to hold parity frames. When a page is swapped in or out, its parity frame is swapped in as
well (if not already at the client’s parity frames), and the new parity is computed. This method increases
the number of page ins and page outs, because besides prorram pages, parity frames are swapped in and
out as well. To measure the additional overhead of parity caching, and compare it to mirroring, we use
execution driven simulation on top of the same DEC Alpha 3000 model 300 workstation. We use ATOM
[16], an object file rewriting tool, that executes each application, while at the same time simulates the

reliability policy we want to evaluate. The policies we evaluate are:

e NO RELIABILITY: No redundant information is kept. When a server crashes, the application will

not be able to continue its execution.

e MIRRORING: When a page is swapped out, it is sent to two servers instead of one, so that when one

of them fails, the other will still have all the information the application needs.

e PARITY CACHING: When a page is swapped in or out, its parity frame is swapped in (if not already
there) and is XOR’ed with the page. When a server crashes, its pages which are not in the client’s



main memory can be reconstructed by XORing the relevant pages of the other servers and the
parity frames. In our experiments, we simulated 50 memory servers, and a client that caches as
many as 8 of the parity frames locally. Pages are distributed round robin among the available

servers.
The applications we simulate are:

e MVEC: Matrix vector multiplication of a 2000x 2000 matrix.

e GAUSS: Gaussian elimination on a 2000x2000 matrix. |

e SORT: Sorting of an array of 32 Mbytes, using the standard quicksort algorithm.

The architecture simulated is a DEC Alpha 3000 model 300 workstation with 16 Mbytes of main memory
available to applications. Only eight pages of the main memory were used to hold only parity frames. A
total of 50 servers were simulated for each client.

If all workstations are connected via a broadcast interconnection network, no extra page transfers are
needed to implement a reliable policy. For example, in MIRRORING, each swapped-out page needs to be
broadcasted only once over the interconnection network to reach all servers. Similarly, PARITY _CACHING
does nor need extra parity frame transfers. If the workstations that keep the parity frames snoop in
the interconnection network, they can intercept all swapped-in and swapped-out pages, and update their
parity records. If, however, the interconnection network is not broadcast-based, then extra page transfers
are needed for the reliable policies. For example, MIRRORING doubles the number of page transfers for
all swapped-out pages, while PARITY _CACHING increases the number of page transfers by a factor that
depends on the effectiveness of caching. The exact magnitude of this factor is studied in our simulations,
where we measure the number of pages swapped-in (including parity pages), and swapped-out (including
parity and mirror pages) by each policy. The results are plotted in graphs 5 and 6. We see that the
number of pages swapped in for MIRRORING and NO_RELIABILITY are the same, but the number of pages
swapped out for MIRRORING are twice that of the NO_ RELIABILITY. For PARITY CACHING, both the number
of pages swapped in and swapped out, are within a 5% of those for NO_ RELIABILITY. The reason is that
all applications have some locality of reference. Thus, pages swapped-out within a short time interval
using some LRU policy, will probably be swapped-in also within a short time interval. Pages who were
initially swapped out close to each other, belong to the same parity frame. Thus, as long as these pages
are swapped close in time, their parity frame will reside in the client’s cache, and no extra page transfers
to move the parity will be needed.

We see that reliability comes at little extra cost, actually, from 0% to 5%, depending on the nature
of the interconnection network, the application, and the policy used. We believe that the little extra

overhead is a small cost to pay for the benefit provided.

6 Discussion - Future work

Our prototype implementation suggests that it is possible to built an efficient remote memory pager
without making any modifications to the operating systems kernel. Although our system contains all
necessary mechanisms to support remote memory paging, there are a few more issues concerning the

overall policy that deserve further investigation. Some of these issues are discussed below.

Choosing servers In the current implementation the choice of the servers used by each client is

hardwired. Clearly this solution is unacceptable for a real system. Workstations should be able to

IBecause the completion times of the simulation were too long, we simulated only the first 100 million references.
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Figure 5: Number of Pages swapped in.

become active or inactive servers based on their load. Prospective clients should be able to dynamically

choose the most appropriate server.

Network load Although remote paging is faster than using the local disk, sometimes the network
traffic may be so high that the bandwidth used by RPM will be limited. In this case the cost of using
the network, especially in the case of old slow networks like Ethernet, may become higher than the cost
of using the local disk. Such a situation could be handled by the RPM by measuring the time it takes
to satisfy a request and using a threshold to determine whether it should continue to use the network to

route pageout requests or it would be better to switch to the local disk.

Thrashing In the case of multiple servers and clients, where clients and servers coexist at the same
machines, there is the possibility of thrashing. This means that it is possible for a number of workstations
to form a chain satisfying each others paging requests leading to network bandwidth waste and to
unacceptable latency. This situation can be avoided if each server refuses to accept future pageout

requests when the memory load of its workstation exceeds some threshold.

Compression Compression may be used in order to reduce the size of the transferred data and increase
network utilization. For slow networks, such as Ethernet, compression would be especially useful, because
the time to compress the page is a small percentage of the time saved due to reduced network traffic.
However, depending on the network throughput and the processor speed the exact benefits of compression

may vary.
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Reliability Clearly, it is not acceptable for an application to fail due to a crash of another workstation
used as a remote memory server. Mirroring is the simplest solution that may be applied but it has a
high memory overhead. Parity caching may be used instead, in which case the latency would increase
in case of a crash. In both cases the network topology should be taken advantage of in order to reduce
the messages needed to achieve reliability. We believe that all three options should be provided (no

reliability, mirroring and parity).

7 Conclusions

In this paper we explore the use of remote main memory for paging. We describe our prototype imple-
mentation of a pager on top of the DEC OSF1 operating system as a device driver. No modifications
were made to the kernel of the (monolithic) DEC OSF1 operating system. We run several applications
to measure the performance of the system. Based on our implementation and our performance results

we conclude:

e Paging to remote memory results in significant performance improvement over paging to disk.
Applications that use our pager even when running on top of traditional Ethernet technology
show performance improvements of up to 112% (see figure 2). Extrapolating from our results, we
show that on top of a faster interconnection network even higher performance improvements are

realizable!

e Paging to remote memory is an inexpensive way to let applications use more main memory that

a single workstation provides. Remote memory paging provides good performance with almost no



extra hardware support. The only way for magnetic disks to provide comparable performance is

to use expensive disk arrays.

The benefits of paging to remote memory will only increase with time. Current architecture trends
suggest that the gap between processor and disk speed continues to widen. Disks are not expected
to provide the bandwidth needed by paging unless a breakthrough in disk technology occurs. On
the other hand, interconnection network bandwidth keeps increasing at a much higher rate than

(single) disk bandwidth, thereby increasing the performance benefits of paging to remote memory.

Reliability comes at little extra cost. Our parity caching method introduces at 5% more page
transfers than the simple remote memory paging methods that provide no reliability: a small cost

to pay for such a large benefit.

Based on our performance measurements we believe that remote memory paging is the only cost and

performance effective way to execute memory-limited applications, on a network of workstations.
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