
Detecting Targeted Attacks Using Shadow Honeypots

K. G. Anagnostakis†, S. Sidiroglou‡, P. Akritidis?, K. Xinidis?, E. Markatos?, A. D. Keromytis‡

†CIS Department, Univ. of Pennsylvania? Institute of Computer Science - FORTH
anagnost@dsl.cis.upenn.edu {akritid,xinidis,markatos}@ics.forth.gr

‡ Department of Computer Science, Columbia University
{stelios,angelos}@cs.columbia.edu

Abstract

We presentShadow Honeypots, a novel hybrid archi-
tecture that combines the best features of honeypots and
anomaly detection. At a high level, we use a variety of
anomaly detectors to monitor all traffic to a protected net-
work/service. Traffic that is considered anomalous is pro-
cessed by a “shadow honeypot” to determine the accuracy
of the anomaly prediction. The shadow is an instance of
the protected software that shares all internal state with a
regular (“production”) instance of the application, and is
instrumented to detect potential attacks. Attacks against
the shadow are caught, and any incurred state changes are
discarded. Legitimate traffic that was misclassified will be
validated by the shadow and will be handled correctly by
the system transparently to the end user. The outcome of
processing a request by the shadow is used to filter future
attack instances and could be used to update the anomaly
detector.

Our architecture allows system designers to fine-tune
systems for performance, since false positives will be fil-
tered by the shadow. Contrary to regular honeypots, our
architecture can be used both for server and client appli-
cations. We demonstrate the feasibility of our approach in
a proof-of-concept implementation of the Shadow Hon-
eypot architecture for the Apache web server and the
Mozilla Firefox browser. We show that despite a con-
siderable overhead in the instrumentation of the shadow
honeypot (up to 20% for Apache), the overall impact on
the system is diminished by the ability to minimize the
rate of false-positives.

1 Introduction

Due to the increasing level of malicious activity seen
on today’s Internet, organizations are beginning to de-

ploy mechanisms for detecting and responding to new at-
tacks or suspicious activity, called Intrusion Prevention
Systems (IPS). Since current IPS’s use rule-based intru-
sion detection systems (IDS) such as Snort [29] to detect
attacks, they are limited to protecting, for the most part,
against already known attacks. As a result, new detection
mechanisms are being developed for use in more powerful
reactive-defense systems. The two primary such mech-
anisms are honeypots [25, 12, 52, 37, 18] and anomaly
detection systems (ADS) [45, 48, 44, 9, 17]. In contrast
with IDS’s, honeypots and ADS’s offer the possibility of
detecting (and thus responding to) previously unknown at-
tacks, also referred to aszero-day attacks.

Honeypots and anomaly detection systems offer differ-
ent tradeoffs between accuracy and scope of attacks that
can be detected, as shown in Figure 1. Honeypots can be
heavily instrumented to accurately detect attacks, but de-
pend on an attacker attempting to exploit a vulnerability
against them. This makes them good for detecting scan-
ning worms [3, 5, 12], but ineffective against manual di-
rected attacks or topological and hit-list worms [40, 39].
Furthermore, honeypots can typically only be used for
server-type applications. Anomaly detection systems can
theoretically detect both types of attacks, but are usually
much less accurate. Most such systems offer a tradeoff
between false positive (FP) and false negative (FN) rates.
For example, it is often possible to tune the system to de-
tect morepotentialattacks, at an increased risk ofmisclas-
sifying legitimate traffic (low FN, high FP); alternatively,
it is possible to make an anomaly detection system more
insensitive to attacks, at the risk of missing some real at-
tacks (high FN, low FP). Because an ADS-based IPS can
adversely affect legitimate traffic (e.g.,drop a legitimate
request), system designers often tune the system for low
false positive rates, potentially misclassifying attacks as
legitimate traffic.

All Attacks
(Random + Targeted)

Accuracy

ScopeScan/Random
Attacks Only

Honeypot

DetectionAnomaly

Honeypot

Shadow

Figure 1:A simple classification of honeypots and anomaly
detection systems, based on attack detection accuracy and
scope of detected attacks. Targeted attacks may use lists of
known (potentially) vulnerable servers, while scan-based at-
tacks will target any system that is believed to run a vulner-
able service. AD systems can detect both types of attacks,
but with lower accuracy than a specially instrumented sys-
tem (honeypot). However, honeypots are blind to targeted
attacks, and may not see a scanning attack until after it has
succeeded against the real server.

We propose a novel hybrid approach that combines the
best features of honeypots and anomaly detection, named
Shadow Honeypots. At a high level, we use a variety of
anomaly detectors to monitor all traffic to a protected net-
work. Traffic that is considered anomalous is processed
by a shadow honeypot. The shadow version is an instance
of the protected application (e.g.,a web server or client)
that shares all internal state with a “normal” instance of
the application, but is instrumented to detect potential at-
tacks. Attacks against the shadow honeypot are caught
and any incurred state changes are discarded. Legitimate
traffic that was misclassified by the anomaly detector will
be validated by the shadow honeypot and will betrans-
parentlyhandled correctly by the system (i.e., an HTTP
request that was mistakenly flagged as suspicious will be
served correctly). Our approach offers several advantages
over stand-alone ADS’s or honeypots:

• First, it allows system designers to tune the anomaly
detection system for low false negative rates, min-
imizing the risk of misclassifying a real attack as
legitimate traffic, since any false positives will be
weeded out by the shadow honeypot.

• Second, and in contrast to typical honeypots, our ap-
proach can defend against attacks that aretailored
against a specific site with a particular internal state.
Honeypots may be blind to such attacks, since they
are not typically mirror images of the protected ap-

plication.

• Third, shadow honeypots can also be instantiated in
a form that is particularly well-suited for protect-
ing againstclient-sideattacks, such as those directed
against web browsers and P2P file sharing clients.

• Finally, our system architecture facilitates easy inte-
gration of additional detection mechanisms.

We apply the concept of shadow honeypots to a proof-
of-concept prototype implementation tailored against
memory-violation attacks. Specifically, we developed a
tool that allows for automatic transformation of existing
code into its “shadow version”. The resulting code al-
lows for traffic handling to happen through the regular or
shadow version of the code, contingent on input derived
from an array of anomaly detection sensors. When an at-
tack is detected by the shadow version of the code, state
changes effected by the malicious request are rolled back.
Legitimate traffic handled by the shadow is processed suc-
cessfully, albeit at higher latency.

In addition to the server-side scenario, we also investi-
gate a client-targeting attack-detection scenario, unique to
shadow honeypots, where we apply the detection heuris-
tics to content retrieved by protected clients and feed any
positives to shadow honeypots for further analysis. Un-
like traditional honeypots, which are idle whilst waiting
for active attackers to probe them, this scenario enables
the detection of passive attacks, where the attacker lures
a victim user to download malicious data. We use the re-
centlibpng vulnerability of Mozilla [7] (which is simi-
lar to the buffer overflow vulnerability in the Internet Ex-
plorer’s JPEG-handling logic) to demonstrate the ability
of our system to protect client-side applications.

Our shadow honeypot prototype consists of several
components. At the front-end of our system, we use a
high-performance intrusion-prevention system based on
the Intel IXP network processor and a set of modified
snort sensors running on normal PCs. The network pro-
cessor is used as a smart load-balancer, distributing the
workload to the sensors. The sensors are responsible for
testing the traffic against a variety of anomaly detection
heuristics, and coordinating with the IXP to tag traffic that
needs to be inspected by shadow honeypots. This design
leads to the scalability needed in high-end environments
such as web server farms, as only a fraction of the servers
need to incur the penalty of providing shadow honeypot
functionality.

In our implementation, we have used a variety of
anomaly detection techniques, including Abstract Payload
Execution (APE) [44], and the Earlybird algorithm [33].

2

The feasibility of our approach is demonstrated by exam-
ining both false-positive and true attack scenarios. We
show that our system has the capacity to process all false-
positives generated by APE and EarlyBird and success-
fully detect attacks. We also show that when the anomaly
detection techniques are tuned to increase detection accu-
racy, the resulting additional false positives are still within
the processing budget of our system. More specifically,
our benchmarks show that although instrumentation is ex-
pensive (20-50% overhead), the shadow version of the
Apache Web server can process around 1300 requests per
second, while the shadow version of the Mozilla Firefox
client can process between 1 and 4 requests per second.
At the same time, the front-end and anomaly detection
algorithms can process a fully-loaded Gbit/s link, produc-
ing 0.3-0.5 false positives per minute when tuned for high
sensitivity, which is well within the processing budget of
our shadow honeypot implementation.

Paper Organization The remainder of this paper is or-
ganized as follows. Section 2 discusses the shadow hon-
eypot architecture in greater detail. We describe our im-
plementation in Section 3, and our experimental and per-
formance results in Section 4. We give an overview of
related work in Section 5, and conclude the paper with a
summary of our work and plans for future work in Sec-
tion 6.

2 Architecture

The Shadow Honeypot architecture is a systems ap-
proach to handling network-based attacks, combining fil-
tering, anomaly detection systems and honeypots in a way
that exploits the best features of these mechanisms, while
shielding their limitations. We focus on transactional ap-
plications, i.e., those that handle a series of discrete re-
quests. Our architecture isnot limited to server applica-
tions, but can be used for client-side applications such as
web browsers, P2P clients,etc.As illustrated in Figure 2,
the architecture is composed of three main components:
a filtering engine, an array of anomaly detection sensors
and the shadow honeypot, which validates the predictions
of the anomaly detectors. The processing logic of the sys-
tem is shown graphically in Figure 3.

The filtering component blocks known attacks. Such
filtering is done based either on payload content [47, 2]
or on the source of the attack, if it can be identified
with reasonable confidence (e.g., confirmed traffic bi-
directionality). Effectively, the filtering component short-
circuits the detection heuristics or shadow testing results

by immediately dropping specific types of requests before
any further processing is done.

Traffic passing the first stage is processed by one or
more anomaly detectors. There are several types of
anomaly detectors that may be used in our system, includ-
ing payload analysis [48, 33, 15, 44] and network behav-
ior [13, 50]. Although we do not impose any particular
requirements on the AD component of our system, it is
preferable to tune such detectors towards high sensitivity
(at the cost of increased false positives). The anomaly de-
tectors, in turn, signal to the protected application whether
a request is potentially dangerous.

Depending on this prediction by the anomaly detectors,
the system invokes either the regular instance of the ap-
plication or itsshadow. The shadow is an instrumented
instance of the application that can detect specific types
of failures and rollback any state changes to a known (or
presumed) good state,e.g.,before the malicious request
was processed. Because the shadow is (or should be) in-
voked relatively infrequently, we can employ computa-
tionally expensive instrumentation to detect attacks. The
shadow and the regular application fully share state, to
avoid attacks that exploit differences between the two; we
assume that an attacker can only interact with the appli-
cation through the filtering and AD stages,i.e., there are
no side-channels. The level of instrumentation used in the
shadow depends on the amount of latency we are willing
to impose on suspicious traffic (whether truly malicious
or misclassified legitimate traffic). In our implementation,
described in Section 3, we focus on memory-violation at-
tacks, but any attack that can be determined algorithmi-
cally can be detected and recovered from, at the cost of
increased complexity and potentially higher latency.

If the shadow detects an actual attack, we notify the
filtering component to block further attacks. If no attack
is detected, we update the prediction models used by the
anomaly detectors. Thus, our system could in fact self-
train and fine-tune itself using verifiably bad traffic and
known mis-predictions, although this aspect of the ap-
proach is outside the scope of the present paper.

As we mentioned above, shadow honeypots can be in-
tegrated with servers as well as clients. In this paper, we
consider tight coupling with both server and client appli-
cations, where the shadow resides in the same address
space as the protected application.

• Tightly coupled with server This is the most practi-
cal scenario, in which we protect a server by divert-
ing suspicious requests to its shadow. The applica-
tion and the honeypot are tightly coupled, mirroring
functionality and state. We have implemented this
configuration with the Apache web server, described

3

Traffic from the network

Address Space

Update filters

Protected System

User processes

OS Kernel

Protected Service

Regular
Service
Code

Shadow
Honeypot

Code

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������������������
�������������������
�������������������

�������������������
�������������������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
��������������

�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������

Predictors
Update

Filtering

Process

State

State Rollback

Anomaly Detection Sensors

Figure 2:Shadow Honeypot architecture.

Input arrives

Yes

No

Drop request

Input Based
Suspect Yes

No

Bad Input?
Known

on AD?

No

Yes

Handle request normally; if
attack, system gets compromised

Use Shadow

Use Shadow
Attack

Detected?

Yes

No

No

Yes

Detected?
Attack Indicate Hit to AD

Indicate False Negative to AD
Update AD Model

Update Filtering Component
Update AD Model

Indicate False Positive to AD
Update AD Model

Handle request normally

Anyway?
ShadowUse

Randomly

Figure 3:System workflow.

in Section 3.

• Tightly coupled with client Unlike traditional hon-
eypots, which remain idle while waiting for active
attacks, this scenario targets passive attacks, where
the attacker lures a victim user to download data con-
taining an attack, as with the recent buffer overflow
vulnerability in Internet Explorer’s JPEG handling.
In this scenario, the context of an attack is an im-
portant consideration in replaying the attack in the
shadow. It may range from data contained in a single
packet to an entire flow, or even set of flows. Alter-
natively, it may be defined at the application layer.
For our testing scenario, specifically on HTTP, the
request/response pair is a convenient context.

Tight coupling assumes that the application can be
modified. The advantage of this configuration is that at-
tacks that exploit differences in the state of the shadow
vs. the application itself become impossible. However, it
is also possible to deploy shadow honeypots in aloosely
coupledconfiguration, where the shadow resides on a dif-
ferent system and does not share state with the protected
application. The advantage of this configuration is that
management of the shadows can be “outsourced” to a
third entity.

Note that the filtering and anomaly detection compo-
nents can also be tightly coupled with the protected ap-

plication, or may be centralized at a natural aggregation
point in the network topology (e.g.,at the firewall).

Finally, it is worth considering how our system would
behave against different types of attacks. For most attacks
we have seen thus far, once the AD component has iden-
tified an anomaly and the shadow has validated it, the fil-
tering component will block all future instances of it from
getting to the application. However, we cannot depend on
the filtering component to prevent polymorphic or meta-
morphic [42] attacks. For low-volume events, the cost of
invoking the shadow for each attack may be acceptable.
For high-volume events, such as a Slammer-like outbreak,
the system will detect a large number of correct AD pre-
dictions (verified by the shadow) in a short period of time;
should a configurable threshold be exceeded, the system
can enable filtering at the second stage, based on the un-
verified verdict of the anomaly detectors. Although this
will cause some legitimate requests to be dropped, this
could be acceptable for the duration of the incident. Once
the number of (perceived) attacks seen by the ADS drop
beyond a threshold, the system can revert to normal oper-
ation.

4

Figure 4:High-level diagram of prototype shadow honeypot
implementation.

3 Implementation

3.1 Filtering and anomaly detection

During the composition of our system, we were faced
with numerous design issues with respect to performance
and extensibility. When considering the deployment of
the shadow honeypot architecture in a high-performance
environment, such as a Web server farm, where speeds
of at least 1 Gbit/s are common and we cannot af-
ford to missclassify traffic, the choice for off-the-shelf
components becomes very limited. To the best of our
knowledge, current solutions, both standalone PCs and
network-processor-based network intrusion detection sys-
tems (NIDSes), are well under the 1 Gbit/s mark [10, 30].

Faced with these limitations, we considered a dis-
tributed design, similar in principle to [43, 16]: we use
a network processor (NP) as a scalable, custom load bal-
ancer, and implement all detection heuristics on an array
of (modified) snort sensors running on standard PCs that
are connected to the network processor board. We chose
not to implement any of the detection heuristics on the
NP for two reasons. First, currently available NPs are de-
signed primarily for simple forwarding and lack the pro-
cessing capacity required for speeds in excess of 1 Gbit/s.
Second, they remain harder to program and debug than
standard general purpose processors. For our implemen-
tation, we used the IXP1200 network processor. A high-
level view of our implementation is shown in Figure 4.

A primary function of the anomaly detection sensor is
the ability to divert potentially malicious requests to the
shadow honeypot. For web servers in particular, a reason-

able definition of the attack context is the HTTP request.
For this purpose, the sensor must construct a request, run
the detection heuristics, and forward the request depend-
ing on the outcome. This processing must be performed
at the HTTP level thus an HTTP proxy-like function is
needed. We implemented the anomaly detection sensors
for the tightly-coupled shadow server case by augmenting
an HTTP proxy with ability to apply the APE detection
heuristic on incoming requests and route them according
to its outcome.

For the shadow client scenario, we use an alternative
solution based on passive monitoring. Employing the
proxy approach in this situation would be prohibitively
expensive, in terms of latency, since we only require de-
tection capabilities. For this scenario, we reconstruct the
TCP streams of HTTP connections and decode the HTTP
protocol to extract suspicious objects.

As part of our proof-of-concept implementation we
have used two anomaly detection heuristics: payload sift-
ing , and abstract payload execution. Payload sifting as
developed in [33] derives fingerprints of rapidly spreading
worms by identifying popular substrings in network traf-
fic. It is a prime example of an anomaly detection based
system that is able to detect novel attacks at the expense of
false positives. However, if used in isolation (e.g.,outside
our shadow honeypot environment) by the time it has reli-
ably detected a worm epidemic, it is very likely that many
systems would have already been compromised. This may
reduce its usage potential in the tightly-coupled server
protection scenario without external help. Nevertheless, if
fingerprints generated by a distributed payload sifting sys-
tem are disseminated to interested parties that run shadow
honeypots locally, matching traffic against such finger-
prints can be of use as a detection heuristic in the Shadow
Honeypot system. Of further interest is the ability to use
this technique in the loosely-coupled shadow server sce-
nario, although we do not further consider this scenario
here.

The second heuristic we have implemented is buffer
overflow detection via abstract payload execution (APE),
as proposed in [44]. The heuristic detects buffer over-
flow attacks by searching for sufficiently long sequences
of valid instructions in network traffic. Long sequences of
valid instructions can appear in non-malicious data, and
this is where the shadow honeypot fits in. Such detec-
tion mechanisms are particularly attractive because they
are applied to individual attacks and will trigger detection
upon encountering the first instance of an attack, unlike
many anomaly detection mechanisms that must witness
multiple attacks before flagging them as anomalous.

5

3.2 Shadow Honeypot Creation

To create shadow honeypots, we use a code-
transformation tool that takes as input the original appli-
cation source code and “weaves” into it the shadow hon-
eypot code. In this paper, we focus on memory-violation
errors and show source-code transformations that detect
buffer overflows, although other types of failures can be
caught (e.g., input that causes illegal memory derefer-
ences) with the appropriate instrumentation, but at the cost
of higher complexity and larger performance bottleneck.
For the code transformations we use TXL [19], a hybrid
functional and rule-based language which is well-suited
for performing source-to-source transformation and for
rapidly prototyping new languages and language proces-
sors. The grammar responsible for parsing the source in-
put is specified in a notation similar to Extended Backus-
Naur (BNF). In our prototype, called DYBOC, we use
TXL for C-to-C transformations with the GCCC front-
end.

Write Protected

Memory Page

Write Protected

Memory Page

1024 bytes

x000

x4096

ptr

3

Memory

Pages

Allocated

by

pmalloc

Figure 5: Example of pmalloc()-based memory allocation:
the trailer and edge regions (above and below the write-
protected pages) indicate “waste” memory. This is needed to
ensure thatmprotect()is applied on complete memory pages.

The instrumentation itself is conceptually straightfor-
ward: we move all static buffers to the heap, by dy-
namically allocating the buffer upon entering the func-
tion in which it was previously declared; we de-allocate
these buffers upon exiting the function, whether implic-

itly (by reaching the end of the function body) or explic-
itly (through areturnstatement). We take care to properly
handle thesizeofconstruct, a fairly straightforward task
with TXL. Pointer aliasing is not a problem with our sys-
tem, since we instrument the allocated memory regions;
any illegal accesses to these will be caught.

For memory allocation, we use our own version ofmal-
loc(), calledpmalloc(), that allocates two additional zero-
filled, write-protected pages that bracket the requested
buffer, as shown in Figure 5. The guard pages are
mmap()’ed from /dev/zeroas read-only. Asmmap()op-
erates at memory page granularity, every memory request
is rounded up to the nearest page. The pointer that is re-
turned bypmalloc()can be adjusted to immediately catch
any buffer overflow or underflow depending on where at-
tention is focused. This functionality is similar to that of-
fered by theElectricFencememory-debugging library, the
difference being thatpmalloc()catches both buffer over-
flow and underflow attacks. Because wemmap()pages
from /dev/zero, we do not waste physical memory for the
guards (just page-table entries). Memory is wasted, how-
ever, for each allocated buffer, since we allocate to the
next closest page. While this can lead to considerable
memory waste, we note that this is only incurred when ex-
ecuting in shadow mode, and in practice has proven easily
manageable.

Figure 6 shows an example of such a translation.
Buffers that are already allocated viamalloc() are sim-
ply switched topmalloc(). This is achieved by examin-
ing declarations in the source and transforming them to
pointers where the size is allocated with amalloc() func-
tion call. Furthermore, we adjust theC grammar to free
the variables before the function returns. After making
changes to the standard ANSIC grammar that allow en-
tries such asmalloc() to be inserted between declarations
and statements, the transformation step is trivial. For
single-threaded, non-reentrant code, it is possible to only
usepmalloc()once for each previously-static buffer. Gen-
erally, however, this allocation needs to be done each time
the function is invoked.

Any overflow (or underflow) on a buffer allocated via
pmalloc()will cause the process to receive a Segmenta-
tion Violation (SEGV) signal, which is caught by a sig-
nal handler we have added to the source code inmain().
The signal handler simply notifies the operating system to
abort all state changes made by the process while process-
ing this request. To do this, we added a new system call
to the operating system,transaction(). This is condition-
ally (as directed by theshadowenable()macro) invoked
at three locations in the code:

• Inside the main processing loop, prior to the begin-

6

Original code
int func()
{

char buf[100];
...

other func(buf, sizeof(buf);
...

return 0;
}

Modified code
int func()
{

char *buf;
char buf[100];
if (shadow enable())

buf = pmalloc(100);
else

buf = buf;
...

other func(buf, sizeof(buf));
...

if (shadow enable()) {
pfree(buf);

}
return 0;

}

Figure 6:Transforming a function to its shadow-supporting version. Theshadowenable()macro simply checks the status
of a shared-memory variable (controlled by the anomaly detection system) on whether the shadow honeypot should be
executing instead of the regular code.

ning of handling of a new request, to indicate to the
operating system that a new transaction has begun.
The operating system makes a backup of all memory
page permissions, and marks all heap memory pages
as read-only. As the process executes and modifies
these pages, the operating system maintains a copy
of the original page and allocates a new page (which
is given the permissions the original page had from
the backup) for the process to use, in exactly the
same way copy-on-write works in modern operating
system. Both copies of the page are maintained until
transaction()is called again, as we describe below.
This call to transaction()must be placed manually
by the programmer or system designer.

• Inside the main processing loop, immediately after
the end of handling a request, to indicate to the oper-
ating system that a transaction has successfully com-
pleted. The operating system then discards all origi-
nal copies of memory pages that have been modified
during processing this request. This call totransac-
tion() must also be placed manually.

• Inside the signal handler that is installed automati-
cally by our tool, to indicate to the operating sys-
tem that an exception (attack) has been detected. The
operating system then discards all modified memory
pages by restoring the original pages.

Although we have not implemented this, a similar
mechanism can be built around the filesystem by using a
private copy of the buffer cache for the process executing
in shadow mode. The only difficulty arises when the pro-

cess must itself communicate with another process while
servicing a request; unless the second process is also in-
cluded in the transaction definition (which may be impos-
sible, if it is a remote process on another system), overall
system state may change without the ability to roll it back.
For example, this may happen when a web server commu-
nicates with a remote back-end database. Our system does
not currently address this,i.e., we assume that any such
state changes are benign or irrelevant (e.g.,a DNS query).
Specifically for the case of a back-end database, these in-
herently support the concept of a transaction rollback, so
it is possible to undo any changes.

The signal handler may also notify external logic to
indicate that an attack associated with a particular input
from a specific source has been detected. The external
logic may then instantiate a filter, either based on the net-
work source of the request or the contents of the pay-
load [47].

4 Experimental Evaluation

We have tested our shadow honeypot implementation
against a number of exploits, including a recent Mozilla
PNG bug and several Apache-specific exploits. In this
section, we report on performance benchmarks that illus-
trate the efficacy of our implementation.

First, we measure the cost of instantiating and operating
shadow instances of specific services using the Apache
web server and the Mozilla Firefox web browser. Sec-
ond, we evaluate the filtering and anomaly detection com-
ponents, and determine the throughput of the IXP1200-

7

based load balancer as well as the cost of running the
detection heuristics. Third, we look at the false positive
rates and the trade-offs associated with detection perfor-
mance. Based on these results, we determine how to tune
the anomaly detection heuristics in order to increase de-
tection performance while not exceeding the budget al-
loted by the shadow services.

4.1 Performance of shadow services

Apache To determine the workload capacity of the
shadow honeypot environment, we used DYBOC on the
Apache web server, version 2.0.49. Apache was chosen
due to its popularity and source-code availability. Basic
Apache functionality was tested, omitting additional mod-
ules. The tests were conducted on a PC with a 2GHz Intel
P4 processor and 1GB of RAM, running Debian Linux
(2.6.5-1 kernel).

We used ApacheBench [4], a complete benchmarking
and regression testing suite. Examination of application
response is preferable to explicit measurements in the case
of complex systems, as we seek to understand the effect
on overall system performance.

Figure 7 illustrates the requests per second that Apache
can handle. There is a 20.1% overhead for the patched
version of Apache over the original, which is expected
since the majority of the patched buffers belong to utility
functions that are not heavily used. This result is an indi-
cation of the worst-case analysis, since all the protection
flags were enabled; although the performance penalty is
high, it is not outright prohibitive for some applications.
For the instrumentation of a single buffer and a vulnera-
ble function that is invoked once per HTTP transaction,
the overhead is 1.18%.

Of further interest is the increase in memory require-
ments for the patched version. A naive implementation of
pmalloc()would require two additional memory pages for
each transformed buffer. Full transformation of Apache
translates into 297 buffers that are allocated withpmal-
loc(), adding an overhead of 2.3MB if all of these buffers
are invoked simultaneously during program execution.
When protectingmalloc()’ed buffers, the amount of re-
quired memory can skyrocket.

To avoid this overhead, we use anmmap() based
allocator. The two guard pages aremmap’ed write-
protected from/dev/zero,without requiring additional
physical memory to be allocated. Instead, the overhead
of our mechanism is 2 page-table entries (PTEs) per al-
located buffer, plus one file descriptor (for/dev/zero) per
program. As most modern processors use an MMU cache
for frequently used PTEs, and since the guard pages are

only accessed when a fault occurs, we expect their impact
on performance to be small.

Mozilla Firefox For the evaluation of the client case,
we used the Mozilla Firefox browser. For the initial val-
idation tests, we back-ported the recently reportedlibpng
vulnerability [7] that enables arbitrary code execution if
Firefox (or any application usinglibpng) attempts to dis-
play a specially crafted PNG image. Interestingly, this ex-
ample mirrors a recent vulnerability of Internet Explorer,
and JPEG image handling [6], which again enabled ar-
bitrary code execution when displaying specially crafted
images.

In the tightly-coupled scenario, the protected version of
the application shares the address space with the unmodi-
fied version. This is achieved by transforming the original
source code with our DYBOC tool. Suspicious requests
are tagged by the ADS so that they are processed by the
protected version of the code as discussed in Section 3.2.

For the loosely-coupled case, when the AD component
marks a request for processing on the shadow honeypot,
we launch the instrumented version of Firefox to replay
the request. The browser is configured to use a null X
server as provided byXvfb . All requests are handled by
a transparent proxy that redirects these requests to an in-
ternal Web server. The Web server then responds with the
objects served by the original server, as captured in the
original session. The workload that the shadow honey-
pot can process in the case of Firefox is determined by
how many responses per second a browser can process
and how many different browser versions can be checked.

Our measurements show that a single instance of Fire-
fox can handle about one request per second with restart-
ing after processing each response. Doing this only after
detecting a successful attack improves the result to about
four requests per second. By restarting, we avoid the ac-
cumulation of various pop-ups and other side-effects. Un-
like the server scenario, instrumenting the browser does
not seem to have any significant impact on performance.
If that was the case, we could have used the rollback
mechanism discussed previously to reduce the cost of
launching new instances of the browser.

We further evaluate the performance implications of
fully instrumenting a web browser. These observations
apply to both loosely-coupled and tightly-coupled shadow
honeypots. Web browsing performance was measured us-
ing a Mozilla Firefox 1.0 browser to run a benchmark
based on the i-Bench benchmark suite [1]. i-Bench is a
comprehensive, cross-platform benchmark that tests the
performance and capability of Web clients. Specifically,
we use a variant of the benchmark that allows for scrolling

8

Figure 7:Apache benchmark results. Figure 8: Normalized Mozilla Firefox benchmark results
using modified version of i-Bench.

of a web page and uses cookies to store the load times
for each page. The benchmark consists of a sequence of
10 web pages containing a mix of text and graphics; the
benchmark was ran using both the scrolling option and the
standard page load mechanisms. For the standard page
load configuration, the performance degradation for in-
strumentation was 35%. For the scrolling configuration,
where in addition to the page load time, the time taken
to scroll through the page is recorded, the overhead was
50%. The results follow our intuition as more calls to
mallocare required to fully render the page. Figure 8 il-
lustrates the normalized performance results. It should
be noted that depending on the browser implementation
(whether the entire page is rendered on page load) mech-
anisms such at the automatic scrolling need to be imple-
mented in order to protected against targeted attacks. At-
tackers may hide malicious code in unrendered parts of a
page or in javascript code activated by user-guided pointer
movement.

How many different browser versions would have to be
checked by the system? Figure 9 presents some statistics
concerning different browser versions of Mozilla. The
browser statistics were collected over a 5-week period
from the CIS Department web server at the University of
Pennsylvania. As evidenced by the figure, one can expect
to check up to 6 versions of a particular client. We expect
that this distribution will be more stabilized around final
release versions and expect to minimize the number of
different versions that need to be checked based on their
popularity.

 0

 100000

 200000

 300000

 400000

 500000

 600000

1.
8b

1.
8a

6
1.

8a
5

1.
8a

4
1.

8a
3

1.
8a

2
1.

7b
1.

7.
5

1.
7.

3
1.

7.
2

1.
7.

1
1.

7
1.

6a1.
6

1.
5a1.
5

1.
4b

1.
4.

3
1.

4.
2

1.
4.

1
1.

4
1.

3.
1

1.
3

1.
2.

1
1.

1
1.

0.
2

1.
0.

1
1.

0.
0

0.
9.

9
0.

9.
8

0.
9.

4.
2

0.
9.

4.
1

0.
9.

4
0.

9.
2.

1
0.

9.
2

P
op

ul
ar

ity
 (

R
eq

ue
st

s)

Mozilla version

Popularity of different mozilla versions

Figure 9: Popularity of different Mozilla versions, as mea-
sured in the logs of CIS Department Web server at the Uni-
versity of Pennsylvania.

4.2 Filtering and anomaly detection

IXP1200-based firewall/load-balancer. We first
determine the performance of the IXP1200-based
firewall/load-balancer. The IXP1200 evaluation board
we use has two Gigabit Ethernet interfaces and eight
Fast Ethernet interfaces. The Gigabit Ethernet interfaces
are used to connect to the internal and external network
and the Fast Ethernet interfaces to communicate with the
sensors. A set of client workstations is used to generate
traffic through the firewall. The firewall forwards traffic
to the sensors for processing and the sensors determine
if the traffic should be dropped, redirected to the shadow

9

Packet Size (bytes)
64 512 1024 1518

U
til

iz
at

io
n

of
 M

ic
ro

en
gi

ne
s(

%
)

20

30

40

50

60

70

80
FWD
LB
SPLITTER
LB+FWD

Figure 10: Utilization(%) of the IXP1200 Microengines,
for forwarding-only (FWD), load-balancing-only (LB), both
(LB+FWD), and full implementation (FULL), in stress-tests
with 800 Mbit/s worst-case 64-byte-packet traffic.

Detection method Throughput/sensor

Content matching 225 Mbit/s
APE 190 Mbit/s

Payload Sifting 268 Mbit/s

Table 1:PC Sensor throughput for different detection mech-
anisms.

honeypot, or forwarded to the internal network.
Previous studies [35] have reported forwarding rates of

at least 1600 Mbit/s for the IXP1200, when used as a sim-
ple forwarder/router, which is sufficient to saturate a Gi-
gabit Ethernet interface. Our measurements show that de-
spite the added cost of load balancing, filtering and coor-
dinating with the sensors, the firewall can still handle the
Gigabit Ethernet interface at line rate.

To gain insight into the actual overhead of our imple-
mentation we carry out a second experiment, using Intel’s
cycle-accurate IXP1200 simulator. We assume a clock
frequency of 232 MHz for the IXP1200, and an IX bus
configured to be 64-bit wide with a clock frequency of
104 MHz. In the simulated environment, we obtain de-
tailed utilization measurements for themicroenginesof
the IXP1200. The results are shown in Table 10. The re-
sults show that even at line rate and worst-case traffic the
implementation is quite efficient, as the microengines op-
erate at 50.9%-71.5% of their processing capacity. These
results provide further insight into the scalability of our
design.

PC-based sensor performance. We also measure the
throughput of the PC-based sensors that cooperate with

the IXP1200 for analyzing traffic and performing anomaly
detection. For this experiment, we use a 2.66 GHz Pen-
tium IV Xeon processor with hyper-threading disabled.
The PC has 512 Mbytes of DDR DRAM at 266 MHz.
The PCI bus is 64-bit wide clocked at 66 MHz. The host
operating system is Linux (kernel version 2.4.22, Red-Hat
9.0).

We use LAN traces to stress-test a single sensor run-
ning a modified version ofsnort that, in addition to basic
signature matching, provides the hooks needed to coor-
dinate with the IXP1200 as well as the APE and Early-
bird heuristics. We replay the traces from a remote sys-
tem through the IXP1200 at different rates to determine
themaximum loss-free rate(MLFR) of the sensor. For the
purpose of this experiment, we connected a sensor to the
second Gigabit Ethernet interface of the IXP1200 board.

The measured throughput of the sensor for signature
matching using APE and Earlybird is shown in Table 1.
The throughput per sensor ranges between 190 Mbit/s
(APE) and 268 Mbit/s (payload sifting), while standard
signature matching can be performed at 225 Mbit/s. This
means that we need at least 4-5 sensors behind the
IXP1200 for each of these mechanisms. Note, however,
that these results are rather conservative and based on un-
optimized code, and thus only serve the purpose of pro-
viding a ballpark figure on the cost of anomaly detection.

False positive vs. detection rate trade-offs We deter-
mine the workload that is generated by the AD heuristics,
by measuring the false positive rate. We also consider
the trade-off between false positives and detection rate,
to demonstrate how the AD heuristics could be tuned to
increase detection rate in our shadow honeypot environ-
ment. We use the payload sifting implementation from
[8].

We run the modified snort sensor implementing APE
and payload sifting on packet-level traces captured on an
enterprise LAN with roughly 150 hosts. Furthermore,
the traces contain several instances of the Welchia worm.
APE was applied on the URIs contained in roughly one-
billion HTTP requests gathered by monitoring the same
LAN.

Figure 11 demonstrates the effects of varying the dis-
tinct destinations threshold of the content sifting AD on
the false positives (measured in requests to the shadow
services per minute) and the (Welchia worm) detection
delay (measured in ratio of hosts in the monitored LAN
infected by the time of the detection).

Increasing the threshold means more attack instances
are required for triggering detection, and therefore in-
creases the detection delay and reduces the false positives.

10

 0

 5

 10

 15

 20

 2 3 4 5 6 7 8 9 10 11 12 13
 0

 10

 20

 30

 40

 50

F
al

se
 p

os
iti

ve
s

(p
er

 m
in

ut
e)

D
et

ec
tio

n
de

la
y

(%
 in

fe
ct

ed
)

Distinct destination threshold

Payload sifting performance

detection delay
false positives

Figure 11:FPs for payload sifting

 0

 5

 10

 15

 20

 30 35 40 45 50

F
al

se
 p

os
iti

ve
s

(p
er

 m
in

ut
e)

MEL threshold (number of sled instructions)

APE performance

APE

Figure 12:FPs for APE

It is evident that to achieve a zero false positives rate with-
out shadow honeypots we must operate the system with
parameters that yield a suboptimal detection delay.

The detection rate for APE is the minimum sled length
that it can detect and depends on the sampling factor and
the MEL parameter (the number of valid instructions that
trigger detection). A high MEL value means less false
positives due to random valid sequences but also makes
the heuristic blind to sleds of smaller lengths.

Figure 12 shows the effects of MEL threshold on the
false positives. APE can be used in a tightly coupled
scenario, where the suspect requests are redirected to the
instrumented server instances. The false positives (mea-
sured in requests to the shadow services per minute by
each of the normal services under maximum load) can
be handled easily by a shadow honeypot. APE alone has
false positives for the entire range of acceptable opera-
tional parameters; it is the combination with shadow hon-
eypots that removes the problem.

5 Related Work

Much of the work in automated attack reaction has fo-
cused on the problem of network worms, which has taken
truly epidemic dimensions (pun intended). For example,
the system described in [50] detects worms by monitoring
probes to unassigned IP addresses (“dark space”) or inac-
tive ports and computing statistics on scan traffic, such as
the number of source/destination addresses and the vol-
ume of the captured traffic. By measuring the increase
on the number of source addresses seen in a unit of time,
it is possible to infer the existence of a new worm when

as little as 4% of the vulnerable machines have been in-
fected. A similar approach for isolating infected nodes
inside an enterprise network [38] is taken in [13], where
it was shown that as little as 4 probes may be sufficient
in detecting a new port-scanning worm. [49] describes
an approximating algorithm for quickly detecting scan-
ning activity that can be efficiently implemented in hard-
ware. [31] describes a combination of reverse sequen-
tial hypothesis testing and credit-based connection throt-
tling to quickly detect and quarantine local infected hosts.
These systems are effective only against scanning worms
(not topological, or “hit-list” worms), and rely on the as-
sumption that most scans will result in non-connections.
As such, they as susceptible to false positives, either acci-
dentally (e.g.,when a host is joining a peer-to-peer net-
work such as Gnutella, or during a temporary network
outage) or on purpose (e.g., a malicious web page with
many links to images in random/not-used IP addresses).
Furthermore, it may be possible for several instances of
a worm to collaborate in providing the illusion of several
successful connections, or to use a list ofknown repliers
to blind the anomaly detector.

[15] describes an algorithm for correlating packet pay-
loads from different traffic flows, towards deriving a worm
signature that can then be filtered [20]. The technique is
promising, although further improvements are required to
allow it to operate in real time. Earlybird [33] presents
a more practical algorithm for doing payload sifting, and
correlates these with a range of unique sources generat-
ing infections and destinations being targeted. However,
polymorphic and metamorphic worms [42] remain a chal-
lenge; Spinelis [36] shows that it is an NP-hard prob-
lem. Buttercup [22] attempts to detect polymorphic buffer

11

overflow attacks by identifying the ranges of the possible
return memory addresses for existing buffer overflow vul-
nerabilities. Unfortunately, this heuristic cannot be em-
ployed against some of the more sophisticated overflow
attack techniques [23]. Furthermore, the false positive
rate is very high, ranging from0.01% to 1.13%. Vigna
et al. [46] discuss a method for testing detection signa-
tures against mutations of known vulnerabilities to deter-
mine the quality of the detection model and mechanism.
In [47], the authors describe a mechanism for pushing to
workstations vulnerability-specific, application-aware fil-
ters expressed as programs in a simple language. These
programs roughly mirror the state of the protected service,
allowing for more intelligent application of content filters,
as opposed to simplistic payload string matching.

HoneyStat [12] runs sacrificial services inside a vir-
tual machine, and monitors memory, disk, and network
events to detect abnormal behavior. For some classes of
attacks (e.g., buffer overflows), this can produce highly
accurate alerts with relatively few false positives, and can
detect zero-day worms. Although the system only pro-
tects against scanning worms, “active honeypot” tech-
niques [52] may be used to make it more difficult for an
automated attacker to differentiate between HoneyStats
and real servers. [11] explores the various options in lo-
cating honeypots and correlating their findings, and their
impact on the speed and accuracy in detecting worms and
other attacks. Reference [32] proposes the use of hon-
eypots with instrumented versions of software services to
be protected, coupled with an automated patch-generation
facility. This allows for quick (< 1 minute) fixing
of buffer overflow vulnerabilities, even against zero-day
worms, but depends on scanning behavior on the part of
worms. Toth and Kruegel [44] propose to detect buffer
overflow payloads (including previously unseen ones) by
treating inputs received over the network as code frag-
ments; they show that legitimate requests will appear to
contain relatively short sequences of validx86 instruction
opcodes, compared to attacks that will contain long se-
quences. They integrate this mechanism into the Apache
web server, resulting in a small performance degradation.

The HACQIT architecture [14, 28, 26, 27] uses vari-
ous sensors to detect new types of attacks against secure
servers, access to which is limited to small numbers of
users at a time. Any deviation from expected or known
behavior results in the possibly subverted server to be
taken off-line. A sandboxed instance of the server is used
to conduct “clean room” analysis, comparing the outputs
from two different implementations of the service (in their
prototype, the Microsoft IIS and Apache web servers were
used to provide application diversity). Machine-learning

techniques are used to generalize attack features from ob-
served instances of the attack. Content-based filtering is
then used, either at the firewall or the end host, to block
inputs that may have resulted in attacks, and the infected
servers are restarted. Due to the feature-generalization ap-
proach, trivial variants of the attack will also be caught
by the filter. [45] takes a roughly similar approach, al-
though filtering is done based on port numbers, which can
affect service availability. Cisco’s Network-Based Appli-
cation Recognition (NBAR) [2] allows routers to block
TCP sessions based on the presence of specific strings in
the TCP stream. This feature was used to block CodeRed
probes, without affecting regular web-server access. Por-
raset al. [24] argue that hybrid defenses using comple-
mentary techniques (in their case, connection throttling at
the domain gateway and a peer-based coordination mech-
anism), can be much more effective against a wide variety
of worms.

DOMINO [51] is an overlay system for cooperative in-
trusion detection. The system is organized in two layers,
with a small core of trusted nodes and a larger collection
of nodes connected to the core. The experimental analy-
sis demonstrates that a coordinated approach has the po-
tential of providing early warning for large-scale attacks
while reducing potential false alarms. Reference [53] de-
scribes an architecture and models for an early warning
system, where the participating nodes/routers propagate
alarm reports towards a centralized site for analysis. The
question of how to respond to alerts is not addressed, and,
similar to DOMINO, the use of a centralized collection
and analysis facility is weak against worms attacking the
early warning infrastructure.

Suh et al. [41], propose a hardware-based solution
that can be used to thwart control-transfer attacks and re-
strict executable instructions by monitoring “tainted” in-
put data. In order to identify “tainted” data, they rely on
the operating system. If the processor detects the use of
this tainted data as a jump address or an executed instruc-
tion, it raises an exception that can be handled by the op-
erating system. The authors do not address the issue of
recovering program execution and suggest the immedi-
ate termination of the offending process. DIRA [34] is
a technique for automatic detection, identification and re-
pair of control-hijaking attacks. This solution is imple-
mented as a GCC compiler extension that transforms a
program’s source code adding heavy instrumentation so
that the resulting program can perform these tasks. The
use of checkpoints throughout the program ensures that
corruption of state can be detected if control sensitive
data structures are overwritten. Unfortunately, the per-
formance implications of the system make it unusable as

12

a front line defense mechanism. Song and Newsome [21]
propose dynamic taint analysis for automatic detection of
overwrite attacks. Tainted data is monitored throughout
the program execution and modified buffers with tainted
information will result in protection faults. Once an attack
has been identified, signatures are generated using auto-
matic semantic analysis. The technique is implemented
as an extension to Valgrind and does not require any mod-
ifications to the program’s source code but suffers from
severe performance degradation.

6 Conclusion

We have described a novel approach to dealing with
zero-day attacks by combining features found today in
honeypots and anomaly detection systems. The main ad-
vantage of this architecture is providing system designers
the ability to fine tune systems with impunity, since any
false positives (legitimate traffic) will be filtered by the
underlying components.

We have implemented this approach in an architecture
called Shadow Honeypots. In this approach, we employ
an array of anomaly detectors to monitor and classify all
traffic to a protected network; traffic deemed anomalous
is processed by a shadow honeypot, a protected instru-
mented instance of the application we are trying to pro-
tect. Attacks against the shadow honeypot are detected
and caught before they infect the state of the protected ap-
plication. This enables the system to implement policies
that trade off between performance and risk, retaining the
capability to re-evaluate this trade-off effortlessly.

Finally, the preliminary performance experiments indi-
cate that despite the considerable cost of processing sus-
picious traffic on our Shadow Honeypots and overhead
imposed by instrumentation, our system is capable of sus-
taining the overall workload of protecting services such as
a Web server farm, as well as vulnerable Web browsers.
In the future, we expect that the impact on performance
can be minimized by reducing the rate of false positives
and tuning the AD heuristics using a feedback loop with
the shadow honeypot. Our plans for future work also in-
clude evaluating different components and extending the
performance evaluation.

Acknowledgments

The work of Kostas Anagnostakis is supported by
OSD/ONR CIP/SW URI through ONR Grant N00014-
04-1-0725. The work of P. Akritidis, K. Xinidis and E.

Markatos was supported in part by the GSRT project EAR
(USA-022) funded by the Greek Secretariat for Research
and Technology and by the IST project NoAH (011923)
funded by the European Union. P. Akritidis and E. P.
Markatos are also with the University of Crete.

References

[1] i-Bench. http://http://www.veritest.com/
benchmarks/i-bench/default.asp .

[2] Using Network-Based Application Recognition and Access Con-
trol Lists for Blocking the ”Code Red” Worm at Network Ingress
Points. Technical report, Cisco Systems, Inc.

[3] CERT Advisory CA-2001-19: ‘Code Red’ Worm Exploiting
Buffer Overflow in IIS Indexing Service DLL.http://www.
cert.org/advisories/CA-2001-19.html , July 2001.

[4] ApacheBench: A complete benchmarking and regression
testing suite. http://freshmeat.net/projects/
apachebench/ , July 2003.

[5] Cert Advisory CA-2003-04: MS-SQL Server Worm.http://
www.cert.org/advisories/CA-2003-04.html , Jan-
uary 2003.

[6] Microsoft Security Bulletin MS04-028: Buffer Over-
run in JPEG Processing Could Allow Code Execution.
http://www.microsoft.com/technet/security/
bulletin/MS04-028.mspx , September 2004.

[7] US-CERT Technical Cyber Security Alert TA04-217A: Multiple
Vulnerabilities in libpng.http://www.us-cert.gov/cas/
techalerts/TA04-217A.html , August 2004.

[8] P. Akritidis, K. Anagnostakis, and E. P. Markatos. Efficient
content-based fingerprinting of zero-day worms. InProceedings
of the IEEE International Conference on Communications (ICC),
May 2005.

[9] M. Bhattacharyya, M. G. Schultz, E. Eskin, S. Hershkop, and S. J.
Stolfo. MET: An Experimental System for Malicious Email Track-
ing. In Proceedings of the New Security Paradigms Workshop
(NSPW), pages 1–12, September 2002.

[10] C. Clark, W. Lee, D. Schimmel, D. Contis, M. Kone, and
A. Thomas. A Hardware Platform for Network Intrusion Detection
and Prevention. InProceedings of the3rd Workshop on Network
Processors and Applications (NP3), February 2004.

[11] E. Cook, M. Bailey, Z. M. Mao, and D. McPherson. Toward Un-
derstanding Distributed Blackhole Placement. InProceedings of
the ACM Workshop on Rapid Malcode (WORM), pages 54–64, Oc-
tober 2004.

[12] D. Dagon, X. Qin, G. Gu, W. Lee, J. Grizzard, J. Levine, and
H. Owen. HoneyStat: Local Worm Detection Using Honepots.
In Proceedings of the7th International Symposium on Recent Ad-
vances in Intrusion Detection (RAID), pages 39–58, October 2004.

[13] J. Jung, V. Paxson, A. W. Berger, and H. Balakrishnan. Fast
Portscan Detection Using Sequential Hypothesis Testing. InPro-
ceedings of the IEEE Symposium on Security and Privacy, May
2004.

[14] J. E. Just, L. A. Clough, M. Danforth, K. N. Levitt, R. Maglich,
J. C. Reynolds, and J. Rowe. Learning Unknown Attacks – A
Start. InProceedings of the5th International Symposium on Re-
cent Advances in Intrusion Detection (RAID), October 2002.

13

[15] H. Kim and B. Karp. Autograph: Toward Automated, Distributed
Worm Signature Detection. InProceedings of the13th USENIX
Security Symposium, pages 271–286, August 2004.

[16] C. Kruegel, F. Valeur, G. Vigna, and R. Kemmerer. Stateful Intru-
sion Detection for High-Speed Networks. InProceedings of the
IEEE Symposium on Security and Privacy, pages 285–294, May
2002.

[17] C. Kruegel and G. Vigna. Anomaly Detection of Web-based At-
tacks. InProceedings of the10th ACM Conference on Com-
puter and Communications Security (CCS), pages 251–261, Oc-
tober 2003.

[18] J. G. Levine, J. B. Grizzard, and H. L. Owen. Using Honeynets
to Protect Large Enterprise Networks.IEEE Security & Privacy,
2(6):73–75, November/December 2004.

[19] A. J. Malton. The Denotational Semantics of a Functional Tree-
Manipulation Language.Computer Languages, 19(3):157–168,
1993.

[20] D. Moore, C. Shannon, G. Voelker, and S. Savage. Internet Quar-
antine: Requirements for Containing Self-Propagating Code. In
Proceedings of the IEEE Infocom Conference, April 2003.

[21] J. Newsome and D. Dong. Dynamic Taint Analysis for Auto-
matic Detection, Analysis, and Signature Generation of Exploits
on Commodity Software. InProceedings of the12th ISOC Sympo-
sium on Network and Distributed System Security (SNDSS), pages
221–237, February 2005.

[22] A. Pasupulati, J. Coit, K. Levitt, S. F. Wu, S. H. Li, J. C. Kuo,
and K. P. Fan. Buttercup: On Network-based Detection of Poly-
morphic Buffer Overflow Vulnerabilities. InProceedings of the
Network Operations and Management Symposium (NOMS), pages
235–248, vol. 1, April 2004.

[23] J. Pincus and B. Baker. Beyond Stack Smashing: Recent Ad-
vances in Exploiting Buffer Overflows.IEEE Security & Privacy,
2(4):20–27, July/August 2004.

[24] P. Porras, L. Briesemeister, K. Levitt, J. Rowe, and Y.-C. A. Ting.
A Hybrid Quarantine Defense. InProceedings of the ACM Work-
shop on Rapid Malcode (WORM), pages 73–82, October 2004.

[25] N. Provos. A Virtual Honeypot Framework. InProceedings of the
13th USENIX Security Symposium, pages 1–14, August 2004.

[26] J. Reynolds, J. Just, E. Lawson, L. Clough, and R. Maglich. On-
line Intrusion Protection by Detecting Attacks with Diversity. In
Proceedings of the16th Annual IFIP 11.3 Working Conference on
Data and Application Security Conference, April 2002.

[27] J. C. Reynolds, J. Just, L. Clough, and R. Maglich. On-Line Intru-
sion Detection and Attack Prevention Using Diversity, Generate-
and-Test, and Generalization. InProceedings of the36th Annual
Hawaii International Conference on System Sciences (HICSS),
January 2003.

[28] J. C. Reynolds, J. Just, E. Lawson, L. Clough, and R. Maglich. The
Design and Implementation of an Intrusion Tolerant System. In
Proceedings of the International Conference on Dependable Sys-
tems and Networks (DSN), June 2002.

[29] M. Roesch. Snort: Lightweight intrusion detection for networks.
In Proceedings of USENIX LISA, November 1999. (software avail-
able fromhttp://www.snort.org/).

[30] L. Schaelicke, T. Slabach, B. Moore, and C. Freeland. Charac-
terizing the Performance of Network Intrusion Detection Sensors.
In Proceedings of Recent Advances in Intrusion Detection (RAID),
September 2003.

[31] S. E. Schechter, J. Jung, and A. W. Berger. Fast Detection of Scan-
ning Worm Infections. InProceedings of the7th International
Symposium on Recent Advances in Intrusion Detection (RAID),
pages 59–81, October 2004.

[32] S. Sidiroglou and A. D. Keromytis. A Network Worm Vaccine Ar-
chitecture. InProceedings of the IEEE Workshop on Enterprise
Technologies: Infrastructure for Collaborative Enterprises (WET-
ICE), Workshop on Enterprise Security, pages 220–225, June
2003.

[33] S. Singh, C. Estan, G. Varghese, and S. Savage. Automated worm
fingerprinting. InProceedings of the6th Symposium on Operating
Systems Design & Implementation (OSDI), December 2004.

[34] A. Smirnov and T. .Chiueh. DIRA: Automatic Detection, Identifi-
cation, and Repair of Control-Hijacking Attacks. InProceedings
of the12th ISOC Symposium on Network and Distributed System
Security (SNDSS), pages 203–219, February 2005.

[35] T. Spalink, S. Karlin, L. Peterson, and Y. Gottlieb. Building a
Robust Software-Based Router Using Network Processors. InPro-
ceedings of the18th ACM Symposium on Operating Systems Prin-
ciples (SOSP), pages 216–229, Chateau Lake Louise, Banff, Al-
berta, Canada, October 2001.

[36] D. Spinellis. Reliable identification of bounded-length viruses
is NP-complete. IEEE Transactions on Information Theory,
49(1):280–284, January 2003.

[37] L. Spitzner.Honeypots: Tracking Hackers. Addison-Wesley, 2003.

[38] S. Staniford. Containment of Scanning Worms in Enterprise Net-
works. Journal of Computer Security, 2005. (to appear).

[39] S. Staniford, D. Moore, V. Paxson, and N. Weaver. The Top Speed
of Flash Worms. InProceedings of the ACM Workshop on Rapid
Malcode (WORM), pages 33–42, October 2004.

[40] S. Staniford, V. Paxson, and N. Weaver. How to Own the Internet
in Your Spare Time. InProceedings of the11th USENIX Security
Symposium, pages 149–167, August 2002.

[41] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas. Secure program
execution via dynamic information flow tracking.SIGOPS Oper-
ating Systems Review, 38(5):85–96, 2004.

[42] P. Sz̈or and P. Ferrie. Hunting for Metamorphic. Technical report,
Symantec Corporation, June 2003.

[43] Top Layer Networks.http://www.toplayer.com .

[44] T. Toth and C. Kruegel. Accurate Buffer Overflow Detection via
Abstract Payload Execution. InProceedings of the5th Symposium
on Recent Advances in Intrusion Detection (RAID), October 2002.

[45] T. Toth and C. Kruegel. Connection-history Based Anomaly De-
tection. InProceedings of the IEEE Workshop on Information As-
surance and Security, June 2002.

[46] G. Vigna, W. Robertson, and D. Balzarotti. Testing Network-based
Intrusion Detection Signatures Using Mutant Exploits. InProceed-
ings of the11th ACM Conference on Computer and Communica-
tions Security (CCS), pages 21–30, October 2004.

[47] H. J. Wang, C. Guo, D. R. Simon, and A. Zugenmaier. Shield:
Vulnerability-Driven Network Filters for Preventing Known Vul-
nerability Exploits. InProceedings of the ACM SIGCOMM Con-
ference, pages 193–204, August 2004.

[48] K. Wang and S. J. Stolfo. Anomalous Payload-based Network In-
trusion Detection. InProceedings of the7th International Sym-
posium on Recent Advanced in Intrusion Detection (RAID), pages
201–222, September 2004.

14

[49] N. Weaver, S. Staniford, and V. Paxson. Very Fast Containment
of Scanning Worms. InProceedings of the13th USENIX Security
Symposium, pages 29–44, August 2004.

[50] J. Wu, S. Vangala, L. Gao, and K. Kwiat. An Effective Architec-
ture and Algorithm for Detecting Worms with Various Scan Tech-
niques. InProceedings of the ISOC Symposium on Network and
Distributed System Security (SNDSS), pages 143–156, February
2004.

[51] V. Yegneswaran, P. Barford, and S. Jha. Global Intrusion Detection
in the DOMINO Overlay System. InProceedings of the ISOC
Symposium on Network and Distributed System Security (SNDSS),
February 2004.

[52] V. Yegneswaran, P. Barford, and D. Plonka. On the Design and
Use of Internet Sinks for Network Abuse Monitoring. InProceed-
ings of the7th International Symposium on Recent Advances in
Intrusion Detection (RAID), pages 146–165, October 2004.

[53] C. C. Zou, L. Gao, W. Gong, and D. Towsley. Monitoring and
Early Warning for Internet Worms. InProceedings of the10th

ACM International Conference on Computer and Communications
Security (CCS), pages 190–199, October 2003.

15

