
Speeding up TCP�IP� Faster Processors are not Enough

Evangelos P� Markatos

Institute of Computer Science �ICS�
Foundation for Research � Technology � Hellas �FORTH�

P�O�Box ����� Heraklio	 Crete	 GR
���
�� GREECE
http��archvlsi�ics�forth�gr markatos�csi�forth�gr

appears in the
��st IEEE International Performance� Computing� and Communication Conference �IPCCC����

Abstract

Over the last decade we have been witnessing a tremendous increase in the capacities of our
computation and communication systems� On the one hand� processor speeds have been increasing
exponentially� doubling every �� months or so� while network bandwidth� has followed a similar �if
not higher� rate of improvement� doubling every ���� months� or so� Unfortunately� applications that
communicate frequently using standard protocols like TCP	IP do not seem to improve at similar
rates�

In our attempt to understand the magnitude and reasons for this gap between processor perfor�
mance and interprocess communication performance� we study the execution of TCP	IP on several
processors and operating systems that span a time interval of more than eight years� To be able to
compare the performance of such di
erent platforms� we de�ne mileage� a new performance metric
that shows how e
ective is each platform in using processing power to transfer data� We also pro�
pose� calibrate� and experimentally validate a simple model that can accurately characterize TCP	IP
performance of a computer based on its processor speed and memory bandwidth�

The main conclusion of this paper is that TCP	IP performance does not scale comparably to
processor speeds� To make matters worse� this poor scalability is magni�ed and propagated to
higher�level protocols like HTTP�

� Introduction

Over the last decade we have been witnessing a tremendous increase in the capabilities of our computation
and communication systems� Processor speeds have been increasing exponentially� doubling every ��
months or so ����� This rate of increase� which is also known as Moore�s Law� has been sustained
since the seventies and is expected to continue to hold �at least� in the near future� Similarly� network
bandwidth� has followed a similar �if not higher� rate of improvement� doubling every 	
�� months� or
so� as indicated by Gilder�s Law ����

Based on Moore�s Law and Gilder�s Law� one could conclude that the performance of distributednetworked
applications would improve at similar rates� i�e� doubling every 	
�� months� Unfortunately� this is not
the case� partly because� interprocess communication does not improve at the rates predicted by Moore�s
and Gilder�s laws� In this paper we study the performance improvements in TCPIP
based interprocess
communication over the last decade� aiming to answer the following questions�

� Will future networked applications be able to capitalize on Moore�s and Gilder�s laws and improve
at comparable speeds� i�e� double their performance every 	
�� months�

� Does interprocess communication performance improve at rates comparable to those suggested by
Moore�s and Gilder�s laws� If interprocess communication performance does not scale similarly to
processor and network speeds� then it will soon become a signi�cant bottleneck in the deployment
of networked applications�

� What are the most signi�cant bottlenecks in the performance of TCP�IP�based interprocess com�
munication� Identifying and resolving these bottlenecks is essential for the e�cient execution of
networked applications�

� Can we characterize computers using simple metrics which can be used to predict the performance
of communication protocols� For example� most researchers characterize a processor�s speed in
�SPECmarks� ����� If we know the SPECmarks of a processor� we can compare its speed to the
speed of other processors� Can we de�ne such a simple and easy
to
measure performance metric
that will rate processors according to their performance on running communication protocols�

� Can we de�ne a simple model of TCP�IP performance� based on easy�to�measure parameters� like
processor speed and memory bandwidth� Using such models we can easily extrapolate and predict
the performance of TCPIP in the years to come�

To answer the above questions we experimentally evaluate the performance of TCPIP using a variety
of communication benchmarks� The contributions of our study are�

� We study the performance of TCPIP execution on three di�erent processor families �SPARC�
Alpha� and Pentium�� on �� computers that span a time interval �
years long� located in three
di�erent countries� connected through several networks ranging from a ��� Mbps Ethernet LAN
to a � Mbps WAN�

� We show that the execution cost of TCPIP does not improve at rates similar to processor speeds�
actually� although processor speeds have improved by a factor of �� over the last decade� TCPIP
performance has improved only by a factor of ���

� We show that the relative performance of operating system primitives� which lie in the critical path
of communication operations� has decreased by more than a factor of ��� over the last decade� actu

ally� although processor speeds have improved by more a factor of ��� operating system primitives
have improved by only a factor of of ���

� To capture the interprocess communication performance of computers in a single metric� we de�ne
mileage� a new performance metric that characterizes the power of a computer with respect to its
communication abilities� Mileage expresses the amount of data that the computer can transfer by
investing one unit of computing power�

� Based on the data we have collected� we de�ne a simple model of TCPIP performance� which �ts
very closely �within ��� the experimental data� The model can be used not only to infer TCPIP
performance for recent computers� but also to extrapolate and predict the performance of TCPIP
for future ones�

The rest of the paper is organized as follows� Section � places our work in the context of previous
work and recent technology trends� Section � presents our experimental measurements� and section �
de�nes mileage and presents a simple model of TCPIP performance� Then� section � discusses the
major factors that limit TCPIP performance� and �nally section � concludes the paper�

� Related Work

TCPIP performance had received signi�cant interest in the past ��� �	� �� ��� 	�� Most of this work has
focused on studying and improving TCPIP throughput and latency over limited bandwidth� possibly
wireless� and usually congested networks� This line of research� which focused on improving TCPIP
bandwidth and latency� was natural� since� traditionally� communication links had limited �or very
expensive� bandwidth� and therefore the improvement of TCPIP throughput and the reduction of
TCPIP latency were of paramount importance� However� technology trends suggest that� currently�
network bandwidth is neither the most limited� nor the most precious commodity in a distributed system�
Recent results suggest that raw network bandwidth has been improving much faster than processor speeds
���� and we have reached a point when processor execution of TCPIP has become a signi�cant overhead
in any TCPIP
based communication� Actually� it was a couple of years ago� that network bandwidth
started to exceed processor speed� that is� a single state
of
the
art processor does not any more have the
computing power to execute the network protocols needed to keep a state
of
the
art communication line
saturated with data ����� This trend between processor speeds and network bandwidth is expected to
continue in the near future� and therefore the gap between TCPIP performance and processor speeds

�

will continue to widen� In fact� some researchers� have given up hope on general
purpose processors
and have started working on network processors� a new breed of special
purpose processors that are
speci�cally tuned for network processing ��� ��� Our hope is that by studying TCPIP performance on
traditional general
purpose processors we will be able to identify and improve on the main factors that
contribute to its limited scalability�

� Experiments

��� Hardware

To quantify the performance improvement of interprocess communication over the last several years� we
have used a variety of computers based on SPARC� Alpha� and Pentium Processors� The oldest and
slowest of the computers used is a �� MHz SPARCstation �� rated at ��	� SPEC Int	�� The most recent
and fastest computer used is a ���� MHz Pentium rated at �� SPEC Int	�� These computers represent
a time spectrum more than eight years apart�

Table � lists the platforms used� their processors� their operating systems� their name �for identi�

cation purposes�� their processor clock speed� and their performance� The performance metric we list is
the SPEC CPUint	� ��

��� Benchmarks

In this paper we want to accurately characterize the interprocess communication performance of the
studied computing systems and identify performance and scalability trends that may exist� To do so we
use a variety of popular benchmarks� including lmbench ����� ttcp ����� and netperf ����

We use lmbench to measure �among others things�� clock speed ���� and local TCPIP band

widthlatency� We use ttcp to measure bandwidth between systems communicating over a network�
Finally� we use netperf to measure the communication latency �using TCPIP� between di�erent com

puters�

The traditional performance metrics that have been used in the literature to characterize the perfor

mance of communicating systems� are bandwidth� latency� and� in some cases� wall clock time� However�
in this paper we are not only interested in the actual performance of the studied communicating sys

tems� but also in the improvement of this performance over the past few years� Therefore� instead of
reporting the actual bandwidth andor latency measured� we report the improvement of the bandwidth
�or latency� compared to the bandwidth �or latency� of our base case� �

��� Kernel Entry�Exit Overhead

Most interprocess communication operations usually require the assistance of the operating system ker

nel� � For example� all the operations to send and receive data� to manipulate sockets� and in general to
communicate with other processes require operating system calls� Therefore� it is important to under

stand how the performance of system calls that are in the critical path of interprocess communication
operations has improved over the last decade�

Thus� in our �rst benchmark� we measure the cost of an empty operating system call� that is� the
latency to enter and exit the operating system kernel� Figure � plots the cost �latency� of an empty
operating system call �normalized to the cost of an empty operating system call of our baseline system��
We plot the kernel entry
exit latency as a function of the processor speed �measured in SPECint	�
SPECmarks�� We immediately see that the performance of the empty operating system call does not
scale well with processor speed� For example� we see that although PENTIUM processors have gotten
more than �� times faster� the overhead of entering the operating system kernel has improved at best
only by a factor of ��� Similarly� although SPARC processors have gotten faster by more than a factor
of ��� the overhead of entering the �Solaris� kernel has improved only by a factor of less than �� To put

�Although SPEC�� has been recently retired and replaced by the SPEC����� we use SPEC��� because� for most of the
computers we studied� only SPEC�� performance results were available�

�Our base case is a Sparcstation �� clocked at �� MHz running the Solaris ��� operating system� rated at ���� CPUint��
SPECmarks�

�For some noticeable exceptions in the area of high	speed communication for workstation clusters see
��� and
����

�

Architecture Operating System name MHz SPEC Int	�
�relative

to base line�
Alpha OSF� V��� isnogood ��� ���
Alpha OSF� V��� sarayu �	� ���	
Pentium Linux ��� �at �		 ���
Pentium Linux ��� bonny ��� ����
Pentium Linux ��� kameleon ��	 ����
Pentium Linux ��� ralou ��� ����
Pentium Linux ��� ga 	�� �	��
Pentium Linux ��� dual ���� ��
MIPS IRIX�� �� graphite �	� 	��
MIPS IRIX ��� oxygen ��� ����
MIPS IRIX�� �� silicon ��� ���	
SPARCstation
�� SunOS ��� atalante �� ���
SPARCstation
�� Solaris ��� okyalos �� ���
SPARCstation
� Solaris ��� osiris �	 ���
Ultra
� Solaris ��� garbis ��� ���
Ultra
� Solaris ��� hector ��� ���
Ultra
� Solaris ��� pandora ��� ���
Ultra
� Solaris ��� zefyros ��� ���
Ultra
Enterprise Solaris ��� brain ��� ���
Ultra
� Solaris ��� apal ��� ��	
Ultra
� Solaris ��� crete ��� ���
Ultra
� �� Solaris ��� graegos ��� ����
Ultra
Enterprise Solaris ��� arion ��� ����
Ultra
� Solaris ��� calliope ��� ����
Ultra
� �� Solaris ��� horsetail ��� ����
Ultra
� �� Solaris ��� snoopy ��� ����
Ultra
�� Solaris ��� iris ��� ����
Ultra
�� Solaris ��� bark �	� ����
Ultra
�� Solaris ��� athena ��� ����
Ultra
�� Solaris ��� ourania ��� ����

Table �� Hardware Platforms on which the communication benchmarks were run�

�

Architecture Processor Kernel entry
exit Relative
speed improvement speed improvement improvement

SPARC �� ��� ����
PENTIUM �� �� ����

Alpha �� ��� ����
MIPS �� ��	 ����

Table �� Relative performance improvement of kernel entry
exit calls�

10

20

30

40

50

10 20 30 40 50

K
er

ne
l E

nt
ry

-E
xi

t L
at

en
cy

 (
re

la
tiv

e
to

 b
as

el
in

e)

SPEC Int95

ideal
PENTIUM/Linux

SPARC/Solaris
ALPHA/DigUNIX

MIPS/Irix

2

4

6

8

10

12

14

2 4 6 8 10 12 14

K
er

ne
l E

nt
ry

-E
xi

t L
at

en
cy

 (
re

la
tiv

e
to

 b
as

el
in

e)

SPEC Int95

ideal
PENTIUM/Linux

SPARC/Solaris
ALPHA/DigUNIX

MIPS/Irix

�a� �b�

Figure �� Kernel entry�exit latency as a function of processor speed� Figure �b� is a zoomin of
�gure �a��

it in perspective� the kernel entry
exit overhead in a �� MHz SPARC �� was ��� cycles� while in a recent
��� MHz Sun
Blade
���� it is ��� cycles� Table � shows the relative performance improvement for each
architecture studied� We see that in all cases the kernel entry
exit latency did not scale proportional
to the processor speed� In one case though �MIPS�� although the processor speed improved by a factor
of ��� the kernel entry
exit latency improved only by a factor of �� Overall� we see that the relative
improvement of the time to invoke an empty operating system call was ���
��� of what one would
expect based on processor performance�

Although this disparity between processor speed and operating system performance has been reported
before ����� our results indicate that the disparity is getting worse� For example� Ousterhout� in his
seminal paper in the early 	��s ����� reported that kernel entryexit performance had relatively improved
only ���
��� compared to the processor�s speed� while our results �in the late 	��s and early �����s�
as reported in table � suggest that kernel entryexit performance has relatively improved only ���
���
compared to the processor�s speed� Therefore� operating system kernel performance not only continues
to get relatively worse compared to processor speed� it does so at a higher rate�

Although the overhead of calling the operating system is rather small� � it is especially important
for networked applications� since �i� operating system invocation lies in the critical path of almost all
data transfer operations� and �ii� Amdahl�s law suggests that any component of a system� no matter
how small� that does not scale at similar rates with the rest of the system� will eventually become the
bottleneck and limit the scalability of the whole system ���� The bottleneck of the operating system calls
has already started to manifest itself in busy web servers� Indeed� the repeated crossing between user
space and kernel space has reported to contribute a signi�cant overhead to busy web servers �����

��� TCP�IP in Localhost

Although kernel entry
exit performance lies in the critical path of interprocess communication� and may
be signi�cant for short data transfers� long data transfers are dominated by the overhead of communica

�The operating system entry	exit cost in all our SPARC	based computers was �	� microseconds�

�

tion protocol execution� The dominant communication protocol on the Internet today is TCPIP� and
therefore� it is important to understand how the performance of TCPIP scales with processor speed�

In our next experiment we study the performance of TCPIP between communicating processes that
run on the same computer� � To reduce any start
up overheads� data are given for transfer to the socket
layer in chunks �� Kbytes large� Figure � plots the TCPIP throughput achieved in each experiment
�relative to the TCPIP throughput for the base case�� We separate the computers into four categories�
SPARC uniprocessors� SPARC multiprocessors� DEC Alpha� and PENTIUM� so as to show the trends
that exist within each family of processors� We see that in Alpha
based and in Pentium
based computers
the TCPIP throughput scales very poorly� For example� although processor speed has improved by more
than a factor of �� in both cases� TCPIP throughput has improved only by a factor of � for Alphas� and
by a factor of �� for Pentiums� Contrary to these trends� SPARC
based uniprocessors have somewhat
better performance� In most of them �esp� the slow ones�� TCPIP throughput scales similarly with
processor speed� a trend� however� that seems to diminish in computers rated faster than �� SPECmarks�
Finally� TCPIP bandwidth on SPARC
based multiprocessors seems to follow the trends of the other
computers and does not scale as fast as processors do� �

��� TCP�IP in a Local Area Network

Although TCPIP performance between communicating processes located on the same computer revealed
signi�cant insight about the scalability of TCPIP execution� it is important to understand� what is the
scalability of TCPIP execution between communicating processes that reside in di�erent computers�
connected through a network� Therefore� in our next experiment we investigate the performance scaling
of TCPIP
based data transfers between processes communicating over a ���Mbps and a �� Mbps Local
Area Network� using the ttcp benchmark� We use various computers as sources of tra�c �only one
computer transmits at
a
time�� The tra�c destination for the �� Mbps network is an ULTRASPARC
�
clocked at ��� MHz connected to a �� Mbps Ethernet adapter� and the tra�c destination for the ���
Mbps network is an ULTRA
� clocked at ��� MHz�

The performance metric we use in this and all subsequent measurements is not the number of Mbytes
transfered per second� but the number of Mbytes transfered per sender�s CPU
second� �expressed in
Mbytes per CPUsec�� that is ratio of the amount of data transfered over the �sender�s� CPU seconds
�including both kernel and user time� that were required for the transfer� Thus� we essentially measure
how much data were transfered for each second of CPU time invested� For example� if we transfer ���
Mbytes of data� over a period of �� seconds� during which the sender has invested � seconds of computing
power� then the performance we report is ������� MbytesCPUsec� �

Figure � shows the achieved throughput over the achieved throughput of our base case� for the ���
Mbps LAN� We see that TCPIP performance generally scales well with processor speed� Although it
does not scale exactly the same as processor speed� the line that �ts the data has a slope of ���� which
implies that TCPIP execution follows processor performance within ����

Figure � shows the achieved throughput �in Mbytes per CPUsec� over the achieved throughput of our
base case for the �� Mbps LAN� We can see easily that TCPIP performance� in this case scales rather
poorly with processor speed� Actually� although processor speeds have improved by a factor of ��� the
achieved TCPIP bandwidth has improved only by a factor of ��� As can be seen in �gure � we �tted

�By locating both processes on the same computer we are able to focus on the execution cost of TCPIP� without the
interference from a intermediate communication network that may introduce unpredictable performance factors� In our
subsequent experiments we will gradually introduce such factors by benchmarking processes running on the same LAN�
MAN� and eventually WAN�

�The careful reader will notice that the SPARC	based multiprocessors rate as high as �� SPEC marks in �gure ��
while they were reported to rate up to only �� SPECmarks in �gure �� This is because� in multiprocessors� the TCPIP
bandwidth benchmark is executed on two processors �one processors executes the sender process and one processor executes
the receiver process�� while the kernel entry	exit benchmark was executed on a single processor� Therefore� in the TCP
bandwidth benchmark� each multiprocessor contributed two processors� twice as much processing power� and therefore we
doubled the SPECmarks reported�

�We did not use the traditional de�nition of throughput� that is the Mbytes transfered over the wall clock time elapsed�
because� the computers we use are rather fast and can easily saturate the ����� Mbps Ethernet network that was connecting
them� Therefore� the interconnection network� by being a bottleneck� it would not let us explore how TCPIP execution
scales on the di�erent processors studied� In order to understand the scaling of TCPIP execution we needed to shift the
bottleneck from the Ethernet network to the processor executing the TCPIP� Thus� measuring �Mbytes per CPUsec��
instead of �Mbytes per sec�� puts the processor� instead of the network� in the spotlight�

�

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40

T
C

P/
IP

 T
hr

ou
gh

pu
t

 (
re

la
tiv

e
to

 b
as

e
ca

se
)

SPEC Int95

ALPHA/DigitalUNIX Uniprocessors

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40

T
C

P/
IP

 T
hr

ou
gh

pu
t

 (
re

la
tiv

e
to

 b
as

e
ca

se
)

SPEC Int95

PENTIUM/Linux Uniprocessors

�a� �b�

0

5

10

15

20

25

30

0 5 10 15 20 25 30

T
C

P/
IP

 T
hr

ou
gh

pu
t

 (
re

la
tiv

e
to

 b
as

e
ca

se
)

SPEC Int95

SPARC/Solaris Uniprocessors

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40

T
C

P/
IP

 T
hr

ou
gh

pu
t

 (
re

la
tiv

e
to

 b
as

e
ca

se
)

SPEC Int95

SPARC/Solaris Multiprocessors

�c� �d�

Figure �� TCP�IP bandwidth between processors located in the same host as a function of
processor speed� Message size � �� Kbytes�

0

5

10

15

20

25

30

0 5 10 15 20 25 30

T
C

P
T

hr
ou

gh
pu

t (
M

by
te

s/
C

PU
se

c)

 P
er

fo
rm

an
ce

 I
m

pr
ov

em
en

t

 (
re

la
tiv

e
to

 b
as

el
in

e)

SPEC Int95

ideal
actual performance

slope = 0.8

Figure �� TCP�IP Bandwidth to a host in the same ��� Mbps LAN �

�

0

5

10

15

20

25

30

0 5 10 15 20 25 30

T
C

P
T

hr
ou

gh
pu

t (
M

by
te

s/
C

PU
se

c)

 P
er

fo
rm

an
ce

 I
m

pr
ov

em
en

t

 (
re

la
tiv

e
to

 b
as

el
in

e)
SPEC Int95

ideal
actual performance

slope = 0.62

Figure �� TCP�IP Bandwidth to a host in the same �� Mbps LAN �

0

5

10

15

20

25

30

0 5 10 15 20 25 30

T
C

P
T

hr
ou

gh
pu

t (
M

by
te

s/
C

PU
se

c)

 P
er

fo
rm

an
ce

 I
m

pr
ov

em
en

t

 (
re

la
tiv

e
to

 b
as

el
in

e)

SPEC Int95

ideal
actual performance

slope=0.61

Figure �� TCP�IP Bandwidth to a host in the same MAN�

the measured data with a straight line� whose slope turned out to be ����� This implies that TCPIP
execution scaled �about� ��� as fast as processor speeds�

��� TCP�IP in a Metropolitan Area Network

In our next experiment we investigate the performance scaling of TCPIP
based communication in a
�� Mbps Metropolitan Area Network �MAN�� using the ttcp benchmark� We use various computers
as sources of tra�c �only one computer transmits at
a
time�� The tra�c destination is an Sun Ultra �
clocked at ��� MHz� All the sources are more than �� kilometers away from the destination computer�
Figure � shows the achieved throughput �in Mbytes per CPUsec� over the throughput of the base case�
It is easy to see the same trend� TCPIP performance in a Metropolitan Area Networks scales much
worse than processor speed� � We �tted the data with a line that had a slope of ����� which implies that
TCPIP performance scaled only ��� with respect to processor speed�

�Note that this limited TCPIP performance scalability is not due to the limited bandwidth of the network� because
we do not report TCPIP network bandwidth� we report the Mbytes transfered for each CPU	second�

�

0

5

10

15

20

25

30

0 5 10 15 20 25 30

T
C

P
T

hr
ou

gh
pu

t (
M

by
te

s/
C

PU
se

c)

 P
er

fo
rm

an
ce

 I
m

pr
ov

em
en

t

 (
re

la
tiv

e
to

 b
as

el
in

e)
SPEC Int95

ideal
actual performance

slope=0.69

Figure �� TCP�IP Bandwidth to a host across a WAN�

0

5

10

15

20

0 5 10 15 20

T
C

P
(n

et
w

or
k)

 L
at

en
cy

 P
er

fo
rm

an
ce

 I
m

pr
ov

em
en

t

 (
re

la
tiv

e
to

 b
as

el
in

e)

SPEC Int95 (relative to baseline)

ideal
actual performance

slope=0.1

Figure �� TCP�IP latency to a host in the same �� Mbps LAN �

��	 TCP�IP in a Wide Area Network

In our last bandwidth experiment we investigate the performance scaling of TCPIP
based communica

tion in a Wide Area Network� using the ttcp benchmark� All source computers were located in Greece�
while the destination computer �a SUN Ultra � clocked at ��� MHz� was located in Norway� Figure �
plots the measured throughput �in Mbytes per CPUsec� over the throughput of the base case� These
results con�rm the poor scalability of TCPIP execution compared to processor performance� We see
that in all network we have studied� ranging from Local Area Networks� to pan
european Wide Area
Networks� TCPIP performance scales much worse than processor performance�

��
 TCP�IP Latency

Our experiments so far indicate that TCPIP bandwidth clearly does not scale well with processor
speed� In our next experiment we will investigate whether TCPIP latency is in�uenced by processor
speed� We measure the latency between two processes using the netperf benchmark� Figure � plots
the latency between processes running on di�erent computers that are connected in the same �� Mbps
Ethernet LAN� We see that TCPIP latency scales very little with processor speed� a fact which should
be expected� TCPIP latency between two di�erent computers depends more on network latency and

	

0

5

10

15

20

25

30

0 5 10 15 20 25 30

H
T

T
P

(l
oc

al
)

L
at

en
cy

 P
er

fo
rm

an
ce

 I
m

pr
ov

em
en

t

 (
re

la
tiv

e
to

 b
as

el
in

e)
SPEC Int95

ideal
Uniprocessor SPARC

multiprocessor SPARC
slope=0.32

Figure �� HTTP latency in localhost as a function of processor speed�

less on processor speed� Our experiments with TCPIP latency between computers in the same MAN
and WAN �not shown here� indeed con�rm that there is little �if any at all� relation between processor
speed and TCPIP latency�

��� HTTP Performance

Our experiments so far have demonstrated that TCPIP execution does not scale as well as processors
do� It is interesting to know� however� whether this poor scalability propagates to upper
level protocols
as well� or is it a minor detail con�ned within the TCPIP software� To understand the e�ect of this poor
scalability to upper
level protocols� we use lat http� one of the programs of lmbench to measure the
performance of the http protocol� In our setting� lat http initiates a very simple web server and a client
on the same computer� The client requests an html page �about �� Kbytes large�� and its �� embedded
images that are about �� Kbytes large in total� The benchmarks measures the latency to receive all
these �les� Figure � plots the performance measured by lat http �normalized to the base case�� We
see that the http performance scales worse than processor speed� It scales even worse than the TCPIP
performance we observed previously� Figure � suggests that HTTP performance scales about ��� as
fast as processor speeds� The reason behind this obviously bad performance is that lat http transfers
html pages and images a few Kbytes large� while our previous TCPIP benchmarks transfered chunks
of data �� Kbytes large� Recent studies report that the average �le size on the web is � Kbytes� while
the median �le is even smaller� only � Kbytes large ���� When transferring such small �les� operating
systems are not able to optimize the transfers and necessarily su�er large overheads�

���� Summary

Our experimental results so far suggest that interprocess communication performance does not scale
similarly to processor speeds� Basic operating system functions �like kernel entry
exit overhead� scale
as fast as ���
��� as fast as processor do� TCPIP execution in all kinds of networks scales between
��� and ��� as fast as processors do� Similarly� TCPIP latency does not seem to improve noticeably
with processor speeds� Unfortunately� this poor scalability is magni�ed and propagated to higher level
communication mechanisms like web data transfers� where HTTP communication performance scales
only ��� as fast as processors do�

� Modeling TCP�IP performance

��� Communication Eciency� Mileage

��

0

5

10

15

20

0 5 10 15 20 25 30 35 40

M
ile

ag
e

(i
n

M
by

te
s

pe
r

SP
E

C
se

c)

SPEC Int95

SPARC/Solaris Multiprocessors

SPARC/Solaris multiprocessor
slope = -0.27

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40 45 50

M
ile

ag
e

(i
n

M
by

te
s

pe
r

SP
E

C
se

c)

SPEC Int95

Pentium/LINUX performance

Pentium/LINUX performance
slope = -0.06

0

5

10

15

20

0 5 10 15 20 25 30

M
ile

ag
e

(i
n

M
by

te
s

pe
r

SP
E

C
se

c)

SPEC Int95

SPARC/Solaris Uniprocessors

SPARC/Solaris uniprocessor
slope = -0.13

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40 45 50
M

ile
ag

e
(i

n
M

by
te

s
pe

r
SP

E
C

se
c)

SPEC Int95

Alpha/DigitalUNIX Uniprocessors

Alpha/DigitalUNIX
slope = -0.13

Figure 	� TCP�IP mileage for data transfers in localhosts� Message size � �� Kbytes�

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40 45 50

M
ile

ag
e

(i
n

M
by

te
s

pe
r

SP
E

C
se

c)

SPEC Int95

LocalHost

actual performance
slope = -0.15

0

5

10

15

20

25

0 5 10 15 20 25

M
ile

ag
e

(M
by

te
s/

SP
E

C
se

c)

SPEC Int95 (relative to baseline)

Local Area Network

actual performance
slope=-0.12

0

5

10

15

20

25

30

0 5 10 15 20 25 30

M
ile

ag
e

(M
by

te
s/

SP
E

C
se

c)

SPEC Int95 (relative to baseline)

Metropolitan Area Network

actual performance
slope=-0.13

0

5

10

15

20

25

30

0 5 10 15 20 25 30

M
ile

ag
e

(M
by

te
s/

SP
E

C
se

c)

SPEC Int95 (relative to baseline)

Wide Area Network

actual performance
slope=-0.11

Figure ��� TCP�IP mileage for transfers in the same host� LAN� MAN� and WAN� Message
size � �� Kbytes�

��

Our experiments so far indicate that most recent computers are not able to e�ectively capitalize on the
increasing processor speeds and directly translate these speeds into communication protocol performance�
To accurately characterize the changes in the disparity between communication protocol performance and
processor performance� we de�ne a new performance metric we call mileage� We de�ne the mileage of a
data transfer to be the size of data transfered over the computing power �SPECmarks per sec� invested for
the transfer� Mileage is measured in Mbytes per SPECmark per second �MbytesSPECmarksec�� and
shows how much data �Mbytes� can be transfered by investing one unit of processing power �SPECmark�
in one unit of time �sec�� For example� if a computer achieves a mileage of �� MbytessecSPECmark
shows that the computer by investing one SPECmark of computing power for one second� it can transfer
�� Mbytes� Mileage can be computed by dividing the �Mbytes per CPU second� �as have been reported
in �gures �
�� we measured with the SPECmarks of the sender computer� Mileage captures the commu

nication capabilities of a particular processor� it measures how fast the processor is� when transferring
data� Mileage allows as to compare the communication capabilities of processors that have very di�erent
speeds� and thus allows us to understand how the communication capabilities of di�erent processors have
scaled with time�

Figure 	 shows the mileage of the computers in our study �separated in groups� for the TCPIP data
transfers to localhosts as reported in �gure �� We can easily see that the mileage of computers decreases
with processor speed� That is� faster �and more recent� processors have decreased mileage compared to
slower �and older� processors� For example� although early SPARC multiprocessors had a mileage of ��
�MbytessecSPECmark�� recent SPARC multiprocessors have a mileage of �� Similarly� although early
PENTIUM processors had a mileage of �� recent PENTIUM processors have a mileage of ���� Similar
trends exist in SPARC uniprocessors� and in Alpha
based workstations� Figure 	 indicates that mileage
has been reduced by factor of � over the last � years� which implies that� current processors spend twice
as much as processing power in order to transfer the same amount of data�

Similar decrease in mileage� can be shown in data transfers between processes in the same network�
whether LAN� MAN� or WAN� Figure �� plots the mileage for the TCPIP transfer experiments we have
conducted in the localhost� the LAN� the MAN� and the WAN� In all cases we see that mileage decreases
with processor speed� Essentially� network communications will require a continually increasing amount
of processing power in order to transfer the same amount of data�

��� An analytic model for TCP�IP throughput

Based on the experimental data that we have collected� we will now develop an analytic model to char

acterize TCPIP throughput� The model will not only help us understand the factors that in�uence
TCPIP performance� but most importantly will enable us to extrapolate �and predict� TCPIP per

formance on future computers� Since all our experiments were based on communication using ��
Kbyte
chunks� we will restrict our study to TCPIP communication using ��
Kbyte bu�ers�

The time to transfer a ��
Kbyte bu�er �TTCP�IP �� consists of the time spent reading from and writing
the data to memory �Tmem�� and the time spent processing these data �Tcomp�� Such processing may
include fragmentation� CRC calculation� etc� Thus� TTCP�IP � Tmem � Tcomp

The time to read the data from and write the data to memory Tmem can be very accurately approx

imated by the size of the message msg size over the memory bandwidth mem band�

Tmem � msg size�mem band
The time to process each message for transfer is proposrtional to the message size and inversely

proportional to the speed of the computer� Tcomp � Const � msg size
SPEC rating

Therefore� the TCPIP throughput of the computer is

Throughput �
msg size

TTCP�IP
�

msg size
msg size
mem band �

msg size�Const
SPEC rating

�
�

�

mem band �
Const

SPEC rating

���

In equation ��� the mem band and SPEC rating can be easily measured using standard benchmarks�
like the ones we have already used� The only unknown factor is Const which we found by interpolating
the data we measured�

Based on our interpolation on SPARC processors equation ��� becomes�

TCP�IP Throughput for SPARC uniprocessors �
�

�

mem band �
�����

SPEC rating

���

��

measured
model

0
10

20
30

Processor Speed
 SPEC Int95

0

500

1000

1500

Memory
 Bandwidth

 (MBytes/sec)

0

50

100

150

200

Achieved TCP Throughput
 (MBytes/sec)

Figure ��� TCP�IP Throughput in uniprocessor SPARC systems�

measured
model

0
10

20
30

40
Processor Speed

 SPEC Int95
0

500

1000

1500

Memory
 Bandwidth

 (MBytes/sec)

0

50

100

150

Achieved TCP Throughput
 (MBytes/sec)

Figure ��� TCP�IP Throughput in multiprocessor LINUX�PENTIUM systems�

Similarly� we interpolated the data for Linux
based computers� and the predicted TCPIP throughput
is�

TCP�IP Throughput for LINUX uniprocessors �
�

�

mem band �
����

SPEC rating

���

Figures �� and �� show the TCPIP throughput for SPARC and LINUX uniprocessors respectively�
In the same �gures we plot both the measured data points �as stars� and the throughput model �as a
grid�� In both cases we see that the model matches very closely the experimental data�

� Why isn�t TCP�IP getting faster as fast as hardware�

All our experiments so far indicate that TCPIP processing does not get faster as fast as hardware does�
There are several reasons that contribute to this performance disparity�

� Architectural Innovations do not necessarily apply to protocol processing� Recent pro

cessors incorporate several architecture innovations� including larger caches� out
of
order execution�
deep pipelines� and superscalar execution� all of which can not necessarily be exploited by network

ing code� For example� although large caches improve the performance of programs that repeatedly

��

access large amount of data� TCPIP code typically does not exhibit large amount of temporal
locality� That is� TCPIP� and similar communication protocols� do not repeatedly access their
data several times� and therefore large caches may not improve their performance signi�cantly� To
make matters worse� recent highly optimized protocols �i�e� like zero
copy protocols� reduce the
number of accesses they make to their data� and therefore� they take even less advantage of the large
caches that may exist� Therefore� processors do get faster� but not for protocol
processing
type of
applications�

� Operating system performance lags behind processor speed� This is partly because� re

cent processors include lots of registers� deep pipelines� and in general a large amount of state�
all of which needs to be saved and restored during context switches� Therefore� operating sys

tem activities on recent processors� get relatively slower compared to similar activities on older
processors�

� Memory bandwidth can be a limiting factor� Although protocol processing for small mes

sages is dominated by operating
system related overheads� large message transfers can be limited
by memory throughput� It is possible that signi�cant improvements in processors speed do not
translate in improvements in interprocess communication performance if not accompanied by sim

ilar improvements in memory systems� For example� in Fig� � �c� we see that one computer rated
at �� SPECmarks and another rated at � SPECmarks achieve the same TCPIP throughput� The
reason is that �rst computer� a SPARC Ultra �
�� at ��� MHz� had half the memory bandwidth
of the latter� a SPARC Ultra � clocked at �� MHz with a �
way interleaved memory� Therefore�
memory bandwidth is a very signi�cant issue which in�uences the performance of communication
protocols�

	 Conclusions

In this paper we experimentally studied the performance cost of TCPIP in several di�erent processors�
ranging from an old �� MHz SPARC� to a recent ���� MHZ Pentium� To capture the performance of
the processors with respect to their capacity in executing network protocols� we proposed mileage� a
performance metric that allows us to compare the communication capabilities of di�erent processors�
We have also proposed� calibrated� and experimentally validated a model for TCPIP performance� The
model which is based on simple to measure metrics enables us to predict the TCPIP performance of a
computer based on its processor speed� and memory bandwidth�

Based on our experimental results we can safely conclude the following�

� Future networked applications will probably not be able to take full advantage of computation and
communication improvements as expressed by Moore�s and Gilder�s laws� The performance im

provements of networking code lag signi�cantly behind the performance improvements of compu

tation and and communication systems�

� TCP�IP protocol execution improves about ��	�
�	 each year� e�ectively utilizing only ��	��	
of the processor�s improvements� For example� Fig� � �b� suggests that Pentium processor speeds
have improved by a factor of ��� while TCPIP protocol execution on these processors has improved
by only a factor of ���

� Basic operating system performance improves about ��	���	 each year� unitilizing only ��	��	
of processor speed� Indeed� although SPARC processor speed have improved by a factor of ���
kernel entry
exit overhead has improved by only a factor of ����

� The poor scalability of TCP�IP is magni�ed and propagated to higher level protocols like HTTP�
Our experiments indicate that http
based transfers using realistic �le sizes scale poorly �about
���� with processor speeds� that is� over the last � years� SPARC
based processor speeds have
improved by a factor of ��� while http transfers have improved by only a factor of ��

� Current processors need to invest more processing power to transfer the same amount of data� Our
results show that mileage decreases with time� and has been reduced almost by a factor of two over
the last decade�

��

Our results suggest that the disparity between processor speed and TCPIP performance will prob

ably continue to widen� Therefore� it becomes increasingly important to understand and optimize the
execution of TCPIP in particular� and protocol software in general� on recent �and future� processors�

 Acknowledgments

We would like to thank Dionisions Pnevmatikatos and Catherine Chronaki for their constructive com

ments in earlier versions of this paper�

References

��� G�M� Amdahl� Validity of the single processor approach to achieving large scale computing capa

bilities� In Proceedings of the AFIPS Conference� pages �������� �	���

��� H� Balakrishnan� V� Padmanabhan� S� Sehan� and R� Katz� A comparison of mechanism fro im

proving TCP performance over wireless links� IEEE�ACM Trans� Networking� �����������	� �		��

��� Hari Balakrishnan� Venkata N� Padmanabhan� and Randy H� Katz� The E�ects of Asymmetry on
TCP Performance� In Mobile Computing and Networking� pages ����	� �		��

��� Paul Barford� Azer Bestavros� Adam Bradley� and Mark Crovella� Web Client Access Patterns�
Characteristics and Caching Implications� World Wide Web Journal� �������� �			�

��� Jay S� Bayne� Unleashing the POWER of Networks�
http�www�johnsoncontrols�comMetasysarticlesarticle��htm�

��� Tzi
Cker Chiueh and Prashant Pradhan� Cache Memory Design for Network Processors� In Pro�
ceedings of the Sixth International Symposium on High�Performance Computer Architecture� pages
��	����� �����

��� Intel Corporation� Intel IXP���� Network Processor �white paper�� �����
http�developer�intel�comdesignnetworkproductsnpfamilyixp�����html�

��� Hewlett
Packard Company Information Networks Division� Netperf� A Network Performance Bench

mark� �		�� http�www�netperf�orgnetperftrainingNetperf�html�

�	� C� Fang� H� Chen� and J� Hutchins� A simulation study of TCP performance in ATM networks� In
Proc� of IEEE Globecom� �		��

���� J�D� Gee� M�D� Hill� D�N� Pnevmatikatos� and A�J� Smith� Cache Performance of the SPEC
	�
Benchmark Suite� IEEE Micro� August �		��

���� J� L� Hennessy and D� A� Patterson� Computer Architecture� A Quantitative Approach �second
edition�� Morgan Kaufmann Publishers� Inc�� �		��

���� Philippe Joubert� Robert King� Richard Neves� Mark Russinovich� and John Tracey� High

Performance Memory
Based Web Servers� Kernel and User
Space Performance� In Proc� of the
���� Usenix Technical Conference� �����

���� E�P� Markatos and M� Katevenis� Telegraphos� High
Performance Networking for Parallel Pro

cessing on Workstation Clusters� In Proceedings of the Second International Symposium on High�
Performance Computer Architecture� pages �������� February �		��

���� L� McVoy and C� Staelin� lmbench� Portable Tools for Performance Analysis� In Proc� of the ����
Usenix Technical Conference� pages ��	��	�� January �		��

���� SUN Microsystems� THE NET EFFECT� How increased bandwidth is driving innovation in business
and technology� ����� http�www�sun�comnete�ect�

��

���� S� Mukherjee and Mark D� Hill� A Survey of User
Level of Network Interfaces for System Area
Networks� Technical report� Computer Science Department
 University of Wisconsin
Madison�
�		��

���� J�K� Ousterhout� Why aren�t Operating Systems Getting Faster As Fast As Hardware� In Proceed�
ings of the Summer ���� Usenix Technical Conference� pages �������� June �		��

���� C� Partridge and T� Shepard� TCP Performance over Satellite Links� IEEE Network� ���������		�
�		��

��	� Michael Perlo� and Kurt Reiss� Improvements to TCP Performance in High
Speed ATM Networks�
Communications of the ACM� ������	������ �		��

���� C� Staelin and L� McVoy� mhz� Anatomy of a micro
benchmark� In Proc� of the ��� Usenix
Technical Conference� �		��

���� USNA� TTCP� a Test of TCP and UDP Performance� �	���

��

