
1

A Network-Processor-Based Traffic Splitter for

Intrusion Detection

Ioannis Charitakis, Kostas Anagnostakis, and Evangelos P. Markatos

ICS-FORTH Technical Report 342

September 2004

Abstract

Scaling network intrusion detection to high-speed networks can be achieved using multiple intrusion

detection sensors operating in parallel coupled with a suitable load balancing traffic splitter. This paper

examines a splitter architecture that incorporates two methods for improving system performance: the

first is the use ofearly filtering where a portion of the packets is processed on the splitter instead

of the sensors. The second is the use oflocality buffering, where the splitter reorders packets in a

way that improves memory access locality on the sensors. We have implemented our approach on top

of an IXP1200 network processor and evaluated its performance using a combination of experimental

evaluation and simulation. Our experiments suggest that early filtering reduces the number of packets

to be processed by 32%, giving a 8% increase in sensor performance, while locality buffers improve

sensor performance by 10%-18%.

Index Terms

network-level security and protection, Network Processors, Intrusion Detection

I. Charitakis and E. P. Markatos are with the Institute of Computer Science - Foundation for Research and Technology -

Hellas. K.G. Anagnostakis is with the University of Pennsylvania. I. Charitakis and E. P. Markatos are also with the University

of Crete. The work of K. G. Anagnostakis was done while at ICS-FORTH.

Parts of this paper’s sections III and IV have appeared in the Proceedings of the IEEE/ACM International Symposium on

Modeling, Analysis and Simulation of Computer and Telecommunication Systems, Orlando Florida, October 2003.

September 25, 2004 DRAFT



2

I. I NTRODUCTION

Network Intrusion Detection is receiving considerable attention as a mechanism for shielding

our cyberinfrastructure against “attempts to compromise the confidentiality, integrity, availability,

or to bypass the security mechanisms of a computer network” [3]. The typical function of a

Network Intrusion Detection System (nIDS) is based on a set ofsignaturesthat describe known

security threats: each signature corresponds one threat. During its operation, a nIDS examines all

network packets against all threat signatures and determines whether any signatures indicating

intrusion attempts have been matched.

Effective Intrusion Detection systems require significant amounts of computational resources.

Indeed, widely deployed open-source nIDS such assnort [14] often need to match packet headers

against tens of rules and packet payloads against many hundreds of strings defining attack

signatures. This task of header and payload matching is much more expensive than the typical

header processing performed by traditional network elements such as packet forwarders and

firewalls. Indeed, recent research results suggest that state-of-the-art processors running thesnort

nIDS are able to monitor network links whose capacity does not exceed 100-150 Mbps [1], [6].

Therefore, performing Intrusion Detection at high network speeds, such as 1 Gbit/s and beyond,

requires the employment of a more scalable solution, such as the use of multiple Intrusion

Detection sensors operating in parallel, fed by a suitable traffic splitter.

The characteristics of Intrusion Detection place certain constraints on the design of such a

traffic splitter. For instance, as observed by Kruegelet al. [9], packets that are part of a given

attack context should be processed by the same Intrusion Detection sensor. Otherwise, the attack

packets will be distributed over several different sensors, making it difficult, and computationally

expensive, to combine information from the different sensors and recognize the attack. On the

other hand, placing such restrictions on the mapping of packets to particular sensors may easily

lead to load imbalance among sensors, resulting in overloaded sensors which can not cope with

their workload. Actually, this load imbalance may be exploited by attackers in order to evade

detection by means of overloading individual sensors and slipping the attack through them.

Given the high, and sometimes conflicting, resource demands of Intrusion Detection, we

consider ways of boosting sensor performance by rethinking the design of nIDS traffic splitters.

We argue that traffic splitters should implement more active operations on the traffic stream

September 25, 2004 DRAFT



3

with the goal of reducing the load on the sensors, rather than just passively providing generic,

flow-preserving load distribution.

This paper presents two such active mechanisms. The first is based on the observation that

a significant fraction of packets only require header processing. Given that header processing

is relatively cheap (and can be easily performed in hardware) we can implement this function

as part of the splitter. The main benefit of this method ofearly filtering is that the amount of

traffic that needs to be transmitted and processed by the sensors can be reduced significantly. The

second mechanism is based on the observation that different types of packets trigger different

subsets of the nIDS ruleset, placing a significant burden on the sensor memory architecture (i.e.

reducing memory access locality). We present an algorithm forlocality buffering, so that packets

of the same type are grouped together on the splitter before being forwarded to the sensors. The

benefit of this method is that it increases performance without altering the semantics of the traffic

stream and without requiring changes on the sensors. We argue that the algorithm requires a

reasonable amount of additional buffer memory and a small number of operations on each packet

and can thus be be efficiently implemented as part of the splitter.

We evaluate the performance of our approach using a combination of simulation and experi-

mental evaluation on top of a IXP1200 network processor. Our results suggest that early filtering

reduces the number of packets to be processed by the end sensors by 32% giving an 8% increase

in sensor performance, while locality buffering improves sensor performance by 10-18%.

A. Paper organization

The rest of this paper is organized as follows. In Section II we provide a brief overview

of how a nIDS works and how load balancing is used for building scalable Internet services,

including Intrusion Detection. In Section III we present a nIDS load balancing architecture

implementing the proposed early filtering and locality buffering policies. In Section IV we present

experiments examining the performance of the proposed methods. In Section V we discuss the

implementation of our approach on top of the IXP1200 network processor, and in section VI

evaluate its performance. Finally, in Section VII we summarize and conclude the paper.

September 25, 2004 DRAFT



4

II. BACKGROUND

A. Network Intrusion Detection

In this section we describe a (simplified) model of how a Network Intrusion Detection System

(nIDS) operates. A nIDS examines all network traffic against a set of signatures which describe

the known attacks, and determines whether any packets match any signatures, which is a sign of

possible Intrusion attempt. The simplest and most common form of nIDS inspection is to perform

protocol header analysis and match string patterns against the payload of packets captured on a

network link. Known systems following this model aresnort [14] andBro [13]. The following

is a simplifiedsnort signature for the CODE-RED worm which was released on the Internet

during the summer of 2001:

OUT_NET any -> WEB_SERVER 80 content "GET /default.ida?NNNNN"

The above signature suggests that any packet coming from the network outside the organization

(OUTNET) onany source port, and is destined to theWEBSERVERon port80 , and contains the

substring “GET /default.ida?NNNNN ”, then it probably contains the CODE-RED attack

and should be logged.

A nIDS is usually built as a passive monitoring system that reads packets from a network

interface through packet capture facilities such aslibpcap [11]. After being delivered by

libpcap , each packet is checked against the nIDSruleset. A ruleset is typically organized as

a two-dimensional chain data-structure, where each element - often called achain header- tests

the input packet against a packet header rule. When a packet header rule is matched, the chain

header usually points to a set of signature tests, including payload signatures that trigger the

execution of a string matching algorithm [1], [5], [6].

B. Load balancing

Splitting network traffic among different servers, otherwise known astraffic load balancing,

has been widely for building scalable Internet services, and has been applied to widely deployed

systems such as web servers [4], [7].

Recently, researchers have started to examine a general approach for load balancing as applied

to high speed Intrusion Detection systems. For example, Kruegel et al. [9] propose an two-stage

September 25, 2004 DRAFT



5

architecture for determining the set of sensors that will process each packet of the network traffic.

The first stage of the architecture attempts to equally distribute packets, while the second stage

examines packets for determining a suitable set of sensors for final processing. The decision of

where to send a packet is based on rules describing the attack contexts to which a packet may

belong. The main focus of that work is therefore to preserve detection semantics in a generalized

model of Intrusion Detection, assuming different types of detection such as statistical methods,

anomaly detection and content-matching. In contrast, our work is performance-oriented and

focuses on the specific case of content-matching Intrusion Detection as widely deployed today.

In addition to research prototypes, commercial nIDS load balancing products have recently started

to become available, such as [15]. Unfortunately, such products provide little, in any, information

publicly available about the details of their design as well and the load balancing policies they

employ.

C. Early Filtering and load balancing

The idea of providing filtering functionality on a load balancer is also discussed in [7], where

the splitting device is instructed to block traffic destined to unpublished ports. Although the

functionality proposed by Goldsmidt and Hunt [7] is similar to the functionality provided in our

work, the goals are different: our goal is to enhance sensor performance, not provide firewall-like

protection from irrelevant or malicious traffic.

D. Locality enhancing techniques

Locality enhancing techniques for improving server performance are well studied. For example,

in [10] the authors try to improve request locality on a Web cache, demonstrating significant

improvements in file system performance. However, to the best of our knowledge, this current

paper is the first attempt to providing locality enhancements as part of a load balancer, and the

first to do so in the context of Intrusion Detection.

III. D ESIGN

There are four main goals in designing a nIDS traffic splitter. First, packets that belong to

the same attack context need to be processed by the same Intrusion Detection sensor. Otherwise

certain attacks would not be detected. For content-based intrusion detection this can be achieved

September 25, 2004 DRAFT



6

Early

Filtering

load

distributor

locality

buffers

header 

rules

.

.

.

.

incoming 

traffic

sensor1

sensorN

sensor2
locality

buffers

locality

buffers

Fig. 1. The active nIDS splitter architecture

by mapping packets of the same flow to the same sensor. Second, traffic should be distributed

so that overall system performance is maximized. Assuming a set ofN identical sensors (in

terms of resources, software and configuration), a good way of achieving this is to distribute

approximately1/N of the total load to each sensor. Flow-level traffic distribution works well

toward this goal, and we will discuss how early filtering and locality buffering can provide

further benefits. Third, the load balancing algorithm needs to be efficient enough to operate at

high network speeds. Fourth, the system should (ideally) not require modification to the sensor

function.

The overall architecture architecture of our approach is shown in Figure 1. All incoming

network traffic arrives from the left side of Figure 1 and enters the traffic splitter. The splitter,

after some early-filtering pre-processing, divides the traffic through the load balancer into separate

streams and sends each of them to a different sensor which processes the incoming packets

searching for possible intrusion attempts. Given that the end sensors are off-the-self Intrusion

Detection Systems, such as snort [14] our contribution is focused on the architecture and

implementation of the traffic splitter.

As shown in Figure 1 the system is composed of an early filtering element, a load distribution

element and a set of locality buffering units, one unit for each sensor. In the remainder of this

Section, we will present each of the elements in more detail.

September 25, 2004 DRAFT



7

A. Early filtering

The goal of early filtering is to identify those incoming packets that do not contain any

intrusions and filter them out immediately without needing to sending them to the end sensors.

Such an early filter will reduce the load on the end sensors, and may also improve the performance

of the overall system, as the process of sending the filtered-out packets from the splitter to the

sensors will be avoided.

To perform early filtering, we analyzed thesnort ruleset and found 165 rules that require only

header (not payload) processing: we refer to this set of rules as theEF ruleset.

Once theEF rulesethas been identified, the splitter then operates as follows: when a packet

is received, it is first checked against the EF ruleset. If (i) no rule is matched and (ii) the packet

contains no payload, then the packet is filtered out (i.e. discarded). Otherwise, it is forwarded

to the end sensors for further processing. Note that the packets which are forwarded to the end

sensors may belong to one of the following two classes: (i) they matched one of the rules from

the EF ruleset, or (ii) they did not match any of theEF rulesetrules, but they contain payload.

Packets belonging to the first class are forwarded to the end sensors in order to be logged, while

packets belonging to the second class are forwarded to the end sensors in order to be examined

against the rest of thesnort’s rules.

B. Load distribution

The goal of load distribution is to divide the network traffic among the end sensors so as to

keep them as evenly loaded as possible. At the same time, the distribution of the network traffic

should make sure that all packets of a network flow are examined by the same sensor, otherwise

the system may miss an intrusion attempt.

A simple and efficient approach for load distribution is to compute a hash function on some

of the fields of the packet headers, and to assign each packet to an end sensor based on the

resulting value if this hash function. A hash function such as CRC16 [4], can evenly spread

the flows among the sensors, so that each sensor will receive an approximately equal amount

of work. Careful choice of the header fields that will be used as input to the hash function can

result in a load balancing policy that is flow preserving, i.e. packets of the same flow will be

assigned to the same sensor. This can be easily accomplished by using the following header

fields: protocol number, source IP address, destination IP address, source port, and destination

September 25, 2004 DRAFT



8

LB 1

LB N

GROUPING

Sensor
X

Fig. 2. Packet grouping using Locality Buffers

port. Assuming well-behaved (e.g.TCP-friendly) traffic, this approach is also robust to variations

in traffic load, as new flows will be assigned evenly among the available sensors. Of course,

such an approach may not be robust against attackers attempting to overload the system to evade

detection. However, this problem is beyond the scope of this work and is also not specific to

the proposed enhancements.

For the purpose of our study we have used a CRC16-like hashing function as it has been

shown to perform well [4].

C. Locality buffering

Locality buffering is a method for adapting the packet stream in such a way that improves

performance of each end Intrusion Detection sensor by reducing its cache misses and improving

the locality of its memory accesses.

The observation on which locality buffers are based is the following: each packet that arrives at

the end sensor will be checked against rules that apply to the packet’s type of traffic. For example,

network packets destined to a web server will be checked against a set of rules which search for

web server exploits. Similarly, network packets destined to an ftp server will be checked against

a set of rules which describe ftp server exploits. When checking a packet against a set of rules,

each sensor will have to bring this ruleset to the first-, and possibly the second-, level cache of

the processor on top of which it executes. In an ordinary traffic stream, packets from different

network flows appear interleaved. For example, assume an Intrusion Detection sensor which

September 25, 2004 DRAFT



9

monitors a traffic stream consisting of packets belonging to a web flow and packets belonging

to an ftp flow. Ordinarily, web packets will arrive interleaved with ftp packets, which implies

that the sensor will alternate in its cache the web ruleset with the ftp ruleset, resulting in cache

misses and reduced performance.

To increase memory locality and reduce cache misses, locality buffering attempts to rearrange

the interleaving of packets in the network traffic so that packets that arrive back-to-back will

trigger the same ruleset as frequently as possible. To do so, our method uses a set oflocality

buffers. Instead of sending network packets to end Intrusion Detection sensors directly, our

approach places packets in locality buffers, so that packets placed in the same buffer will trigger

the same ruleset in the Intrusion Detection sensor. When a buffer becomes full, all its packets

are transmitted back-to-back to the target sensor. Therefore, packets arriving back-to-back at an

end sensor will have a higher probability of triggering the same ruleset and of improving the

memory locality.

Since exact classification of each packet according to the nIDS rule-groups can be complicated,

we have opted for a simpler solution based on the following heuristics for determining the target

locality buffer for a given packet:

SD: We place a packet in a locality buffer based on the result of a hash function computed

on the source and the destination ports of the packet. Using this approach we expect that

packets belonging to different flows will end up in different buffers, thereby reducing

packet interleaving.

D: We place a packet in a locality buffer based on the result of a hash function computed on

the destination port only.

T D: In this approach we allocate a subset of locality buffers for known traffic types and use

method D for the remaining buffers/packets. For example, one buffer may receive only

Web traffic, another buffer may receive only NNTP traffic, and a third buffer may receive

only P2P traffic. Unclassified packets are then allocated to the rest of the locality buffers

using method D: hashing on the destination port only. The choice of traffic types can be

made by profiling real network traffic and looking at how the nIDS ruleset is utilized.

September 25, 2004 DRAFT



10

TABLE I

LOCALITY BUFFER ALLOCATION METHODS

Method Description

SD hash(Src+Dst port)

D hash(Dst port)

T D Dedicate LBs to specific trafficType + methodD

IV. PERFORMANCE OFEARLY FILTERING AND LOCALITY BUFFERING

In this section we present experiments examining the effect of early filtering and locality

buffering on NIDs performance.

For our experiments we use a Dell PowerEdge 500SC equipped with a 1.13 GHz Pentium

III processor PC with 8 KB L1 cache, 512 KB L2 cache and 512 MB of main memory. The

host operating system is Linux (kernel version 2.4.17, RedHat 7.2). The NIDs software issnort

version 2.0-beta20 compiled withgcc version 2.96 (optimization flagsO2).

All experiments are performed by reading a packet trace from disk, except for the early

filtering experiments where traffic is received from the network (to capture the effect of early

filtering on the network subsystem). In the later case, we use a simple network with two hosts

A and B and a monitoring host S. Host A reads the trace from file and sends traffic to host B

(using tcpreplay ) over a 100 Mbit/s Ethernet switch configured to mirror the traffic to host

S. As the exact timing of trace packets has negligible effect on NIDs behavior, we simply replay

the trace at maximum rate (link utilization was roughly 90%).

We drive our experiments using thenlanr.MRA.1031627450 packet trace from the NLANR

archive captured in September 2002 on the OC12c (622 Mbit/s) PoS link connecting the Merit

premises in East Lansing to Internet2/Abilene [12]. The trace contains 2,760,531 packets with

average size of 762 bytes. Of these packets 96% are TCP packets, and 3.55% are UDP packets.

Since the trace contains only the header (and not the payload) portion of each packet we added

uniformly random payload data to create realistic traffic.1

1The use of random payloads for NIDs evaluation is shown in [2] to offer reasonably accurate performance estimates.

September 25, 2004 DRAFT



11

Running Time (sec)

w/o
Early

Filtering

with
Early

Filtering

20

25

30

35

40

45

50

55

60

System Time
User Time

Fig. 3. The effect of Early Filtering on sensor performance.

A. Evaluation of Early Filtering

In our first set of experiments we set out to explore the benefits of early filtering. Analyzing

the trace we used in our experiments reveals that more than 40% of the packets do not contain

any payload - most of these packets are TCP acknowledgments. Moreover, more than 99% of

these do not match any of the rules in the EF ruleset, and therefore, they can safely be dropped

by the splitter during early filtering.

To measure the effect of early filtering on sensor performance, we measure the user and system

time of runningsnort on top of two traces: First on top of the original trace, and second on top

of a stripped trace which does not contain the packets that are dropped by early filtering. The

results are depicted in Figure 3: the left bar of the figure shows snort’s running time on top of

the original trace, and the right bar is the running time on top of the stripped trace (i.e. early

filtering). We observe that user time is reduced by 6.6% (45.67 sec vs. 42.66 sec) while system

time is decreased by 16.8% (10.1 sec vs. 8.7 sec). Considering both user and system time the

results suggest an overall improvement of 8%.

B. Performance of Load Sharing Hash Function

In this section we explore the load balancing properties of the CRC16 hash function which we

use to distribute packets among the available sensors. For this purpose, we use the hash function

to spread the packets among the available sensors and we measure themaximumnumber of

September 25, 2004 DRAFT



12

TABLE II

PERFORMANCE OFCRC16-BASED LOAD SHARING METHOD.

difference (in % of assigned packets)

Sensors of most loaded from fair share

2 1.25%

4 5.70%

8 13.55%

packets received by any sensor, as well as theaveragenumber of packets received by the

sensors for the cases of 2, 4 and 8 sensors. Table II shows the percentage difference between

the maximum and the average number of packets received by 2, 4, and 8 sensors. We see that

this difference is rather small (i.e. 1.25%) for the case of two sensors, but it is noticeable (i.e.

13.55%), although not significant, for the case of eight sensors.

C. Effect of Locality Buffers on nIDs performance

To investigate the benefit of using locality buffers we measure the nIDS performance using

two metrics:

• aggregate user time2: the total user time spent by allsnort sensors.

• maximum user time: the user time spent by the most loaded sensor.

We determine how performance is affected when using different numbers of participating

sensors, number and size of locality buffers, as well as different heuristics for locality buffer

allocation.

1) Effect of Locality Buffers vs. Number of Sensors:Figure 4 shows the aggregate user time

for different numbers of sensors, and Figure 5 shows the user time of the slowest (most loaded)

sensor. For this set of experiments we use 16 locality buffers of 256 KB each and the TD

allocation method. Figure 4 shows that using locality buffers improves the aggregate user time

by at least 11.4% (8 sensors) and up to 13.8% (one sensor). Figure 5 shows that using locality

2We have excluded the system time from our metrics, since it consists only of kernel overhead related to reading the network

packets from the trace stored on disk.

September 25, 2004 DRAFT



13

Aggregate User Time (sec)

Sensors
1 2 4 8

30

35

40

45

50

55

41.75 41.74 41.61 41.19

48.47
47.19 47.27 46.52

without LBs
with LBs

Fig. 4. Aggregate user time over all sensors vs. number of sensors.

User Time of Most Loaded Sensor(sec)

Sensors
2 4 8

0

5

10

15

20

25
22.15

11.39

5.84

24.24

12.38

6.56

without LBs
with LBs

Fig. 5. User time of slowest sensor vs. number of sensors for the experiments of Figure 4

buffers improves the time of the most loaded sensor by 9%-12%. One interesting observation

from Figure 4 is that as the number of sensors increases, the aggregate user time (in white

bars) is decreasing. This happens because distributing packets to a large number of different

sensors, even in the absence of locality buffers, demultiplexes the incoming traffic and increases

the probability of same-type back-to-back packets. To verify this observation we measure the

average burst size (i.e., the number of consecutive packets that have the same protocol and the

same destination port) seen by the sensors in the experiments of Figures 4 and 5. Figure 6

presents the average burst size for one to eight sensors. By looking at Figure 6, it is evident

that the average burst size increases with the number of sensors. For example, in the absence

of locality buffers the average burst size increases from 1.06 packets to 1.18 packets, an 11%

increase. Similarly, when locality buffers are being used, the average burst size increases from

September 25, 2004 DRAFT



14

Mean burst size (packets)

Sensors
1 2 4 8

0

2

4

1.06 1.08 1.12 1.18
1.63 1.78

2
2.27

without LBs
with LBs

Fig. 6. Mean burst size vs number of sensors for the experiment of Figures 4 and 5.

% Performance Improvement
by number of LBs

Number of Locality Buffers

4 8 16 32 64

User time of most
loaded sensor
Aggregate user time

%
 Im

pr
ov

em
en

t

0

2

4

6

8

10

12

14

Fig. 7. Performance improvement (reduction in user time) using different number of LBs.

1.63 to 2.27, a 39% increase. It is interesting, however, to note that the average burst size in

almost all cases increases significantly with the use of locality buffers. For example, in the case

of one sensor locality buffers increase the burst size by 53% (from 1.06 to 1.63), and in the case

of eight sensors by 92% (from 1.18 to 2.27).

2) Locality Buffer dimensioning:In our next set of experiments we investigate how the size

and the number of locality buffers affect performance. We use four sensors and the locality

buffers are allocated using method TD. In each experiment we measure the difference in user

time compared to a system without locality buffers.

Figure 7 shows the results of using different number of locality buffers per sensor when the

September 25, 2004 DRAFT



15

% Performance Improvement
by LB size

Locality Buffer Size (KB)

64 128 256 512

User time of most
loaded sensor
Aggregate user time

%
 Im

pr
ov

em
en

t

0

2

4

6

8

10

12

14

16

18

Fig. 8. Performance improvement (reduction in user time) using different size for each LB.

size of each buffer is 256 KB. We observe that the improvement in aggregate user time varies

between 6.8% (4 buffers) and 12.9% (64 buffers). Increasing the number of locality buffers

beyond 32 does not appear to offer any benefit in terms of aggregate user time although it still

improves the performance of the most loaded sensor. This suggests that using 32 or 64 locality

buffers per sensor is a reasonable design choice.

To measure how the size of each locality buffer affects performance we measure the aggregate

user time and the user time of the most loaded sensor for various buffer sizes. The results are

presented in Figure 8. The reduction in aggregate user time ranges from 9.3% to 13.31% for

the cases of 64 KB and 512 KB respectively. Using 256 KB per locality buffer seems like a

reasonable choice, as the gain of increasing the buffer size from 256 KB to 512 KB is marginal.

3) Effect of different locality buffering policies:In this next set of experiments we examine

how the different heuristics for allocating locality buffers affect performance. For this set of

experiments we use four sensors, 16 locality buffers per sensor and 256 KB per buffer. Again,

we measure the percentage of reduction locality buffers achieve in aggregate user time.

Figure 9 shows the performance improvement in terms of aggregate user time as well as user

time of the slowest sensor, for different locality buffer allocation methods. We see that using

hashing on the destination port only (D) is better than simple hashing on both ports (SD) by more

September 25, 2004 DRAFT



16

% Performance Improvement
by LB Allocation Method

Locality Buffer Allocation Method

SD D T_D

%
 Im

pr
ov

em
en

t

0
2
4
6
8

10
12
14
16

User time of most
loaded sensor
Aggregate user time

Fig. 9. Percentage of performance improvement when using different Locality Buffer Allocation Methods.

TABLE III

EVALUATION OF EARLY FILTERING AND LOCALITY BUFFERING.

Aggregate Most Loaded Sensor

time (sec) improvement time (sec) improvement

base system 47.27 11.52

locality buffers 41.61 8.9% 10.93 5%

locality buffers +

early filtering

37.88 19.8% 10.06 14.4%

than 4%. We also see that the best performance is obtained when assigning some of the locality

buffers to specific types traffic. This is observed in barsT D which shows an improvement

of 12.19%. This is not surprising, as a significant part of the trace includes Web traffic, and

therefore dedicating buffers to this kind of traffic results in longer bursts of similar packets.

D. Evaluation of Early Filtering combined with Locality Buffers

To estimate the benefits of using both early filtering and locality buffering together we apply

the early filtering method on the packet trace and split the remaining packets to four sensors

using 16 Locality Buffers of 256 KB per sensor and buffer allocation heuristicT D. Table III

shows the results. The measured aggregate user time is 37.88 sec compared to 41.61 sec when

using locality buffers only, reflecting an improvement of 8.9%. Compared to 47.27 sec when

September 25, 2004 DRAFT



17

not using locality buffers at all, the overall improvement of using both EF and LB is 19.8%.

For the slowest sensor, performance is increased by 5% when compared to using only locality

buffers (from 11.52 sec to 10.93 sec) and 14.4% when compared to not using early filtering or

locality buffers.

V. I MPLEMENTATION OF SPLITTER ON THE IXP 1200

We have implemented our approach on top of the Intel IXP1200 network processor [8]. The

IXP1200 network processor is equipped with one general-purpose StrongArm processor and six

special-purpose processors which are usually called micro-engines (uEngines). Each uEngine is

equipped with four threads which frequently context switch among themselves in order to mask

memory latency. In our experimental environment, the IXP1200 network processor is mounted on

an ENP-2506 development board provided by Radisys. Besides the processor, the board includes

256 MB of SDRAM, 8 MB of SRAM, 8 MB of Flash memory, two optical gigabit interfaces

and a 64 bit external PCI interface. The IXP 1200 network processor is internally clocked at

232 MHz.

A. Splitter Overview

Figure 10 outlines the main components of our software running on the IXP1200 network

processor. Each incoming packet entering the network processor (right side of Figure 10),

is assigned to a target Intrusion Detection sensor which will check the packet for possible

cyberattacks. Sensor assignment is performed in a flow preserving manner, i.e. all packets of

the same flow will always be assigned to the same sensor. This is accomplished by assigning

packets to sensors based on the result of a hash function applied on the source and destination

IP addresses of the packet. Following sensor assignment, each packet is assigned to one of 16

locality buffers (dedicated to each sensor) based on the result of a hash function computed on

the packet’s destination port. An exception to this rule are packets belonging to the following

traffic categories:

• packets destined to port 80 (web client traffic)

• packets originating from 80 (web server traffic)

• packets destined to port 119 (nntp traffic)

• packets destined to port 1214 (Kazaa traffic)

September 25, 2004 DRAFT



18

Input Traffic

ENP-2506

xmit

queue

Sensor 1

Assign

locality

buffer

Sensor 2

Assign

locality

buffer

assign

sensor

Fig. 10. Splitter work overview

• packets destined to port 445 (Common Internet File System)

Each of the above categories is given its own locality buffer.

When a locality buffer becomes full, all its packets are enqueued in the transmit queue (xmit

queue at the bottom of Figure 10), and transferred to the final sensor as a single burst (back to

back).

Figure 11 shows the specific work of each programmable element inside the IXP, as well as

how the memory resources are used. As it can be seen the distribution of work is as follows:

• Receive ThreadsThere are two uEngines, a total of eight Receive Threads, which receive

packets, assign them to the corresponding sensor and maintain the locality buffers by

enqueueing packets to and dequeuing packets from the buffers. Dequeued packets are

subsequently enqueued in the xmit queue.

• Transmit Threads One uEngine is dedicated to transmission using three Transmission

Threads and one Transmission Controller Thread.

September 25, 2004 DRAFT



19

uEngine 4

idle

uEngine 3

Status

Reporting

uEngine 5

Transmit

threads

uEngine 1

Receive

threads

uEngine 0

Receive

threads

uEngine 2

Flushing

of LB

StrongArm

Device booting

Start/Stop

Monitoring

Debuging

(Linux)

SRAM

Packet descriptor lists

Packet meta data

Locality Buffers meta data

User control & Reports

SDRAM

Packets

Linux

Fig. 11. Distribution of work and data among the components of IXP

• Flushing of locality buffers One uEngine is dedicated to periodically checking the contents

of the locality buffers and flushing them when a timeout period has elapsed.

• Status Reporting One uEngine is dedicated to periodic gathering of statistics.

• StrongArm The StrongArm general-purpose processor is dedicated to running Linux, and

it is used for booting and performing the primary initialization of the device. Moreover, it

is used for starting and stopping the IXP Splitter operation, for monitoring its state, and for

debugging purposes.

It can be easily seen that our design utilizes only five of the available six uEngines leaving head

room for future expansions. The available memory of the IXP1200 is allocated as follows:

• SDRAM 32 MB of SDRAM are dedicated to storing the actual contents of each packet. Of

the rest of the 256 MB of the SDRAM, about 64 MB are occupied by the Linux Operating

September 25, 2004 DRAFT



20

Initialize

!

!

!

Precompute frequently used values

Reset shared values

Synchronize execution (barrier)

Request Work

!

!

!

!

!

Wait signal from previous thread

Wait port to become ready

Request up to two MPKTs

Signal next thread

Wait for request to complete

Maintain metadata

!

!

!

Read control information for current

MPKTs

Wait message from previous thread

Update message of next thread

Process Healthy MPKTs

!

!

!

!

!

Move MPKTs to SDRAM

Write packet metadata for transmit

thread

Update counters

Enqueue in LB

Check for a suicide

Erroneous/Cancelled Request
(...)

Suicide process

Regular
flow

Exceptional
flow

Fig. 12. Steps executed by each Receiver Thread

System, and the rest is mainly unused.

• SRAM 2 MB of SRAM are dedicated to :

– Lists of packet descriptors.

– Per packet meta data.

– Per locality buffer meta data.

– User control and reports.

– Synchronization of code and system variables.

B. Receive Procedure

Figure 12 outlines the algorithm executed by each of the Receive Threads.

1) Initialization: During initialization we pre-compute and store in registers several commonly

used values in order to reduce run-time overhead. Such values include the configuration of the

September 25, 2004 DRAFT



21

uEngine 0

Receive thread 0

Receive thread 2

Receive thread 1

Receive thread 3

uEngine 1

Receive thread 4

Receive thread 6

Receive thread 5

Receive thread 7

Fig. 13. Order of execution for the receive threads

receive request, the configuration of signalling the next thread, and the configuration of a spare

packet descriptor.

2) Request Work:Figure 13 shows the order in which the Receive Threads issue requests for

work (receive requests). The scheme is interleaved so as to balance the load from the start up.

After receiving the signal from the previous thread, each Receive Thread polls the “fast receive

ready” flag of the monitored port. When enough data are available, it issues a receive request

for two MPKTs 3 maximum number of bytes to be transferred to the receive buffer.

3) Metadata maintenance:Note that the value of “fast receive ready” flag is slightly outdated

due to the small latency between polling the flag and actually getting the MPKT. Therefore when

the receive request will be serviced by the Receive State Machine, it may end up:

• to a canceled receive request.

• to transfer one MPKT instead of the requested two.

• to Transfer two MPKTs.

Depending on whether the request was canceled or not, the thread will proceed either to

Requesting Work or processing the Healthy MPKT.

4) Process MPKTs:In the later case, the Receive Thread will have to move the corresponding

MPKT to the correct place in the SDRAM. If this MPKT was flagged as SOP (Start Of Packet),

then the Receive Thread will use its spare descriptor in order to decide where in SDRAM will

be placed. Otherwise, the Receive Thread will have to know where the previous MPKTs where

stored so as to continue.

To accomplish that, Receive Threads communicate by writing messages to specific places in

SRAM the message boxes. The structure of each message box is depicted in Figure 14. Each

3An MPKT is a 64-byte packet fragment.

September 25, 2004 DRAFT



22

Message Box Structure

25 24 23 22 2130 29 28 27 26 15 14 13 12 1120 19 18 17 16 5 4 3 2 110 9 8 7 6 031

valid

invDsc

sramDscnxtOffdr

Fig. 14. Structure ofmessage box

Packet meta data

25 24 23 22 2130 29 28 27 26 15 14 13 12 1120 19 18 17 16 5 4 3 2 110 9 8 7 6 031

sopSeqvByteslastMpkteopDone

valid

tSrvtLBtValid

Fig. 15. Packet Meta Data

Receive Thread initially waits for its own message box to be validated by the previous thread.

Then it reads and invalidates its contents, decides how to update them, and writes the updated

message in the box of the next thread. Finally it validates that box. In this way, each Receive

Thread knows where in SDRAM the current MPKT belongs and at what exact offset. Moreover,

packets are serialized and order maintained.

After transferring the MPKT to SDRAM, counters are updated and in the case of End Of

Packet, the packet meta data (Figure 15) are also updated. In the case of SOP, the packet is

assigned using hashing to one of the target sensors. It is also assigned to corresponding locality

buffer. These assignments are stored in the packet metadata so that the Receive Thread processing

the EOP MPKT will get them ready.

Therefore in the case of EOP, the Receive Thread will read and update the packet meta data and

will enqueue the packet to the correct locality buffer for the correct Sensor. The corresponding

Locality Buffer meta data

25 24 23 22 2130 29 28 27 26 15 14 13 12 1120 19 18 17 16 5 4 3 2 110 9 8 7 6 031

portdir

type

szlock

Fig. 16. Locality Buffer meta data structure

September 25, 2004 DRAFT



23

LB Queue meta data

25 24 23 22 2130 29 28 27 26 15 14 13 12 1120 19 18 17 16 5 4 3 2 110 9 8 7 6 031

tailhead

Fig. 17. Meta data of each queue holding the contents of one Locality Buffer

meta data will be updated (Figures 16 and 17). If the corresponding locality buffer becomes full,

it will enqueue all the packets in the xmit queue for transmission. This requires only the update

of the tail pointer of the xmit queue.

C. Transmit Procedure

1) Overview of Transmit Procedure:Three threads of the Transmit uEngine (theTransmit

Threads) cooperate for the transmission of each packet. Each of these threads handles the

transmission of one or two MPKTs belonging to the packet under transmission. These threads

execute the same code which is outlined bellow:

1) Reserve the next one or two MPKTs for transmission.

2) Move the reserved MPKT(s) from SDRAM to Transmit Buffer.

3) Set the correct control information about the transmission of the specific MPKT(s).

4) Wait for the previous thread to finish the transmission of previous MPKTs.

5) Wait device to become ready.

6) Validate the Transmit Buffer (initiate transmission).

7) If there are no more MPKTs for this packet, push the corresponding descriptor back to

the stack of free descriptors.

2) Shared Transmission Data Structure:The synchronization of the Transmit Threads is

accomplished via a shared structure describing the current packet under transmission and its

exact transmission state. This shared structure (packetxfer data) has the following fields:

• sdramAdd: Address in sdram from where the packet data start.

• dsc: Descriptor reserved for this packet.

• firstMpktNo: Number of the first MPKT of this packet. MPKTs are numbered consequently,

and the numbering spans over the transmitted packets.

• lastMpktNo: Number of the last MPKT belonging to this packet.

September 25, 2004 DRAFT



24

• pktMetaData: Meta data of this packet. This is a copy of the structure of Figure 15.

• lastMpktValidBytes: Number of valid bytes in the last MPKT.

Transmit Threads lock, read, update and unlock this shared structure. All these operations are

fast since all the threads are executing within the same uEngine, and more over thread execution

is non-preemptive. However, updating this data structure with a new packet is rather slow since,

among other operations, the packet has to be dequeued from the xmit queue. This is why a

separate thread handles this operation. The function of theTransmission Controlleris outlined

in the following paragraph.

3) Transmission Controller Thread:The Transmission Controller Thread executes in the same

uEngine as the rest of the Transmission Threads, making the synchronization with the Transmit

Threads simpler. The main purpose of this thread is to hide the latency of dequeuing the next

packet for transmission by overlapping with the operation of transmitting the current packet. Its

function is described below:

1) Read the next packet to transmit

a) Read meta data of xmit queue.

b) Get packet pointed by the Head of xmit queue.

2) Prepare thepacketxfer data for the recently dequeued packet.

3) Wait for current packet transmission to complete.

4) Set the preparedpacketxfer data as current.

5) Repeat from the beginning.

Therefore, while the Transmit Threads are busy transmitting the current packet, the Transmit

Controller prepares the next packet for transmission

D. Synchronization between Receive Threads and Transmit Controller

Communication of Receive Threads and Transmit Threads is accomplished via the shared

xmit queue. Receive Threads enqueue packets for transmission in this queue and the Transmit

Controller dequeues. New packets are placed on top (in front of the Head), while the Transmit

Controller dequeues from the Tail. Consistency is maintained by restricting the transmit controller

not to dequeue (update the Tail) when the Head and the Tail point to the same packet, or when

the xmit queue is empty.

September 25, 2004 DRAFT



25

TABLE IV

TRANSMISSIONCAPACITY OF THE IXP1200-BASED SPLITTER

packet length throughput achieved (Mbps)

64 500

1472 980

VI. N ETWORK PROCESSORSPLITTER EVALUATION

In this section we report the evaluation of the network-processor-based implementation of the

splitter and the locality buffers.

A. Performance of Packet Transmission

In this first experiment we measure the packet transmission capacity of the IXP-based splitter

(table IV). To measure only the transmission capacity of the splitter, we disabled the packet

receive functionality and as a result the splitter was transmitting the same packet over and over.

For large packets (1472 bytes long), the splitter manages to achieve a transmit rate of around

980 Mbit/s, while for small packets (64 bytes long) the achieved rate was around 500 Mbit/s.

These results suggest that using the Transmit Code alone, the IXP can be used as a simple packet

generator for stress-testing the performance of other network elements.

B. Performance of Packet Reception

In this next set of experiments we evaluate the receiving capacity of the IXP1200-based

splitter. In this setting we use one IXP1200 board as the traffic generator and another IXP1200

as the traffic sink. The traffic generator was generating 1472-bytes long packets at 980 Mbps

and 64-bytes long packets at a rate of 500 Mbps. In both experiments the IXP1200-based splitter

was able to receive the traffic without any packet loss.

C. Evaluation of Locality Buffers

1) Environment: To evaluate the effect of Locality Buffers we use an experimental envi-

ronment consisting of one traffic source, one IXP1200-based traffic splitter, and two sensors

running the snort Intrusion Detection System as shown in Figure 18. The traffic source is a

September 25, 2004 DRAFT



26

Input Traffic

Switch

Input Traffic

ENP-2506

Splitted Traffic

Splitted Traffic

Sensor 1

Sensor 2

VLAN 0

VLAN 1

Splitted Traffic

Traffic Source

Fig. 18. Experimental Evaluation System for the IXP1200-based Splitter

personal computer equipped with a dual processor AMD running at 2 GHz with 512 KB cache,

512 MB of main memory, one 64-bit Gigabit Ethernet PCI interface, and a SCSI-based hard

disk subsystem. The traffic source, running Linux version 9 with kernel 2.4.20, replays the

nlanr.MRA.1031627450 trace file.

Each sensor is a personal computer equipped with a Pentium 4 processor clocked at 2 GHz,

512 KB of cache, 1 GB of main memory, and runs thesnort Intrusion Detection System version

2, using the default set of signatures and no preprocessors. The operating system of each sensor

is Linux version 8.0 with kernel version 2.4.20.

The IXP Splitter running on the ENP-2506 board is configured with 21 locality buffers. Each

one of five locality buffers was dedicated to one of the following categories of traffic as follows:

• one buffer for all packets destined to port 80 (web client traffic)

• one buffer for all packets originating from 80 (web server traffic)

• one buffer for all packets destined to port 119 (nntp traffic)

• one buffer for all packets destined to port 1214 (Kazaa traffic)

• one buffer for all packets destined to port 6699 (Napster traffic)

The rest of the buffers were used to accommodate packets by hashing on the destination port of

each incoming packet. Each locality buffer was large enough to accommodate about 300 packets

of 512 Bytes each.

During each experiment we measured user time plus kernel time for each of the sensors.

September 25, 2004 DRAFT



27

TABLE V

PERFORMANCEEVALUATION OF LOCALITY BUFFERS ON THEIXP1200-BASED SPLITTER

Aggregate Time (seconds) Slowest Sensor (seconds)

without locality buffers 31.8 16.4

using locality buffers 27.0 14.1

percentage difference 17.7% 16.3%

2) Results: Table V summarizes the measurements obtained for two sensors. The second

row presents the performance of the system that does not use locality buffers. The third row

presents the performance of the system that uses locality buffers. The second column presents

the aggregate time of the two sensors and the third column presents the time of the slowest

sensor. We see that the use of locality buffers improves the aggregate time (second column) by

as much as 17%. Locality buffers also improve the running time of the slowest sensor by 16%

as well. These results are consistent with those reported in Figure 4. Note that the aggregate

time report in Figure 4 is close to 47 seconds, while the aggregate time reported in Table V is

close to 32 seconds. This difference can be attributed to the different hardware the sensors were

running on top of. Indeed, in Figure 4 we use processors clocked at 1.13 GHz, while the results

reported in Table V are based on processors clocked at 2 GHz. In both cases, however, we see

that locality buffers improve the performance of the overall Intrusion Detection System.

VII. SUMMARY AND FUTURE WORK

In this paper we have proposed an active traffic splitter architecture for Intrusion Detection.

Rather than acting as a passive load balancing component, we argue that the traffic splitter should

actively manipulate the traffic stream in a way that increases sensor performance.

We have presented and analyzed two specific examples of performance-enhancing mechanisms.

The first isearly filtering, where a subset of the traffic is processed on the traffic splitter and

filtered out in order to reduce the load on the sensors. In its most simple form, early filtering

increases sensor performance by 8% by filtering out roughly 32% of the packets that are not

subject to content matching. The header rules that constitute early filtering are only a small

fraction of the nIDS ruleset making it easy to implement on the traffic splitter. The second

September 25, 2004 DRAFT



28

method is locality buffering, where packets classified to the same subset of nIDS rules are

buffered together before being forwarded to the sensors. By grouping same-type packets and

sending them to the sensor back-to-back, this method increases memory access locality on the

nIDS sensors resulting in improved performance. We have examined the effect of different

buffering policies and buffer parameters and our results indicate that using 32 locality buffers

of 256 KB each and a policy of using dedicated buffers for the major traffic groups results in a

10% reduction in nIDS load. When using both methods together, overall system performance is

improved by 19.8%, while the running time of the most loaded sensor is improved by 14.4%.

We have implemented the traffic splitter with locality buffering on top of an IXP1200 network

processor. Our results show that the traffic splitter is capable of handling traffic as high and

500 Mbps for minimum-size packets. Moreover, our experimental results suggest that locality

buffering improves the performance of Intrusion Detection based on a network-processor-based

splitter by as much as 17%.

Based on our results we believe that network-processor-based traffic splitters are an effective

way to scale the performance of Intrusion Detection Systems, enabling them to effectively

monitor the increasingly growing Internet links.

REFERENCES

[1] K. G. Anagnostakis, S. Antonatos, M. Polychronakis, and E. P. Markatos, “E2xB: A domain-specific string matching

algorithm for intrusion detection,” inProceedings of IFIP International Information Security Conference (SEC’03), May

2003.

[2] S. Antonatos, K. G. Anagnostakis, M. Polychronakis, and E. P. Markatos, “Benchmarking and design of string matching

intrusion detection systems,” ICS-FORTH, Tech. Rep. 315, December 2002.

[3] R. Bace and P. Mell,Intrusion Detection Systems. National Institute of Standards and Technology (NIST), Special

Publication 800-31, 2001.

[4] Z. Cao, Z. Wang, and E. W. Zegura, “Performance of hashing-based schemes for internet load balancing,” inProceedings

of IEEE Infocom, 2000, pp. 323–341.

[5] C. J. Coit, S. Staniford, and J. McAlerney, “Towards faster pattern matching for intrusion detection, or exceeding the speed

of snort,” in Proceedings of the 2nd DARPA Information Survivability Conference and Exposition (DISCEX II), June 2002.

[6] M. Fisk and G. Varghese, “An analysis of fast string matching applied to content-based forwarding and intrusion detection,”

University of California - San Diego, Tech. Rep. CS2001-0670 (updated version), 2002.

[7] G. Goldszmidt and G. Hunt, “Scaling internet services by dynamic allocation of connections,” inProceedings of the Sixth

IFIP/IEEE International Symposium on Intergrated Network Management, May 1999, pp. 171–184.

[8] E. Johnson and A. Kunze,IXP1200 Programming. Intel Press, 2002.

September 25, 2004 DRAFT



29

[9] C. Kruegel, F. Valeur, G. Vigna, and R. Kemmerer, “Stateful Intrusion Detection for High-Speed Networks,” inProceedings

of the IEEE Symposium on Research on Security and Privacy. Oakland, CA: IEEE Press, May 2002.

[10] E. P. Markatos, M. D. Flouris, D. N. Pnevmatikatos, and M. G. H. Katevenis, “Web-conscious storage management for

web proxies,” Institute of Computer Science, Foundation of Research and Technology Hellas, Tech. Rep. 275, 2000.

[Online]. Available: citeseer.nj.nec.com/328247.html

[11] S. McCanne, C. Leres, and V. Jacobson, “libpcap,” 1994, lawrence Berkeley Laboratory, Berkeley, CA, available via

anonymous ftp toftp.ee.lbl.gov.

[12] NLANR, “MRA traffic archive,” September 2002,http://pma.nlanr.net/PMA/Sites/MRA.html.

[13] V. Paxson, “Bro: A system for detecting network intruders in real-time,” inProceedings of the 7th USENIX Security

Symposium, January 1998.

[14] M. Roesch, “Snort: Lightweight intrusion detection for networks,” inProc. of the 1997 USENIX Systems Administration

Conference (LISA), November 1999, (software available fromhttp://www.snort.org/).

[15] TopLayer, “IDS load balancer,” product description available throughhttp://www.toplayer.com/.

September 25, 2004 DRAFT


