Speeding up TCP/IP: Faster Processors are not Enough

Evangelos P. Markatos *
Institute of Computer Science (ICS)
Foundation for Research € Technology — Hellas (FORTH)
P.O.Box 1385, Heraklio, Crete, GR-711-10 GREECE

http://archvlsi.ics.forth.gr

markatos@csi.forth.gr

Appears in the IEEE Int. Perf. Comp. and Comm. Conf. (IPCCC 2002)

Abstract

Over the last decade we have been witnessing a sig-
nificant increase in the capabilities of our computing
and communication systems. On the one hand, proces-
sor speeds have been increasing exponentially, doubling
every 18 months or so, while network bandwidth, has
followed a similar (if not higher) rate of improvement,
doubling every 9-12 months, or so. Unfortunately, ap-
plications that communicate frequently using standard
protocols like TCP/IP do not seem to improve at sim-
tlar rates.

In our attempt to understand the magnitude and
reasons for this gap between processor speed and in-
terprocess communication performance, we study the
execution of TCP/IP on several processors and oper-
ating systems that span a time interval of more than
eight years. Our main conclusion is that TCP/IP per-
formance does not scale comparably to processor speed,
and this poor scalability is magnified and propagated to
higher-level protocols like HTTP.

1 Introduction

Over the last decade we have been witnessing a
tremendous increase in the capabilities of our com-
puting and communication systems. Processor speeds
have been increasing exponentially, doubling every 18
months or so [5]. This rate of increase, which is also
known as Moore’s Law, has been sustained since the
seventies and is expected to continue to hold (at least)
for the near future. Similarly, network bandwidth, has
followed a similar (if not higher) rate of improvement,
doubling every 9-12 months, or so, as indicated by
Gilder’s Law [3].

Based on Moore’s Law and Gilder’s Law, one
would conclude that the performance of dis-
tributed /networked applications would improve at
similar rates, i.e. doubling every 9-18 months. Un-

*The author is also with the University of Crete.

fortunately, this is not the case, partly because, in-
terprocess communication does not improve at the
rates predicted by Moore’s and Gilder’s laws. In
this paper we study the performance improvements in
TCP/IP-based interprocess communication over the
last decade, aiming to answer the following questions:

o Will future networked applications be able to cap-
italize on Moore’s and Gilder’s laws? i.e. double
their performance every 9-18 months?

e Does interprocess communication performance
improve at rates comparable to those suggested by
Moore’s and Gilder’s laws?

o What are the most significant bottlenecks in the
performance of TCP/IP-based interprocess com-
munication?

The rest of the paper is organized as follows: Sec-
tion 2 places our work in the context of previous work
and recent technology trends. Section 3 presents our
experimental measurements, section 4 discusses the
major factors that limit TCP/IP performance, and
section 5 concludes the paper.

2 Related Work

TCP/IP performance had received significant inter-
est in the past [1, 11, 12]. Most of this prior work has
focused on studying and improving TCP/IP through-
put and latency over limited bandwidth, possibly wire-
less, and usually congested networks. However, tech-
nology trends suggest that, network bandwidth is nei-
ther the most limited, nor the most precious commod-
ity in a distributed system. Recent results suggest
that raw network bandwidth has been improving much
faster than processor speeds [3]. This trend between
processor speeds and network bandwidth is expected
to continue in the near future, and therefore the gap
between TCP/IP performance and processor speeds
will continue to widen. In fact, some researchers, have

started working on network processors, a new breed of
special-purpose processors that are specifically tuned
for executing network-related tasks [4]. Our hope is
that by studying TCP /IP performance on traditional
general-purpose processors we will be able to identify
and improve on the main factors that contribute to its
limited scalability.

3 Experiments
3.1 Experimental Environment

To quantify the performance improvement of inter-
process communication over the last several years, we
have used a variety of computers based on SPARC,
Alpha, and Pentium Processors. The oldest and slow-
est of the computers used (our base case) is a 40 MHz
SPARCstation 10 rated at 0.96 SPEC Int95. The most
recent and fastest computer used is a 1200 MHz Pen-
tium rated at 51 SPEC Int95. These computers repre-
sent a time spectrum more than eight years apart. !

To accurately characterize the interprocess commu-
nication performance of the studied computing sys-
tems, we use the popular benchmarks lmbench [§]
and ttcp [13]. The traditional performance metrics
that have been used in the literature to characterize
the performance of communicating systems, are band-
width, latency, and, in some cases, wall clock time.
However, in this paper we are not only interested in
the actual performance of the studied communicat-
ing systems, but also in the improvement of this per-
formance over the past years. Therefore, instead of
reporting the actual bandwidth and/or latency mea-
sured, we report the improvement of the bandwidth
(or latency) compared to the bandwidth (or latency)
of our base case.
3.2 Kernel Entry-Exit Overhead

Most, interprocess communication operations usu-
ally require the assistance of the operating system
kernel. 2 For example, all the operations that send
and receive data, that manipulate sockets, and in gen-
eral that communicate with other processes require
operating system calls. Therefore, it is important to
understand how the performance of system calls that
are in the critical path of interprocess communication
has improved over the last decade. Thus, in our first
benchmark, we use 1lmbench to measure the cost of an
empty operating system call: that is, the latency to
enter and exit the operating system kernel. Figure 1
plots the cost (latency) of an empty operating system
call (normalized to the cost of an empty operating sys-
tem call of our baseline system). We plot the kernel

! More details about the computers used can be found in [7].
2For some noticeable exceptions in the area of high-speed
communication for workstation clusters see [9] and [6].

T T T T

5 idedl

% S0 1 PENTIUM/LinUX ——t+—

3 SPARC/Solaris -

S ALPHA/DIgUNIX

g 2O MIPS/Irix 8-

e ¥

g 5o

4 o

g =

3 20

z o1 e

x S A ‘ ‘
10 20 30 0 0

SPEC Int95

Figure 1: Kernel Entry-Exit latency.

entry-exit latency as a function of the processor speed
(measured in SPECint95 SPECmarks). We immedi-
ately see that the performance of the empty operating
system call does not scale well with processor speed.
For example, we see that although PENTIUM proces-
sors have gotten more than 50 times faster (compared
to our baseline), the cost of entering the operating sys-
tem kernel has improved at best only by a factor of
15. Similarly, although SPARC processors have got-
ten faster by more than a factor of 25, the overhead
of entering the kernel has improved only by a factor
of less than 3.

Although this disparity between processor speed
and operating system performance has been reported
before [10], our results indicate that the disparity is
getting worse. For example, Ousterhout, in his paper
in the early 90’s [10], reported that kernel entry/exit
performance had relatively improved only 50%-80%
compared to the processor’s speed, while our results
(in the late 90’s and early 2000’s) suggest that kernel
entry/exit performance has relatively improved only
12%-28% compared to the processor’s speed. There-
fore, operating system kernel performance not only
continues to get relatively worse compared to proces-
sor speed, but it does so at a higher rate.

3.3 TCP/IP in Localhost

Although kernel entry-exit performance lies in the
critical path of interprocess communication and may
be significant for short data transfers, long data trans-
fers are dominated by the overhead of communication
protocol execution. In our next experiment we use
1mbench to study the performance of TCP /IP between
communicating processes that run on the same com-
puter. To reduce any initialization overheads, data are

3 _ ALPHA/DigitUNIX Uniprocessors 3 PENTIUM/Linux Uniprocessors
Bt v B Ew ,
g § 30 g_ g 30

S g 20 2 22

£ 20 g2 2w 4 tr
- ® + B 4

a3 ook a g ook

g ~ 0 5101520 25303540 E ~ 0 5 10152025303540
= SPEC Int95 = SPEC Int95

8 __ SPARC/Solaris Uniprocessors 3 __ SPARC/Solaris Multiprocessors
RS B Ew :
28w - i

2 e 2 2 Ay

& 3 oo o g oo

g ~ 0 5 10 15 20 25 30 E ~ 0 5 101520 25303540
= SPEC Int95 = SPEC Int95

Figure 2: TCP/IP bandwidth between proces-
sors located in the same host as a function of
processor speed. Message size = 64 Kbytes.

30 T

T T

ideal
’g actua performance +
- 25 slope=0.8 -
2 & _
S 5 2 o
8¢5 o
& &
s E 3
S 5 215]
2 (5] <]
g g 32 A
[=2] e ke 10 + w‘++ 4
s s &
£ .
S
L +]
o] 5
=
0 L L L L L
0 5 10 15 20 25 30
SPEC Int95

Figure 3: TCP/IP Bandwidth: 100 Mbps LAN.

given to the socket layer in chunks 64 Kbytes. Figure
2 plots the TCP/IP throughput achieved in each ex-
periment (expressed as improvement relative to the
TCP/IP throughput of the base case). We see that
in Alpha-based and in Pentium-based computers the
TCP/IP throughput scales very poorly. For exam-
ple, although processor speed has improved by more
than a factor of 35 in both cases, TCP /IP throughput
has improved only by a factor of 5 for Alphas, and
by a factor of 12 for Pentiums. Contrary to these
trends, SPARC-based uniprocessors have somewhat
better performance. In most of them (esp. the slow
ones), TCP/IP throughput scales linearly with pro-
cessor speed, a trend, however, that seems to decline
in computers rated faster than 10 SPECmarks.

3.4 TCP/IP in a Local Area Network

Although TCP/IP performance between commu-
nicating processes located on the same computer
revealed significant insight about the scalability of
TCP/IP execution, it is important to understand,
what is the scalability of TCP/IP execution between
communicating processes that reside in different com-
puters, connected through a network. Therefore, in
our next experiment we investigate the performance
scaling of TCP /IP-based data transfers between pro-
cesses communicating over a 100 Mbps and a 10 Mbps
Local Area Network, using the ttcp benchmark. We
use various computers as sources of traffic (only one
computer transmits at-a-time). The traffic destina-
tion for the 10 Mbps network is an ULTRASPARC-1
clocked at 167 MHz connected to a 10 Mbps Ethernet
adapter, and the traffic destination for the 100 Mbps
network is an ULTRA-4 clocked at 400 MHz.

The performance metric we use in this experiment
is not the number of Mbytes transfered per second, but
the number of Mbytes transfered per sender’s CPU-
second, (expressed in Mbytes per CPUsec), that is,
the ratio of the amount of data transfered over the
(sender’s) CPU seconds (including both kernel and
user time) that were required for the transfer. Thus,
we essentially measure how much data were transfered
for each second of CPU time invested. For example,
if we transfer 100 Mbytes of data, over a period of 10
seconds, during which the sender has invested 2 sec-
onds of computing power, then the performance we
report is 100/2=50 Mbytes/CPUsec. 3

Figure 3 shows the achieved throughput (as an im-
provement over the achieved throughput of our base
case) for the 100 Mbps LAN. We see that TCP /IP per-
formance generally scales well with processor speed.
Although it does not scale exactly the same as pro-
cessor speed, the line that fits the data has a slope
of 0.8, which implies that TCP/IP execution follows
processor performance within 80%.

Figure 4 shows the achieved throughput (in Mbytes
per CPUsec) over the achieved throughput of our base
case for the 10 Mbps LAN. We can see easily that

3We did not use the traditional definition of throughput, that
is the “Mbytes transfered over the wall clock time elapsed”,
because, the computers we use are rather fast and can easily
saturate the 10/100 Mbps Ethernet network that was connect-
ing them. Therefore, the interconnection network, by being a
bottleneck, it would not let us explore how TCP/IP execution
scales on the different processors studied. In order to under-
stand the scaling of TCP/IP execution we needed to shift the
bottleneck from the Ethernet network to the processor execut-
ing the TCP/IP. Thus, measuring “Mbytes per CPUsec”, in-
stead of “Mbytes per sec”, puts the processor, instead of the
network, in the spotlight.

30 T — - -
ideal
’g actual performance +
= 25 ¢ slope=0.62 - 1
2 5
$ 5 2
B 3 3 20t |
& &
s £ < o
S 3 2 15} E
S E B 1o} T |
s s & i
£ .
- o +
2 sp A —
=
0 1 1 1 1 1
0 5 10 15 20 25 30
SPEC Int95

Figure 4: TCP/IP Bandwidth: 10 Mbps LAN.

30 T T

T T

" ideal
Uniprocessor SPARC ~ +
- 25 | multiprocessor SPARC 1
5] slope=0.32
)
T = = 20°f ,
= 2 B
- o
-~ £ =2
B o 2 151 E
o o [}
o e | i
E 5 T 10 ..
g : |
& +
O " 1 1 1 1 1
0 5 10 15 20 25 30
SPEC Int95

Figure 5: HTTP latency in localhost as a func-
tion of processor speed.

TCP/IP performance, in this case scales rather poorly
with processor speed. Actually, although processor
speeds have improved by a factor of 25, the achieved
TCP/IP bandwidth has improved only by a factor of
17. As can be seen in figure 4 we fitted the measured
data with a straight line, whose slope turned out to
be 0.62. This implies that TCP/IP execution scaled
(about) 60% as fast as processor speeds, a trend which
holds also for communication over Metropolitan Area
Networks and Wide Area Networks [7].

3.5 HTTP Performance

Our experiments so far have demonstrated that
TCP/IP execution does not scale as well as proces-
sors do. It is interesting to know, however, whether
this poor scalability propagates to upper-level proto-
cols as well, or it is a minor detail confined within
the TCP/IP software. To understand the effect of

this poor scalability to upper-level protocols, we use
lat_http, one of the programs of lmbench to mea-
sure the performance of the http protocol. In our set-
ting, lat_http initiates a very simple web server and
a client on the same computer. The client requests an
html page (about 10 Kbytes large), and its 12 embed-
ded images that are about 40 Kbytes in total. The
benchmarks measures the latency to receive all these
files. Figure 5 plots the performance measured by
lat_http (normalized to the base case). We see that
HTTP performance scales about 30% as fast as proces-
sor speeds - much worse than TCP/IP performance.
The reason behind this obviously bad performance is
that lat_http transfers small objects: HTML pages
and images that are no more than a few Kbytes large,
while our previous TCP/IP benchmarks transfered
chunks of data 64 Kbytes large. Recent studies re-
port that the average file size on the web is 8 Kbytes,
while the median file is even smaller: only 3 Kbytes
large [2]. When transferring such small files, operat-
ing systems are not able to optimize the transfers and
necessarily suffer large initialization overheads.

4 Why isn’t TCP/IP getting faster as
fast as hardware?

All our experiments so far indicate that TCP/IP
processing does not get faster as fast as hardware does.
There are several reasons that contribute to this per-
formance disparity.

Architectural innovations do not necessar-
ily apply to protocol processing. Recent pro-
cessors incorporate several architectural innovations,
including large caches, out-of-order execution, deep
pipelines, and superscalar execution, all of which
can not necessarily be exploited by networking code.
For example, although large caches improve the per-
formance of programs that repeatedly access large
amounts of data, TCP/IP code typically does not
exhibit large amount of temporal locality. That is,
TCP/IP, and similar communication protocols, do not
repeatedly access their data several times, and there-
fore large caches may not improve their performance
significantly. To make matters worse, recent highly
optimized protocols (i.e. zero-copy protocols) reduce
the number of accesses they make to their data, and
therefore, they take even less advantage of the large
caches that may exist. Therefore, processors do get
faster, but not for protocol-processing type of appli-
cations.

Operating system performance lags behind
processor speed. This is partly because, recent pro-
cessors include lots of registers, deep pipelines, and in
general a large amount of state, all of which needs to

be saved and restored during context switches. There-
fore, operating system activities on recent processors,
get relatively slower compared to similar activities on
older processors.

Memory bandwidth can be a limiting fac-
tor. Although protocol processing for small messages
is dominated by operating-system related overheads,
large message transfers can be limited by memory
bandwidth. It is possible that significant improve-
ments in processor speed do not translate in improve-
ments in interprocess communication performance if
not, accompanied by similar improvements in memory
systems. For example, in Fig. 2 we see that there
are several computers that are rated between 7 and
15 SPECmarks, that all achieve the same TCP/IP
throughput of 8-9 (times better than the base case).
Among these computers there is one a SPARC Ultra
5-10 at 440 MHz, and one SPARC Ultra 4 clocked
at 83 MHz with a 2-way interleaved memory. The
SPARC Ultra 5-10 at 440 MHz, although it is signif-
icantly faster than the SPARC Ultra 4, it has about
half the memory bandwidth, which turns out to be the
limited factor in TCP/IP performance.

5 Conclusions - Future Work

In this paper we experimentally studied the perfor-
mance cost of TCP/IP in several different processors,
ranging from an old 40 MHz SPARC, to a recent 1200
MHZ Pentium. Our results suggest that the disparity
between processor speed and TCP/IP performance is
large and will probably continue to widen. This calls
for new performance metrics which characterize not
only the computing capacity, but also the communi-
cation capabilities of modern processors [7]. Overall,
it becomes increasingly important to understand and
optimize the execution of TCP/IP in particular, and
protocol software in general, on recent (and future)
processors.

Acknowledgments

This project was supported in part by IST project
SCAMPI (IST-2001-32404) funded by the European
Union. We would like to thank Dionisions Pnev-
matikatos and Catherine Chronaki for their construc-
tive comments in earlier versions of this paper. Kate-
rina Gialama, Antonis Danalis, Eva Kalyviannaki, and
Xeni Asimakopoulou provided the Imbench results for
the LINUX operating system.

References
[1] Hari Balakrishnan, Venkata N. Padmanabhan,
and Randy H. Katz. The Effects of Asymmetry
on TCP Performance. In Mobile Computing and
Networking, pages 77-89, 1997.

[2] Paul Barford, Azer Bestavros, Adam Bradley,
and Mark Crovella. Web Client Access Patterns:
Characteristics and Caching Implications. World
Wide Web Journal, 2:15-28, 1999.

[3] Jay S. Bayne. Unleashing the POWER, of Net-
works. http://www.johnsoncontrols.com/ Meta-
sys/articles/article7.htm.

[4] Intel Corporation. Intel IXP1200 Net-
work Processor (white paper), 2000.
http://developer.intel.com/design/ net-

work /products/npfamily/ixp1200.html.

[5] J. L. Hennessy and D. A. Patterson. Computer
Architecture: A Quantitative Approach (second
edition). Morgan Kaufmann Publishers, 1996.

[6] M. G.H. Katevenis, E. P. Markatos, G. Kalokairi-
nos, and A. Dollas. Telegraphos: A Substrate
for High Performance Computing on Worksta-
tion Clusters. Journal of Parallel and Distributed
Computing, 43(2):94-108, June 1997.

[7] E.P. Markatos. Speeding up TCP/IP: Faster Pro-
cessors are not Enough. Technical Report TR297,
Institute of Computer Science, FORTH, Decem-
ber 2001.

[8] L. McVoy and C. Staelin. lmbench: Portable
Tools for Performance Analysis. In Proc. of the
1996 Useniz Technical Conference, pages 279—
294, January 1996.

[9] S. Mukherjee and Mark D. Hill. A Survey of
User-Level of Network Interfaces for System Area
Networks. Technical report, Computer Science

Department - University of Wisconsin-Madison,
1997.

[10] J.K. Ousterhout. Why aren’t Operating Systems
Getting Faster As Fast As Hardware? In Pro-
ceedings of the Summer 1990 Usenixz Technical
Conference, pages 247-256, June 1990.

[11] C. Partridge and T. Shepard. TCP Performance
over Satellite Links. IEEE Network, 11(5):44-99,
1997.

[12] Michael Perloff and Kurt Reiss. Improvements
to TCP Performance in High-Speed ATM Net-
works. Communications of the ACM, 38(2):90—
100, 1995.

[13] USNA. TTCP: a Test of TCP and UDP Perfor-
mance, 1984.

