
An Active Traffic Splitter Architecture for Intrusion Detection

I. Charitakis?, K. Anagnostakis†, E. Markatos?

?Institute of Computer Science †Distributed Systems Laboratory
Foundation for Research and Technology - Hellas CIS Department, Univ. of Pennsylvania

P.O.Box 1385 Heraklio, GR-711-10 GREECE 200 S. 33rd Street, Phila, PA 19104, USA
{haritak,markatos}@ics.forth.gr anagnost@dsl.cis.upenn.edu

Abstract

Scaling network intrusion detection to high network
speeds can be achieved using multiple sensors operating
in parallel coupled with a suitable load balancing traffic
splitter. This paper examines a splitter architecture that in-
corporates two methods for improving system performance:
the first is the use of early filtering where a portion of the
rule-set is processed on the splitter instead of the sensors.
The second is the use of locality buffering, where the split-
ter reorders packets in a way that improves memory access
locality on the sensors.

Our experiments suggest that early filtering reduces the
number of total packets to be processed by 32%, giving
a 8% increase in total performance, while locality buffers
improve sensor performance by about 10%. Combined to-
gether, the two methods result in an overall improvement
of 20% while the performance of the slowest sensor is im-
proved by 14%.

Keywords: security, intrusion detection, load balancing

1 Introduction

Network Intrusion Detection is receiving considerable
attention as a mechanism for shielding against “attempts
to compromise the confidentiality, integrity, availability, or
to bypass the security mechanisms of a computer network”
[3]. The typical function of a Network Intrusion Detection
System (nIDS) is based on a set of signatures, each describ-
ing one known intrusion threat. A nIDS examines network
traffic and determines whether any signatures indicating in-
trusion attempts are matched.

Effective intrusion detection requires significant com-
putational resources: widely deployed systems such as
snort [18] need to match packet headers and payloads
against tens of header rules and often many hundreds of

strings defining attack signatures. This task is much more
expensive than the typical header processing performed by
packet forwarders and firewalls. Performing intrusion de-
tection at high network speeds (e.g. 1 Gbit/s and beyond)
therefore requires the use of multiple sensors operating in
parallel, fed by a suitable traffic splitter element.

The characteristics of intrusion detection place certain
constraints on the design of a traffic splitter. For instance,
as observed by Kruegel et al. [11], packets that are part of a
given attack context need to be processed by the same sen-
sor. In the case of session-level content-matching intrusion
detection (as used in systems such as snort), this simply re-
quires packets of a given session (flow) to be mapped to the
same sensor; adequate solutions for flow-preserving load
balancing already exist[4].

Given the high resource demands of intrusion detection,
we consider ways of boosting sensor performance by re-
thinking the design of nIDS traffic splitters. We argue that
traffic splitters should implement more active operations on
the traffic stream with the goal of reducing the load on the
sensors, rather than just passively providing generic, flow-
preserving load distribution.

In this paper we present two such active mechanisms.
The first mechanism is based on the observation that a sig-
nificant fraction of packets only require header processing.
Given that header processing is relatively cheap (and can be
easily performed in hardware) we can implement this func-
tion as part of the splitter. The main benefit of this method
of early filtering is that the amount of traffic that needs to
be transmitted and processed by the sensors can be reduced
significantly.

The second mechanism we consider is based on the ob-
servation that different types of packets trigger different
subsets of the nIDS ruleset, placing a significant burden on
the sensor memory architecture (i.e. reducing memory ac-
cess locality). We present an algorithm for locality buffer-
ing, so that packets of the same type are grouped together on
the splitter before being forwarded to the sensors. The ben-



efit of this method is that it increases performance without
altering the semantics of the traffic stream. We argue that
the algorithm requires a reasonable amount of additional
buffer memory and a small number of operations on each
packet and can thus be be efficiently implemented as part of
the splitter.

We present experiments using the snort nIDS and traces
from real network traffic analyzing the effect of the pro-
posed methods on nIDS performance.

1.1 Paper organization

The rest of this paper is organized as follows. In Sec-
tion 2 we provide a brief overview of how a nIDS works
and how load balancing is used for building scalable Inter-
net services, including intrusion detection. In Section 3 we
present a nIDS load balancing architecture implementing
the proposed early filtering and locality buffering policies.
In Section 4 we present experiments examining the perfor-
mance of the proposed methods. In Section 5 we discuss
implementation issues and conclude in Section 6.

2 Background

Network Intrusion Detection. We describe a (simplified)
model of how a Network Intrusion Detection System (nIDS)
operates. A nIDS examines network traffic and determines
whether any signatures indicating intrusion attempts are
matched. The simplest and most common form of nIDS
inspection is to perform protocol header analysis and match
string patterns against the payload of packets captured on
a network link. Known systems following this model are
snort[18] and Bro[17].

A nIDS is built as passive monitoring system that reads
packets from a network interface through packet capture fa-
cilities such as libpcap[14]. After a number of normal-
ization passes, each packet is checked against the nIDS rule-
set. A ruleset is typically organized as a two-dimensional
chain data-structure, where each element - often called a
chain header - tests the input packet against a packet header
rule. When a packet header rule is matched, the chain
header usually points to a set of signature tests, includ-
ing payload signatures that trigger the execution of a string
matching algorithm. String matching is the single most ex-
pensive part of nIDS operation and several nIDS-specific
algorithms have been recently proposed[5, 7, 1].

Traffic load balancing. Traffic load balancing is a well
studied method for building scalable Internet services, and
has been applied to widely deployed systems such as Web
servers [8]. In [8] load balancing is based on explicit feed-
back from each server. In this way load balancing is almost
perfect. However, state is required so as to forward the

packets of the same flow always to the same server. This
makes the splitter more complicated and therefore the scal-
ing to Gbit/s speeds becomes more difficult. The specifics
of the load balancing policy are important in examining the
effect of the mechanisms we propose to be implemented as
part of the traffic splitter. However, for this purpose of this
paper, we assume that load imbalances are tolerable and use
a simpler hash-based method.

Using a hash function for flow-preserving load balancing
is quite common [19, 6, 4]. In case of Web caches [19] it has
been shown that a hashing method can be used to determine
the target server. It is also shown that the hashing method
can be adapted for providing compensation for server fail-
ures and supporting dynamic addition of new servers. In
[6], the authors suggest a hybrid approach of hashing and
preservation of state. The authors use per-flow hashing to
classify a flow to flow groups. Per-group state is then used
to choose a server for all flows within a group. A detailed
study of hash functions for load balancing is presented in
[4]. Other recent work on load balancing includes [20] and
[10] where the authors investigate the implementation of
load balancing using network processors.
nIDS load balancing. There are many IDS load balancing
products available, such as [21], but with little information
publicly available on details of the design and the load bal-
ancing policies. Recent research [11] examines a general
approach for load balancing as applied to high speed intru-
sion detection. The authors propose an two-stage architec-
ture for determining the set of sensors that will process a
given packet. The first stage attempts to equally distribute
packets while the second stage examines packets for deter-
mining a suitable set of sensors for final processing. The
decision of where to send a packet is based on rules describ-
ing the attack contexts to which a packet may belong. The
main focus of the work is therefore in preserving detection
semantics in a generalized model of intrusion detection, as-
suming different types of detection such as statistical meth-
ods, anomaly detection and content-matching. In contrast,
the work we present in this paper is performance-oriented
and focuses on the specific case of content-matching intru-
sion detection as widely deployed today.
Early Filtering and load balancing. The idea of providing
filtering functionality on a load balancer is also discussed in
[8], where the splitting device is instructed to block traffic
destined to unpublished ports. Although the functionality
provided is similar, the goals are different: our goal is to
enhance sensor performance, not provide firewall-like pro-
tection from irrelevant or malicious traffic.
Locality enhancing techniques. Locality enhancing tech-
niques for improving server performance are well studied.
For example, in [13] the authors try to improve request lo-
cality on a Web cache, demonstrating significant improve-
ments in file system performance. To the best of our knowl-



Early
Filtering

hash
/RR

buf.
header 
rules

buf.

buf.

.

.

.

.

GROUP.

incoming 
traffic

sensor1

sensorN

sensor2GROUP.

GROUP.

Figure 1. The active nIDS splitter architecture

edge, our work is the first attempt to providing locality en-
hancements as part of a load balancer, and the first to do so
in the context of intrusion detection.

3 Design

There are four main goals in designing a nIDS traffic
splitter. First, packets that belong to the same attack con-
text need to be processed by the same sensor. Otherwise
certain attacks would not be detected. For content-based in-
trusion detection this can be achieved by mapping packets
of the same flow to the same sensor. Second, traffic should
be distributed so that overall system performance is max-
imized. Assuming a set of N identical sensors (in terms
of resources, software and configuration), a good way of
achieving this is to distribute approximately 1/N of the to-
tal load to each sensor. Flow-level traffic distribution works
well toward this goal, and we will discuss how early filtering
and locality buffering can provide further benefits. Third,
the load balancing algorithm needs to be efficient enough to
operate at high network speeds. Fourth, the system should
(ideally) not require modification to the sensor function.

The system architecture is shown in Figure 1. The sys-
tem is composed of an early filtering element, a load dis-
tribution element and a set of locality buffering units, one
for each sensor. In the remainder of this Section, we will
present each of the elements in more detail.

3.1 Early filtering

The basic idea in early filtering is to implement part of
the sensor functionality on the splitter. Since a fraction of
packets is only subject to header analysis, which is signif-
icantly cheaper than content-matching, we can efficiently
perform this function on the splitter. This is expected to re-
duce the load on the sensor but also on the overall system,
as the process of sending packets from the splitter to the
sensors can often be avoided.

To perform early filtering we analyze the nIDS ruleset
and extract the rules that do not require content matching.

LB 1

LB N

GROUPING

Sensor
X

Figure 2. Packet grouping using Locality
Buffers

We observe that this is a small portion of the default ruleset
in snort: only 165 of 1700 rules. We refer to this set of rules
as the EF ruleset. We expect that processing a small number
of header rules in the EF ruleset on the splitter can be easily
supported in hardware.

The splitter then operates as follows. When a packet
is received it is first checked against the EF ruleset. If no
rule is matched and the packet contains no payload then the
packet is discarded. If no rule is matched but the packet
does contain a payload that needs to be analyzed, the packet
cannot be discarded and is therefore retained for forwarding
to one of the sensors. If the packet matches a rule then it is
forwarded to the sensors for generating an alert.

3.2 Load distribution

A simple and efficient approach for load distribution is to
use a hash function on the packet headers. A hash function
such as CRC16 can evenly spread the flows among the sen-
sors, so that each sensor will receive an approximately equal
amount of work. Careful choice of the input to the hash
function can result in a load balancing policy that is flow
preserving (e.g. packets of the same flow will be assigned
to the same sensor); this can be accomplished by hashing
on flow identifiers (i.e., src[IP,port], dst[IP,port]). Assum-
ing well-behaved (e.g. TCP-friendly) traffic, this approach
is also robust to variations in traffic load, as new flows will
be assigned evenly among the sensors. Of course, this is not
robust if traffic is not well-behaved (for instance, because of
an attacker attempting to overload the system to evade de-
tection). However, this problem is beyond the scope of this
work and is also not specific to the proposed enhancements.

For the purpose of our study we have used a CRC16-like
hashing function as it has been shown to perform well[4],
requires no state and there are known hardware implemen-
tations.

3.3 Locality buffering

Locality buffering is a method for adapting the packet
stream in a way that improves performance by increasing
memory access locality on the nIDS sensors. The splitter



analyzes incoming packets, chooses a target sensor and then
places packets on separate buffers with each buffer contain-
ing only packets of the same type. When a buffer becomes
full, all packets are transmitted to the sensor in sequence.
This increases the average number of same-type packets
that are received by the sensor back-to-back, therefore re-
ducing the probability of conflict misses that are likely to
occur when the sensor has to bring a different set of rules in
the memory cache.

Exact classification of each packet according to the nIDS
rule-groups can be complicated, we have opted for a simpler
solution based on the following heuristics for determining
the target locality buffer for a given packet:

SD Use a hash on source and destination ports of the
packet, hereby evenly distributing packets among the
target buffers. As the input stream is separated in dif-
ferent buffers, we would expect a higher probability
for packets of the same type to arrive on a sensor back-
to-back.

D Use a hash on destination port only. We expect this to
further increase the probability of back to back packets
of the same type compared to A, given that only the
destination port is taken into account.

p * Allocate a set of locality buffers for certain transport
protocols. In this way, the LBs are divided into groups
for traffic from a given protocol. For example, 12 out
of 16 buffers are allocated for TCP packets and the re-
maining 4 buffers are used for other protocols. Within
each LB-group, allocation is performed using methods
SD or D - we therefore call these methods p SD and
p D.

T D Allocate a set of locality buffers for known traffic types
and use method D for the remaining buffers/packets.
For example, LB1 would receive only Web traffic, LB2
only NNTP traffic and LB3 only P2P traffic. Unclas-
sified packets are then allocated to the rest of the LBs
using method D hashing on the destination port only.
The choice of traffic types can be made by profiling
real network traffic and looking at how the nIDS rule-
set is utilized.

p T D Allocate some locality buffers for specific protocols,
some for specific types of traffic and the rest using
method D. In this way, locality buffers are first split
into groups accepting traffic of a specific protocol. (As
in method p *). Within each group some LBs will be
dedicated to specific traffic types of the corresponding
protocol and the rest will be allocated using D. (As in
method T D).

Method Description

SD hash(Src+Dst port)
D hash(Dst port)

p SD Divide LBs by protocol
Apply method SD

p D Divide LBs by protocol
Apply method D

T D Dedicate LBs to specific traffic Type + method D
p T D Divide LBs by protocol

Apply method T D

Table 1. Locality buffer allocation methods

The performance implications of these heuristics is ana-
lyzed in Section 4.

4 Experiments

We present experiments examining the effect of early fil-
tering and locality buffering on nIDS performance.

For most experiments we use a 1.13 GHz Pentium III
processor PC with 8 KB L1 cache, 512 KB L2 cache and
512 MB of main memory. The host operating system is
Linux (kernel version 2.4.17, RedHat 7.2). The nIDS soft-
ware is snort version 2.0-beta20 compiled with gcc version
2.96 (optimization flags O2).

Most experiments are performed by reading a packet
trace from disk, except for the early filtering experiments
where traffic is received from the network (to capture the
effect of early filtering on the network subsystem). In the
later case we use a simple network with two hosts A and B
and a monitoring host S. Host A reads the trace from file and
sends traffic to host B (using a modified version of tcpre-
play) over a 100 Mbit/s Ethernet switch configured to mir-
ror the traffic to host S. As the exact timing of trace packets
has negligible effect on nIDS behavior, we simply replay the
trace at maximum rate (link utilization was roughly 90%).

We use the nlanr.MRA.1031627450 packet trace
from the NLANR archive captured in September 2002 on
the OC12c (622 Mbit/s) PoS link connecting the Merit
premises in East Lansing to Internet2/Abilene [15]. As the
trace only contains the header portion of each packet we
had to add uniformly random payload data to create realis-
tic traffic1.

4.1 Evaluation of Early Filtering

Analyzing the trace reveals that more than 40% of the
packets do not contain any payload. Most of these packets

1The use of random payloads for nIDS evaluation is shown in [2] to
offer reasonably accurate performance estimates.



Running Time (sec)

w/o
Early

Filtering

with
Early

Filtering

20

25

30

35

40

45

50

55

60

System Time
User Time

Figure 3. The effect of Early Filtering on sen-
sor performance.

are TCP acknowledgments and none of them is matched by
the EF ruleset. These packets can therefore be dropped by
the splitter during early filtering instead of forwarding them
to a sensor for analysis. Only a small fraction of packets are
actually matched by the EF ruleset (less than 1% of total
packets) and are therefore forwarded to the sensor.

On each sensor, early filtering is expected to reduce the
actual detection workload as well as the burden on the
network subsystem for processing interrupts and bringing
packets from the network interface to user space for pro-
cessing.

To measure the effect of early filtering on sensor per-
formance we measure the user and system time of running
snort with the original trace as well as a trace that does not
contain the packets that are dropped by early filtering. The
results are depicted in Figure 3. We observe that user time
is reduced by 6.6% (45.67 sec vs. 42.66 sec) while system
time is decreased by 16.8% (10.1 sec vs. 8.7 sec). Consider-
ing both user and system time the results suggest an overall
improvement of 8%.

4.2 Performance of Load Sharing Hash Function

The performance of CRC16 as a hash function has been
previously studied in [4]. Since our implementation is sim-
plified, we need to confirm that our hashing function is fair
enough in terms of evenly distributing load. For this pur-
pose, we measure the the maximum number of packets as-
signed for the cases of 2, 4 and 8 sensors. Then we compare
this number to the theoritical fair share (i.e. total number of
packets / number of sensors). We use a large trace with
approx. 80 seconds of activity over a 622 Mbit/s link to es-
timate the performance of the hashing function. As hashing
reassembles a pseudo-random way of spreading the pack-
ets, a significant amount of traffic is required for the split-
ting to be fair. Over shorter periods of time the measured

difference (in % of assigned packets)
Sensors of most loaded from fair share

2 1.25%
4 5.70%
8 13.55%

Table 2. Performance of CRC16-based Load
Sharing method.

imbalance may be more pronounced. However, this is not
important as it would be absorbed by the system if sufficient
buffering is in place.

Table 2 depicts the maximum difference from the fair
share for different number of sensors. In the worst case of
8 sensors, the most loaded sensor received 13.55% more
packets than its theroetical fair share which is acceptable
for a simple implementation of the CRC16. In the long run
(more than 80 sec of traffic for each sensor) we would ex-
pect that imbalance would decrease.

These results are important for understanding the in-
teraction between the load sharing policy and the locality
buffering method as presented in the next subsection.

4.3 Effect of LBs on nIDS performance

To investigate the benefit of using locality buffers we
measure the total nIDS workload in terms of measured user
time on each sensor as well as the workload of the most
loaded sensor, given that traffic is not perfectly distributed.

We determine how performance is affected when using
different numbers of participating sensors, number and size
of locality buffers and different heuristics for locality buffer
allocation.

4.3.1 Effect of LB vs. number of sensors

Figure 4 shows the aggregate user time for different num-
bers of sensors, and Figure 5 shows the the measured user
time of the slowest (most loaded) sensor. For this set of
experiments we use 16 LBs of 256 KB each and the D B
allocation method. In all cases, using locality buffers im-
proves the aggregate user time by at least 11.4% (8 sensors)
and up to 13.8% (one sensor).

One interesting observation from Figure 4 is that as the
number of sensors increases, the effect of locality buffering
is slightly decreasing. In fact, there is a slight improvement
in aggregate user time even if we don’t use locality buffer-
ing. This happens because distributing packets to different



Aggregate User Time (sec)

Sensors
1 2 4 8

30

35

40

45

50

55

41.75 41.74 41.61 41.19

48.47
47.19 47.27 46.52

without LBs
with LBs

Figure 4. Aggregate user time over all sensors
vs. number of sensors.

User Time of Most Loaded Sensor(sec)

Sensors
2 4 8

0

5

10

15

20

25
22.15

11.39

5.84

24.24

12.38

6.56

without LBs
with LBs

Figure 5. User time of slowest sensor vs.
number of sensors for the experiments of Fig-
ure 4

sensors demultiplexes the incoming traffic and increases the
probability of same-type back-to-back packets. The positive
effect of locality buffering is nevertheless evident.

To verify this observation we measure the average burst
size (e.g., the number of consecutive packets that have the
same protocol and the same destination port) in the experi-
ments of Figures 4 and 5. The results are presented in Fig-
ure 6.

We see that the average burst size is almost doubled
when using LBs. We also observe that splitting traffic to
more sensors slightly improves the mean burst size when
not using LBs. A histogram of burst sizes when using four
sensors is shown in Figure 7, showing that a almost half of
the one-packet bursts are eliminated with roughly 5% of the
packets grouped into large bursts of more than 17 packets.

4.3.2 LB dimensioning

We investigate how the size and the number of locality
buffers affect performance. In this set of experiments we
use four sensors and the locality buffers are allocated using
method D B . In each experiment we measure the difference

Mean burst size (packets)

Sensors
1 2 4 8

0

2

4

6

8

10

12

3.67 3.86 4.24
4.87

6.45
7.43

8.74

10.52without LBs
with LBs

Figure 6. Mean burst size vs number of sen-
sors for the experiment of Figures 4 and 5.

Histogram of burst sizes

Burst size (packets)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 >17

without LBs
with LBs

pe
rc

en
ta

ge
 o

f t
ot

al
 p

ac
ke

ts

1

3

6

10

16

25

39

60

92

Figure 7. Histogram of burst sizes, with and
without locality buffers for the case of 4 sen-
sors of Figure 6.

in user time compared to a system without LBs.
Figure 8 shows the results of using different number of

LBs per sensor when the the size of each LB is 256 KB.
We observe that the improvement in aggregate user time
varies between 6.8% (4 LBs) and 12.9% (32 and 64 LBs).
Increasing the number of LBs beyond 32 does not appear to
offer any benefit in terms of aggregate user time although
it still improves the performance of the most loaded sensor.
This suggests that using 32 or 64 LBs is a reasonable design
choice.

To measure how the size of each LB affects performance
we measure, again, the aggregate user time and the user
time of the most loaded sensor for different LB sizes. The
results are presented in Figure 9. The reduction in aggregate
user time ranges from 9.3% to 13.31% for the cases of 64
KB and 512 KB respectively. Using 256 KB per LB seems
like a reasonable choice, as the gain of increasing from 256
KB to 512 KB is marginal.



% Performance Improvement
by number of LBs

Number of Locality Buffers

4 8 16 32 64

User time of most
loaded sensor
Aggregate user time

%
 Im

pr
ov

em
en

t

0

2

4

6

8

10

12

14

Figure 8. Performance improvement (reduc-
tion in user time) using different number of
LBs.

% Performance Improvement
by LB size

Locality Buffer Size (KB)

64 128 256 512

User time of most
loaded sensor
Aggregate user time

%
 Im

pr
ov

em
en

t

0

2

4

6

8

10

12

14

16

18

Figure 9. Performance improvement (reduc-
tion in user time) using different size for each
LB.

4.3.3 Effect of different locality buffering policies

We examine how the different heuristics for allocating lo-
cality buffers affects performance. For this set of experi-
ments we use four sensors, 16 LBs per sensor and 256 KB
per LB. Again, we measure the percentage of reduction in
user time compared to not using LBs.

Figure 10 shows the performance improvement in terms
of aggregate user time as well as user time of the slow-
est sensor, for different locality buffer allocation methods.
We see that using hashing on the destination port only (D
and p D) is better than simple hashing on both ports (D
and p D). The performance improvement in aggregate user
time in the first two cases is 4.19% while in the second two

% Performance Improvement
by LB Allocation Method

Locality Buffer Allocation Method

SD D p_SD p_D p_T_D T_D

%
 Im

pr
ov

em
en

t

0
2
4
6
8

10
12
14
16

User time of most
loaded sensor
Aggregate user time

Figure 10. Percentage of performance im-
provement when using different Locality
Buffer Allocation Methods.

cases becomes around 7%. We also see that the best per-
formance is obtained when assigning some LBs to specific
traffic. This is observed in bars T D and p T D which show
an improvement of 12.19% and 12.21% respectively. This
is not surprising, as a significant part of the trace includes
Web traffic, and therefore dedicating LBs to this kind of
traffic results in longer bursts of similar packets.

Splitting the LBs by protocol does not appear to be use-
ful: comparing T D with p T D shows that the later has a
smaller effect on the user time of the slowest sensor. A com-
parison of D and p D shows a similar behavior. This can be
explained by the fact that TCP traffic constitutes the vast
majority of traffic, and therefore splitting the LBs by proto-
col is ineffective and essentially throws most of the traffic
into the TCP LBs.

4.4 Evaluation of Early Filtering combined with
Locality Buffers

To estimate the benefits of using both early filtering
and locality buffering together we apply the early filtering
method on the packet trace and split the remaining packets
to four sensors using 16 Locality Buffers of 256 KB per sen-
sor and buffer allocation heuristic T D. The measured ag-
gregate user time is 37.88 sec compared to 41.61 sec when
using LBs only, reflecting an improvement of 8.9%. Com-
pared to 47.27 sec when not using LBs at all, the overall
improvement of using both EF and LB is 19.8%. For the
slowest sensor, performance is increased by 5% when com-
pared to using only LBs (from 11.52 sec to 10.93 sec) and
14.4% when compared to not using EF or LB.



5 Discussion

The experiments presented demonstrate the performance
gains of early filtering and locality buffering. Although we
have not prototyped the system we claim that this can be
achieved at a reasonable cost based on the following three
observations.

First, the cost of the computations involved is reason-
able. Early filtering requires header classification for which
efficient algorithms already exist[12, 9], and locality buffer-
ing only adds the simple operation of assigning a packet to
a buffer based on the policies presented in Section 3 (for
example, a simple hash on the destination port).

Second, the amount of buffer memory needed for local-
ity buffers can be much less than the numbers presented in
Section 4 if properly implemented. For simplicity, our study
has assumed that the whole packet has to be copied from the
input buffer to the locality buffer, therefore requiring sepa-
rate memory for each LB and an extra copy of the whole
packet from input to LB. A better implementation would
involve a shared buffer for storing the packets and a small
amount of memory per locality buffer for storing the packet
descriptors instead of whole packets. For example, a con-
figuration involving four sensors, with 32 LBs of 256 KB
each, requires 32 MB of memory. Using descriptors (and
assuming a minimum packet size of 64 B) each LB will re-
quire 4 KB of pointers (instead of 256 KB) and the total
required space for all LBs will be 512 KB (instead of 32
MB). The shared buffer can then be dimensioned appropri-
ately and is also likely to require much less memory due to
economies of scale.

Third, the design of hardware components for such a
traffic splitter is well studied in the context of other network
elements such as switches. For instance, many switches
use shared buffers for storing packets and queues to store
packet descriptors (e.g., pointers), and packet descriptors
are placed on queues after analyzing the header, etc. As
there are fast hardware implementations of similar func-
tionality capable of operating at more than 10 Gbit/s[16],
we believe that the implementation of the proposed traffic
splitter architecture is likely to be straightforward.

6 Summary and future work

We have presented an active traffic splitter architecture
for intrusion detection. Rather than acting as a passive
load balancing component, we argue that the traffic split-
ter should actively manipulate the traffic stream in a way
that increases sensor performance.

We have presented and analyzed two specific examples
of performance-enhancing mechanisms. The first is early
filtering, where a subset of the traffic is processed on the
traffic splitter and filtered out in order to reduce the load on

the sensors. In its most simple form, early filtering increases
sensor performance by 8% by filtering out roughly 32% of
the packets that are not subject to content matching. The
header rules that constitute early filtering are only a small
fraction of the nIDS ruleset making it easy to implement on
the traffic splitter.

The second method is locality buffering, where packets
classified to the same subset of nIDS rules are buffered to-
gether before being forwarded to the sensors. By group-
ing same-type packets and sending them to the sensor back-
to-back, this method increases memory access locality on
the nIDS sensors resulting in improved performance. We
have examined the effect of different buffering policies and
buffer parameters and our results indicate that using 32 lo-
cality buffers of 256 KB each and a policy of using dedi-
cated buffers for the major traffic groups results in a 10%
reduction in nIDS load.

When using both methods together, overall system per-
formance is improved by 19.8%, while the running time of
the most loaded sensor is improved by 14.4%.

We are currently investigating the performance of the
proposed methods using a more diverse set of traffic traces.
Additionally, we are building a prototype nIDS traffic split-
ter using a high-performance network processor.

Acknowledgements

This work was supported in part by the IST project
SCAMPI (IST-2001-32404) funded by the European Union.
The second author is also supported in part by the DoD
University Research Initiative (URI) program administered
by the Office of Naval Research under Grant N00014-01-1-
0795, and by the USENIX/NLnet Research Exchange Pro-
gram (ReX).

We would also like to thank Spiros Antonatos for his
help and insights on the experimental infrastructure.

References

[1] K. G. Anagnostakis, S. Antonatos, M. Polychronakis,
and E. P. Markatos. E2xB: A domain-specific string
matching algorithm for intrusion detection. In Pro-
ceedings of IFIP International Information Security
Conference (SEC’03), May 2003.

[2] S. Antonatos, K. G. Anagnostakis, M. Polychronakis,
and E. P. Markatos. Benchmarking and design of
string matching intrusion detection systems. Technical
Report 315, ICS-FORTH, December 2002.

[3] R. Bace and P. Mell. Intrusion Detection Systems. Na-
tional Institute of Standards and Technology (NIST),
Special Publication 800-31, 2001.



[4] Z. Cao, Z. Wang, and E. W. Zegura. Performance of
hashing-based schemes for internet load balancing. In
Proceedings of IEEE Infocom, pages 323–341, 2000.

[5] C. J. Coit, S. Staniford, and J. McAlerney. Towards
faster pattern matching for intrusion detection, or ex-
ceeding the speed of snort. In Proceedings of the 2nd
DARPA Information Survivability Conference and Ex-
position (DISCEX II), June 2002.

[6] G. Dittmann and A. Herkersdorf. Network processor
load balancing for high-speed links. In Proceedings
of the 2002 International Symposium on Performance
Evaluation of Computer and Telecommunication Sys-
tems, pages 727–735, July 2002.

[7] M. Fisk and G. Varghese. An analysis of fast string
matching applied to content-based forwarding and in-
trusion detection. Technical Report CS2001-0670 (up-
dated version), University of California - San Diego,
2002.

[8] G. H. G. Goldszmidt. Scaling internet services by dy-
namic allocation of connections. In Proceedings of
the Sixth IFIP/IEEE International Symposium on In-
tergrated Network Management, pages 171–184, May
1999.

[9] P. Gupta and N. McKeown. Packet classification on
multiple fields. In Proceedings of ACM SIGCOMM,
pages 147–160. ACM Press, 1999.

[10] L. Kencl and J. Y. L. Boudec. Adaptive load sharing
for network processors. In Proceedings of IEEE Info-
com, June 2002.

[11] C. Kruegel, F. Valeur, G. Vigna, and R. Kem-
merer. Stateful Intrusion Detection for High-Speed
Networks. In Proceedings of the IEEE Symposium on
Research on Security and Privacy, Oakland, CA, May
2002. IEEE Press.

[12] T. V. Lakshman and D. Stiliadis. High-speed
policy-based packet forwarding using efficient multi-
dimensional range matching. In Proceedings of the
ACM SIGCOMM ’98 conference on Applications,
technologies, architectures, and protocols for com-
puter communication, pages 203–214. ACM Press,
1998.

[13] E. P. Markatos, M. D. Flouris, D. N. Pnevmatikatos,
and M. G. H. Katevenis. Web-conscious storage man-
agement for web proxies. Technical Report 275, In-
stitute of Computer Science, Foundation of Research
and Technology Hellas, 2000.

[14] S. McCanne, C. Leres, and V. Jacobson. libpcap.
Lawrence Berkeley Laboratory, Berkeley, CA, avail-
able via anonymous ftp to ftp.ee.lbl.gov.

[15] NLANR. MRA traffic archive, September 2002.
http://pma.nlanr.net/PMA/Sites/MRA.html.

[16] C. Partridge. et al. A 50-Gb/s IP router. IEEE/ACM
Transactions on Networking (TON), 6(3):237–248,
1998.

[17] V. Paxson. Bro: A system for detecting network in-
truders in real-time. In Proceedings of the 7th USENIX
Security Symposium, January 1998.

[18] M. Roesch. Snort: Lightweight intrusion detection for
networks. In Proceedings of the 1999 USENIX LISA
Systems Administration Conference, November 1999.
(available from http://www.snort.org/).

[19] K. Ross. Hash routing for collections of shared web
caches. IEEE Network, 11(6), November-December
1997.

[20] R. Russo, L. Kencl, B. Metzler, and P. Droz. Scalable
and adaptive load balancing on IBM Power NP. Tech-
nical report, Research Report – IBM Zurich, August
2002.

[21] TopLayer. IDS load balancer. product description
available through http://www.toplayer.com/.


