
Tracing a large-scale Peer to Peer System:
an hour in the life of Gnutella

Evangelos P. Markatos
Institute of Computer Science (ICS)

Foundation for Research & Technology – Hellas (FORTH)
P.O.Box 1385, Heraklio, Crete, GR-711-10 GREECE
http://archvlsi.ics.forth.gr markatos@csi.forth.gr

appears in CCGrid 2002: the second IEEE International Symposium on Cluster Computing and the Grid

Abstract—Peer-to-peer computing and networking, a new model of com-
munication and computation, has recently started to gain significant accep-
tance. This model not only enables clients to take a more active role in the
information dissemination process, but also may significantly increase the
performance and reliability of the overall system, by eliminating the tradi-
tional notion of the “server” which could be a single point of failure, and a
potential bottleneck.

Although peer-to-peer systems enjoy a significant and continually in-
creasing popularity, we still do not have a clear understanding of the magni-
tude, the traffic patterns, and the potential performance bottlenecks of the
recent peer-to-peer networks.

In this paper we study the traffic patterns of Gnutella, a popular large-
scale peer-to-peer system, and show that traffic patterns are very bursty
even over several time scales. We especially focus on the types of the queries
submitted by Gnutella peers, and their associated replies. We show that the
queries submitted exhibit significant amounts of locality, that is, queries are
frequently and repeatedly submitted. We propose simple Gnutella caching
mechanisms that cache query responses. Using trace-driven simulation we
evaluate the effectiveness of Gnutella caching and show that it improves
performance by as much as a factor of two.

I. INTRODUCTION

Recently, a new model of communication and computation,
called peer-to-peer networking, has started to gain significant
acceptance [1]. Contrary to the traditional client-server model,
peer-to-peer computing enables all clients to act as servers and
all servers to act as clients. In this way, clients not only take a
more active role in the information dissemination process, but
also may significantly increase the performance and reliability
of the overall system, by eliminating the traditional notion of the
“server” which could be a single point of failure, and a bottleneck
in the overall system.

The first and most widely-known peer-to-peer system, Nap-
ster, 1 is a file sharing utility that has enabled hundreds of thou-
sands of users to efficiently share files, including mp3-encoded
songs, over the Internet. Capitalizing on the success of Nap-
ster, several other peer-to-peer file sharing systems have been
recently developed. These include Gnutella, KaZaA, Audio-
Galaxy, etc. Although the technical details of these systems
vary significantly, they all share the peer-to-peer philosophy by
enabling all peers to store and deliver content to other peers. Be-
sides file sharing, peer-to-peer systems have also been used for
the efficient execution of highly parallel and distributed applica-
tions by capitalizing on the availability of idle cycles in home
computers. Such applications range from systems that search
for extra-terrestrial intelligence [2], to systems that search a cure

�http://www.napster.com

for AIDS [3].
Although peer-to-peer systems appeared relatively recently,

their popularity has increased rapidly in the last couple of years.
For example, network traffic measurements at the University of
Wisconsin suggest that in the period of April 2000, Napster-
related traffic represented the 23% of their total network traffic,
while at the same time web-related traffic accounted for only 20%
[4], [5]. Although Napster traffic has been reduced recently, the
percentage of all peer-to-peer traffic has actually increased. For
example, recent measurement from the University of Wisconsin
suggest that, in October 2001, peer-to-peer traffic reached more
than 30% of the total traffic2, while at the same time, web-related
traffic was a little more than 19%.

Although these measurements suggests that the traffic de-
mands of peer-to-peer systems represent a significant and con-
tinually increasing percentage of the overall network traffic, we
still do not have a clear understanding of the magnitude, the traf-
fic patterns, and the potential performance bottlenecks of such
peer-to-peer networks.

In this paper we study the traffic patterns of Gnutella,a popular
large-scale peer-to-peer system. We especially focus in the types
of the queries submitted by Gnutella peers, and their associated
replies. We identify the locality patterns that exist in Gnutella
queries and propose simple, but effective caching mechanisms
to exploit them.

More accurately, the contributions of this paper are:
� We modified an open-source Gnutella client (gnut [6]) and
produced detailed traces of the queries received (and forwarded)
by our client.
� We installed three such clients, in two different continents and
concurrently gathered traces of Gnutella queries.
� We studied the traffic due to Gnutella query requests and query
responses and found that the traffic is bursty and continues to
remain bursty over several time scales.
� We studied the Gnutella query traces and showed that they
show a significant amount of temporal locality, that is, several
Gnutella queries were submitted more than once throughout the
duration of our tracing study. Actually, the average Gnutella
query was submitted between 2.5 and 5 times.
� We proposed and studied a simple caching policy that caches
Gnutella query results for a limited amount of time. Our trace-
driven simulation results show that even such a simple policy can

�http://wwwstats.net.wisc.edu/



significantly reduce the network traffic generated by Gnutella
client, by as much as factor of two, while needing a very small
amount of main memory.

The rest of the paper is organized as follows: Section II
presents the methodology used to gather Gnutella traces. Section
III compares our approach with previous work and places our
paper in the appropriate context. Section IV presents the traffic
characteristics of the Gnutella network. Section 7 presents and
evaluates our caching approach. Finally section VI concludes
the paper.

II. METHODOLOGY

A. The Gnutella Architecture

Gnutella is an overlay network superimposed on top of the In-
ternet. Gnutella peers connect with their neighbors using point-
to-point connections. In order to locate a file, a peer sends a
query request to all its neighbors. When a peer receives a query
request, it searches its local files for a match to the query and
returns a query response with any potential match. In addition,
the peer forwards the query request to its neighbors (except the
one it received the query request from). To avoid query requests
from flooding the network, each query has a TTL (time to live)
field, which is usually initialized at 7. When a node receives a
query request with a positive TTL, it decrements its TTL field
before forwarding it. Queries with a TTL less than one are not
forwarded. Therefore, queries may not travel more than seven
hops in the network, and thus, the Gnutella network is free from
never-ending queries. Although a Gnutella query can not circle
the Gnutella network forever, it is possible to visit the same node
more than once within the seven hops of its “life”. To make
sure that each node does not serve the same query twice, each
query request is identified by an (almost) unique identification
called guid. When a node receives a query with a guid it has
encountered in the past, it drops the query, since it has already
forwarded the query.

B. Network Monitors

In order to gather the monitor the Gnutella network and gather
trace information, we made modifications to gnut, a UNIX-
based open-source client for Gnutella 3. We modified gnut
to gather and report various statistics about the Gnutella traffic
including queries, query replies, time-to-live fields (TTLs), etc.

We installed three tracing probes: one in Greece (Crete), one
in Norway (Bergen), and one in USA (Rochester, NY). We
started the three tracing tools simultaneously on Thursday Oct.
4, 10 am EST. The tracing lasted for about one hour. Each probe
recorded the queries and replies received. From the received
queries, each probe removed the duplicates, that is, the queries
with the same guid that have already been seen and forwarded
in the past.

III. PREVIOUS WORK

The study of large-scale Peer-to-Peer systems in general, and
Gnutella in particular, is a rather new topic.

Adar and Huberman studied the Gnutella traffic for a 24-hour
period [7]. They found that close to 70% of the users shared no

�http://www.gnutelliums.com/linux unix/gnut/

files, and that 50% of all responses were returned by only 1%
of the hosts. Their findings were independently confirmed by
Saroiu et al. who found that “there is significant heterogeneity
and lack of cooperation across peers” participating in Gnutella
[8]. Saroiu et al. findings suggests that a small percentage of
the clients appeared to have “server-like” characteristics: they
were well-connected in the network and they served a significant
number of files. This disparity between the clients’ characteris-
tics may significantly limit the scalability, reliability and perfor-
mance of the Gnutella network, and of peer-to-peer systems in
general.

Anderson [9] observed the traffic of Gnutella for a 35-hour
period and reported several results, including the distribution of
TTL values, the distribution of Hops for Queries, the distribution
of Hops for all Packets, etc.

Jovanovic [10] studied several Gnutella connection graphs and
identified significant performance problems, including short-
circuiting, an effect that limits the reachability of the nodes
in a Gnutella network. The short-circuiting effect, attributed to
highly variable network latencies can be described with an ex-
ample as follows: Suppose that node A is connected to node B
through one path that is 6 hops long, and through another path
that is 4 hops long. In a typical Gnutella operation, the query
from A will reach B through the 4-hops-long path, and will be
forwarded to B’s neighbors, and eventually will reach all nodes
reachable from B in three hops. At some later point in time,
A’s query will again reach B through the 6-hops-long path this
time, and B will correctly drop the query and not forward it to
its neighbors. It is possible, however, that the network latencies
are such that the query from A reaches B first through the 6-
hops-long path, and then through the 4-hops-long path. In this
case, B will forward the query to its neighbors, and the query
will eventually reach all nodes reachable from B in one hop.
When at some later time the query reaches B through the 4-
hops-long path, B will drop the query. In this latter case, which
is called the short-circuit effect, the query reached less nodes.
Jovanovic’s experiments suggest that, due to short-circuiting, a
typical Gnutella peer reaches only about 50% of the peers that it
could typically reach.

Sripanidukulchai [11] studied Gnutella traffic and, much like
this paper, proposed the use of caching to improve performance.
There exist however, several differences between our work and
that of Sripanidukulchai. First, we collect Gnutella traces si-
multaneously from three different points on the Globe in or-
der to make sure that our approach is not specific to one ge-
ographic region. Second, our definition of caching is funda-
mentally different from that in Sripanidukulchai. For example,
Sripanidukulchai [11] caches query results independently from
the node that made the query, which in return will later result in
delivering incomplete query responses. Furthermore, our perfor-
mance metrics completely differ from that used in [11]. While
Sripanidukulchai [11] uses the traditional performance metric of
“hit rate”, we show that in Gnutella query result caching, “hit
rate” is not well defined and alternative performance metrics
need to be considered.

Gnutella query caching, can be viewed as an extension of web
document caching [12] and of search engine query caching [13],
[14]. However, Gnutella query caching has significant differ-



Host Query Requests per sec (avg.)
Rochester 45.9

Crete 47.9
Norway 52.3

TABLE I

Queries per second - Overall average.

ences from previous caching approaches including (i) different
temporal locality characteristics, (ii) different performance bene-
fits, and (iii) different staleness properties. For example, a search
engine’s query result can safely be cached for several hours (if
not for days). On the contrary, Gnutella query results may easily
become stale within a few minutes.

IV. MEASUREMENTS

A. Gnutella Traffic Characteristics

A.1 Gnutella Query Requests

In our first experiment we report the number of the Gnutella
query requests observed by each client. Table I shows the av-
erage number of queries received per second for each of the
three clients. We immediately notice that all clients received
a similar amount of query requests ranging between 46 and 52
requests per second. It is surprising to notice that the geographic
location of a client did not seem to have a direct effect on the
number of queries it receives. For example, the US-based client
(in Rochester) received less query requests per second than the
client in Southern Europe (Crete). This is probably because
the topology of the Gnutella network does not necessarily fol-
low that of the underlying geographical network, and therefore,
clients that are geographically away from the United States may
still receive a large amount of traffic. Figure 1 shows the actual
number of queries received per second by each one of our three
clients as a function of time. We immediately see that the load
of each client varies very rapidly with time. For example, the
query requests per second received by the client in Norway were
between 1, and 585. That is, the client’s load varied by as much
as three orders of magnitude. Similarly, the load of the other
clients as well varied 2-3 orders of magnitude.

To see if this burstiness of traffic holds over several time
scales we plot the number of queries submitted per time interval
(as a function of the time interval). 4 We use intervals of one
second, 10 seconds, 1 minute, and 5 minutes. Figure 2 shows
that for small intervals, (one and ten seconds) the traffic is very
bursty and varies by as much as 2-3 orders of magnitude. The
traffic remains bursty even for larger intervals (one minute and
five minutes long), although the burstiness does not exceed one
order of magnitude.

A.2 Gnutella Query Responses

In our next experiment we investigate what are the traffic pat-
terns that result from responses to Gnutella queries. Table II
shows the average number of responses per second that passed

�In the interest of space we show the results only for the client in Crete. The
results for the other clients are similar.

0

50

100

150

200

250

300

350

0 500 1000 1500 2000 2500 3000 3500 4000

N
um

be
r 

of
 Q

ue
ri

es
 p

er
 S

ec
on

d

Time (in seconds)

Crete

0

100

200

300

400

500

600

0 500 1000 1500 2000 2500 3000 3500 4000 4500
N

um
be

r 
of

 Q
ue

ri
es

 p
er

 S
ec

on
d

Time (in seconds)

Norway

0

50

100

150

200

250

300

350

0 500 1000 1500 2000 2500 3000 3500 4000

N
um

be
r 

of
 Q

ue
ri

es
 p

er
 S

ec
on

d

Time (in seconds)

Rochester

Fig. 1. Queries per second.

Host Replies per sec (avg.)
Rochester 32.2

Crete 44.2
Norway 26.9

TABLE II

Query Responses per second - Overall average.



0

50

100

150

200

250

300

350

0 500 1000 1500 2000 2500 3000 3500 4000

N
um

be
r 

of
 Q

ue
ri

es
 p

er
 T

im
e 

In
te

rv
al

Time (slots of 1 second)

Norway

0

200

400

600

800

1000

1200

1400

1600

0 50 100 150 200 250 300 350 400

N
um

be
r 

of
 Q

ue
ri

es
 p

er
 T

im
e 

In
te

rv
al

Time (slots of 10 seconds)

Norway

0

1000

2000

3000

4000

5000

6000

0 10 20 30 40 50 60 70

N
um

be
r 

of
 Q

ue
ri

es
 p

er
 T

im
e 

In
te

rv
al

Time (slots of 1 minute)

Norway

6000

8000

10000

12000

14000

16000

18000

20000

0 2 4 6 8 10 12 14

N
um

be
r 

of
 Q

ue
ri

es
 p

er
 T

im
e 

In
te

rv
al

Time (slots of 5 minutes)

Norway

Fig. 2. Query Requests per time interval.

probe location TTL� 0 TTL � 1
Crete 2.9% 10.33%

Rochester 3.2% 11.51%
Norway 3.4% 12.02%

TABLE III

Percentage of Queries (with TTL >1) that had at least one hit.

through each of our clients. We see that the client in Crete han-
dled more than 44 responses per second, the client in Rochester
handled 32 responses per second, and the client in Norway han-
dled 27 responses per second. Figure 3 plots the actual number
of responses seen per second by each one of the clients. We im-
mediately see that the traffic due to responses is very bursty. For
example, there were cases where the clients received more than
1,000 query responses within one second. These were responses
to queries that matched a lot of files. For example, one of the
most popular queries we encountered in our measurements was
the query “game” that matched more than 7,000 files, includ-
ing several computers games, as well as songs and images that
happened to have the work “game” in their titles. Interestingly
enough, the query matched even some misspelled song titles,
like “Theme-Games Bond 007-Golden Eye.mp3”.

Although some queries produce a large number of responses,
most queries produce no responses at all. Table III (second col-
umn) shows the percentage of queries that produced at least one
response (at least one hit). We see that this percentage is between
2.9% and 3.4% for all our clients. These low percentages is prob-
ably due to the fact that the clients we installed for measuring
Gnutella traffic share no files, and therefore could not generate

a reply to any query. Thus, all query requests that terminate in
our clients (i.e. have a TTL equal to one), are not forwarded
to their neighbors and do not generate any responses. To factor
out the effects of our clients, we measured the number of replies
as a percentage of the queries that had a TTL greater than one.
Queries with TTL greater than one were not terminated by our
clients - they were forwarded to other clients. Therefore, we re-
moved the queries with TTL equal to one from our calculations
and measured the responses to queries that had TTL greater than
one. The resulting percentage is shown in the third column of
table III. We see that only 10%-12% from the queries (with TTL
greater than one) had any replies. Even though is percentage is
higher than the one measured over all queries, it is still very low:
roughly speaking, nine out of ten queries generate no response.

To see if the burstiness of Query responses holds over several
time scales, we plot the number of query responses received per
time interval (as a function of the time interval) in Figure 4. 5 We
use intervals of one second, 10 seconds, 1 minute, and 5 minutes.
We see that for small intervals, (one and ten seconds) the traffic
is very bursty and varies by as much as 2-3 orders of magnitude.
However, we see that the traffic remains bursty even for larger
intervals (one-minute and five-minute intervals). For example,
the minimum and maximum number of responses registered in
any five minute interval were 276 and 18,923 respectively. The
difference between the two is close to two orders of magnitude.
This observation is a indication that the traffic due to Gnutella
replies may be self-similar like web traffic and Ethernet traffic
[15], [16]. However, more experimentation is needed before we
are able to reach final conclusions.

�Due to space limitations we again show the results only for the client in Crete.
The results for the other clients are similar.



0

200

400

600

800

1000

1200

1400

0 500 1000 1500 2000 2500 3000 3500

N
um

be
r 

of
 R

ep
lie

s

Time (in seconds)

Crete

0

100

200

300

400

500

600

0 500 1000 1500 2000 2500 3000 3500 4000

N
um

be
r 

of
 R

ep
lie

s

Time (in seconds)

Norway

0

100

200

300

400

500

600

700

800

0 500 1000 1500 2000 2500 3000

N
um

be
r 

of
 R

ep
lie

s

Time (in seconds)

Rochester

Fig. 3. Query Responses per second.

A.3 TTLs: life of queries

In our next experiment we measure the distribution of TTLs
of the various queries. Figure 5 plots the number of queries
that had a TTL between one and seven. 6 We see that the
number of queries decreases exponentially with increasing TTL.
For example, the client in Crete sees 115 queries with TTL
equal to seven, 459 queries (4 times more) with TTL equal to
six, 915 queries (8 times more) with TTL equal to five, 3460
queries (30 times more) with TTL equal to four, 10129 queries
(88 times more) with TTL equal to three, 36087 queries (313
times more) with TTL equal to two, and 137927 queries (1200

�Queries with TTLs lower than one are probably the result of erroneous clients.
Queries with TTLs larger than 7 will generate excessive amounts of traffic and
are usually not forwarded by Gnutella clients.

0
200
400
600
800

1000
1200
1400

0 1000 2000 3000 4000R
ep

lie
s 

pe
r 

T
im

e 
In

te
rv

al

Time (slots of 1 second)

 

0

2000

4000

6000

8000

10000

0 200 400R
ep

lie
s 

pe
r 

T
im

e 
In

te
rv

al

Time (slots of 10 seconds)

 

0
2000
4000
6000
8000

10000
12000
14000
16000

0 10 20 30 40 50 60 70R
ep

lie
s 

pe
r 

T
im

e 
In

te
rv

al

Time (slots of 1 minute)

 

0

5000

10000

15000

20000

25000

30000

0 2 4 6 8 10 12 14R
ep

lie
s 

pe
r 

T
im

e 
In

te
rv

al

Time (slots of 5 minutes)

 

Fig. 4. Query Replies per time interval.

probe location TTL � 0 TTL � 1
Crete 4.5 2.74

Rochester 4.5 2.57
Norway 4.9 2.98

TABLE IV

Average number of time each query is submitted.

times more) with TTL equal to one. We see that in all cases the
number of queries with TTL equal i is 2-4 times larger than the
number of queries with TTL equal to i� �. This “exponential”
behavior is probably due to the broadcast approach followed by
the Gnutella protocol: each Gnutella peer forwards each query to
its neighbors, which in turn forward the query to their neighbors,
and so on. Therefore, the number of Gnutella query messages
increases (roughly) exponentially as the query is propagated in
the network. Recall, that each time a query request is forwarded,
its TTL is decremented by one. Therefore, query requests with
small TTLs are exponentially more than query requests with
large TTLs.

B. Locality

Our measurements so far have shown the traffic patterns of the
Gnutella query requests and their associated responses. We have
already established that both query requests and query responses
exhibit a very high degree of burstiness. Query responses ac-
tually, exhibit indications of self-similarity. We will now turn
our attention into any locality patterns that may exist in Gnutella
queries.

Table IV shows the average number of times each query has
been submitted. The second column shows the average for all
queries, and the third column shows the average for queries
that have TTL greater than one. The latter are queries that are
forwarded to other clients. We see that the average number of
submissions of each query is between 4.5 and 5 (over all queries),
and between 2.6 and 3 (for queries with TTL greater than one).
Figure 6 shows the percentage of queries that were submitted
only once, the percentage of queries submited twice, and so on.
We see that in all cases, 60% of the queries were submitted only
once, and therefore about 40were submitted more than once.



100

1000

10000

100000

1e+06

1 2 3 4 5 6 7

N
um

be
r 

of
 Q

ue
ri

es

TTL

Crete

100

1000

10000

100000

1e+06

1 2 3 4 5 6 7

N
um

be
r 

of
 Q

ue
ri

es

TTL

Norway

10

100

1000

10000

100000

1e+06

1 2 3 4 5 6 7

N
um

be
r 

of
 Q

ue
ri

es

TTL

Rochester

Fig. 5. TTL distribution (for TTLs less than 8).

Actually, about 10% of the queries were submitted twice, 5% of
the queries were submitted three times, and so on. It is interesting
to see that these precentages are almost identical for all clients.

V. QUERY CACHING

Table IV has already established that Gnutella query requests
exhibit a significant amount of locality. In our next experiments
we explore whether this locality can be exploited in order to
reduce the overall network traffic. Locality is usually exploited
(among other ways) by caching of the frequently accessed data.
For example, web-caching and content delivery systems store
copies of frequently-accessed data in proxies (caches) located
close to the clients that request them [12].

However, caching query results in peer-to-peer systems, like

0.1

1

10

100

0 5 10 15 20

Pe
rc

en
ta

ge
 s

ub
m

itt
ed

times of submissions

Crete

0.1

1

10

100

0 5 10 15 20

Pe
rc

en
ta

ge
 s

ub
m

itt
ed

times of submissions

Norway

0.1

1

10

100

0 5 10 15 20

Pe
rc

en
ta

ge
 s

ub
m

itt
ed

times of submissions

Rochester

Fig. 6. Query popularity.

Gnutella, is significantly different from caching (query results or
other documents) in web caching systems. The main difference
between Gnutella caching and web caching is that in traditional
web caching, the “content”, that is cached by proxies, is provided
by well-defined web servers. On the contrary, in Gnutella, the
“content” (which is basically the sum of the responses to a query
request) is not provided by any well-defined single server, but is
computed by composing the results of the content provided by
several peers. Therefore, besides the peer that originally issued
the query, no other peer has complete knowledge of the “content”
of a query’s response.

Let us illustrate the difference between web caching and peer-
to-peer caching by an example shown in Figure 7: suppose that
a Gnutella peer C receives a query request (e.g. “cnn”) from



C

N2

N1
N2’s query coverage

N1’s query coverage

N3

T1

T2

Fig. 7. Query Caching and Coverage of Responses in Gnutella.

its neighborN� with TTL equal to T�. C forwards the query to
neighborsN� andN�, and receives the query’s responses which
it later forwards to N�. The responses that C has collected rep-
resent all the files that matched “cnn”, and are reachable within
T� hops from C through its neighbors N� and N�. Suppose
now, that at some later point in time, C receives the same query
request (“cnn”) from neighborN� with TTL equal to T�. In this
case, C can not just give toN� the results ofN�’s query request,
because they do not include the files that match “cnn” that are
reachable throughN�. Furthermore, since the TTL’s of the two
queries are different, the responses to each query correspond to
a different coverage of the Gnutella network. Therefore, C can
not just use the response of theN�’s query to satisfyN�’s query,
even though the two query requests textually match each other.
Thus, although a Gnutella peer may see a query request several
times, these requests do not necessarily produce the same re-
sults, especially if they originate from different neighbors and
have different TTLs. Therefore, Gnutella caching systems need
to take into account not only the text of the query request but
also the query’s TTL, the neighbor that issued the request, and
in general all the factors that define the coverage of a query’s
response.

Although Gnutella Caching is different from web caching, it
can still be employed in order to improve performance. Our
proposed approach to Gnutella caching is as follows: When a
client C receives a query from neighborN�, its checks its cache
to see if a query with the same text and the same TTL has been
seen in the past. If such a query if found, and if this query has
been sent in the past by neighbor N�, C returns the responses
that exist in its cache for this query. If, on the other hand, C
finds such a query in its cache, but the query has been sent by
neighbor N�, C forwards the query to N�, receives the results,
combines them with the locally cached results of the query, and

forwards the combined result to N�. 7

A. Cache Design

A.1 Cache Size

Traditional caching systems reserve a predefined amount of
space for their cache and store in it as much useful data as they
can. To make the best possible use of their limited-size cache,
some web caching systems, give preference to small documents
in order to fill the cache with as many documents as possi-
ble [17]. However, we believe that Gnutella caching should
behave differently, mainly due to the fact the Gnutella query
responses are time-sensitive. The Gnutella network is highly
dynamic: Gnutella peers join and leave the network very fre-
quently. Therefore, the responses to a given query request may
become out-of-date even after a small time period. Thus, if
query responses in Gnutella are cached, they should be kept
in the cache for only a small amount of time that ranges from
several seconds to at most a few minutes. Thus, the objective
of Gnutella caching is not to keep a limited-size cache as full
as possible, but to keep the data in the cache for a time period
long enough to improve performance, but short enough to avoid
sending stale responses.

A.2 Evaluating Gnutella Query Caching

Traditionally, the performance metric that has been used to
evaluate caching approaches is the (cache) hit rate. The cache
hit rate is the percentage of requests that were found in the
cache over the measured period of time. As we have already
explained, although some Gnutella queries may find their entire
set of responses in the cache, other queries may find only a
portion of their responses in the cache. Although the first type
of queries can be clearly categorized as cache hits, the second
type of queries can be treated neither as cache hits, nor as cache
misses. Even though the queries of the second type can not
be clearly characterized as hits or misses, they can definitely
participate in a caching system and improve performance by
retrieving a potentially large portion of their responses from the
Gnutella cache. These queries can help to reduce the overall
network traffic, since Gnutella cache systems forward them to
only to one neighbor, instead of all the neighbors. Therefore,
to evaluate the effectiveness of Gnutella query caching we will
not measure the “hit rate”, but we will measure the network
traffic reduction that is achieved by caching, or more precisely,
the percentage reduction of the query requests sent out in the
network.

B. Network Traffic Reduction

We have designed and build a trace-driven simulator that
takes as input the produced Gnutella query traces, simulates the
caching approach we proposed, and measures the performance
improvement of the overall system.

Figure 8 plots the reduction of the query request packets sent
out in the network as a function of the caching interval. We see
that caching query results even for as low as one minute reduces
query request packets by as much as 15%-20%. Caching for 5

�Note that before C can forward the list with the combined results to N�, it
must first remove the cached results received by N� in the past.



0

5

10

15

20

25

30

35

40

45

50

55

0.5 1 5 10 20

Q
ue

ry
 R

eq
ue

st
s 

re
du

ct
io

n 
(%

)

Caching interval (minutes)

Norway
Crete

Rochester

Fig. 8. Reduction of Query Request packets sent out in the network.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 5 10 30

M
em

or
y 

Si
ze

 n
ee

de
d 

(K
by

te
s)

Caching interval (minutes)

Norway
Crete

Rochester

Fig. 9. Cache Size needed.

minutes results in a 30% reduction. Caching for half-an-hour
results in close to 50% network traffic reduction. Effectively,
caching query results for 30 minutes reduces the number of query
requests by half. Our results agree with the query popularity
patterns observed in table IV. For example, table IV suggests that
each query (with TTL > 1) is submitted on the average close to 2.5
times. Therefore, an ideal caching algorithm (that would cache
queries indefinitely, and that would not take into account the
sender of the query) could achieve a “hit rate” and an associated
query request packets reduction of about 1.5/2.5=60%. Our
simulations suggest that by using our less-than-ideal caching
approach and by caching Gnutella query response for half an
hour results in a query request packets reduction close to 50%,
which is close to the “ideal” 60%.

C. Cache Size Requirements

Although caching reduces network traffic significantly, it re-
quires that each peer contributes an amount of its local memory
to store the cached query responses. If the size of this local
memory (hereafter called the cache size) turns out to be large, it
can be a limiting factor to the deployment of caching. This cache
size includes all the memory needed to store the query responses
themselves, as well as all the metadata need to organize these re-
sponses into appropriate and efficient data structures. The reader
will notice that this cache size may vary with time, because the

proposed Gnutella caching approach keeps the responses of only
the last given time interval, and as shown in Figure 3 the num-
ber of these responses may vary. Therefore, during a busy time
interval, the cache size will be larger than it would be during
a low-traffic time interval. Figure 9 plots the average cache
size as a function of the caching interval. We immediately see
that the memory demands are very low. For example, caching
query responses (and their associated metadata) for one minute
required only 200 KBytes. Caching query responses for as long
as five minutes required no more than 1 MByte of memory.
Even caching for as long as 20 minutes required no more than 3
MBytes of memory. Therefore, the memory needs of Gnutella
caching can be considered rather small. Most (if not all) Gnutella
peers can easily invest a few hundred KBytes (or at most a few
MBytes) of their memory in order to improve performance, and
reduce the overall network traffic.

VI. CONCLUSIONS

In this paper we studied the traffic of Gnutella, a large peer-
to-peer application. We installed three Gnutella clients in three
countries in two different continents. We identified the locality
patterns that exist in Gnutella query requests, and proposed a
simple caching policy that caches query responses for a short
amount of time. Using traced-driven simulation we studied the
performance of this policy. Based on our measurements and
experimental evaluation we conclude:

� Peer to Peer Systems like Gnutella have a very bursty traffic
pattern. Both query requests, and query responses have very
bursty traffic patterns even when observed over several time
scales.
� Queries submitted to Gnutella show a significant amount of
locality. Our measurements suggest that the average query has
been submitted 2-5 times within a one-hour period.
� Caching Gnutella queries even for a small amount of time
may result in significant performance improvements. Our trace-
driven simulations suggest that caching Gnutella query responses
for several minutes may reduce the query requests sent out in the
network by as much as a factor of two.
� Caching Gnutella queries requires only a small amount of
memory. Our experiments suggest that Gnutella query caching
in most cases required no more than 1-3 MBytes of memory.

Overall, we believe that peer-to-peer caching systems are ben-
eficial today and will be increasingly important in the near future
when an even larger number of will join peer-to-peer networks.

REFERENCES

[1] David Clark, “Face-to-face with peer-to-peer networking,” Computer, vol.
34, no. 1, pp. 18–21, Jan. 2001.

[2] Eric Korpela, Dan Werthimer, David Anderson, Jeff Cobb, and Matt Lebof-
sky, “Seti@home-massively distributed computing for seti,” Computing
in Science & Enginering, vol. 3, no. 1, pp. 78–83, 2001.

[3] FightAIDS@home, “http://www.fightaidsathome.org/,” .
[4] Dave Plonka, “Uw-madison napster traffic measurement,” 2000,

http://net.doit.wisc.edu/data/Napster/.
[5] Dave Plonka, “An analysis of napster and other ip flow sizes,” Network

Analysis Times, April 2001, http://moat.nlanr.net/NATimes/april2001.pdf.
[6] Josh Pieper and Robert Munafo, “Gnut manual,” 2001,

http://www.gnutelliums.com/linux unix/gnut/doc/gnut.html.
[7] E. Adar and B. Huberman, “Free riding on gnutella,” First Monday, vol.

5, no. 10, 2000.



[8] S. Saroiu, P.K. Gummadi, and S.D. Gribble, “A measurement study of peer-
to-peer file sharing systems,” in Proceedings of Multimedia Computing and
Networking (MMCN) 2002, 2002.

[9] K. Anderson, “Analysis of the traffic on the gnutella network,” 2001,
http://www-cse.ucsd.edu/classes/wi01/cse222/projects/reports/p2p-2.pdf.

[10] M. Jovanovic, “Modeling lareg-scale peer-to-peer networks and a case
study of gnutella,” M.S. thesis, University of Cincinnati, 2001.

[11] K. Sripanidkulchai, “The popularity of gnutella queries and its implications
on scaling,” 2001.

[12] Jia Wang, “A survey of web caching schemes for the internet,” ACM
Computer Communication Review, vol. 29, no. 5, pp. 36–46, 1999.

[13] Evangelos P. Markatos, “On caching search engine query results,” Com-
puter Communications, vol. 24, no. 2001, pp. 137–143, 2001.

[14] Q. Luo, , and J. F. Naughton, “Form-based proxy caching for database-
backed web sites,” in Proceedings of the VLDB 2001, 2001.

[15] M. Crovella and A. Bestavros, “Self-similarity in world wide web trac:
Evidence and possible causes,” IEEE/ACM Transactions. Networking, vol.
5, no. 6, pp. 835–846, 1997.

[16] W. Leland, M. Taqqu, W. Willinger, and D. Wilson, “On the self-similar
nature of ethernet traffic,” IEEE/ACM Transactions on Networking, vol. 2,
no. 1, pp. 1–15, 1994.

[17] E.P. Markatos, “Main memory caching of web documents,” Computer
Networks and ISDN Systems, vol. 28, no. 7-11, pp. 893–906, 1996.


