
On Using Network Memory to Improve the

Performance of Transaction�Based Systems �

Sotiris Ioannidis y Evangelos P� Markatos z Julia Sevaslidou
Computer Architecture and VLSI Systems Group

Institute of Computer Science �ICS�
Foundation for Research � Technology � Hellas �FORTH�� Crete� GREECE

si�cs�rochester�edu� fmarkatos�sevasg�ics�forth�gr

Abstract Transactions have been valued for their
atomicity and recoverability properties that are use�
ful to several systems� ranging from CAD environ�
ment to large�scale databases� Unfortunately� the
performance of transaction�based systems is usu�
ally limited by the magnetic disks that are used
to hold the data� In this paper we describe how
to use the collective main memory in a Network
of Workstations �NOW� to improve the perfor�
mance of transaction�based systems� We describe
the design of our system and its implementation in
two independent transaction�based systems� namely
EXODUS� and RVM� We evaluate the performance
of our prototype using several database benchmarks
�like OO� and TPC�A�� Our experimental results
indicate that our system delivers up to two orders
of magnitude performance improvement compared
to its predecessors�

� Introduction

A major challenge in transaction�based sys�
tems is to decouple the performance of transac�
tion management from the performance of the
disks� In this paper we describe a novel way to
improve the performance of transaction man�
agement by using the collective main memory
�hereafter called remote memory� in a Network
of Workstations �NOW� ����

�This work was supported in part by PENED
project �Exploitation of idle memory in a worksta�
tion cluster� ����� ����	����
��
 Several of the de�
scribed experiments were performed at the Parallab
High Performance Computing Centre and the Univer�
sity of Rochester
 We thank them all for their support

yCurrent a�liation� Computer Science Department�
University of Rochester� Rochester� NY ����������

zEvangelos P
 Markatos is also with the University
of Crete� Department of Computer Science

The main idea behind our approach is to re�
duce the number of disk accesses by substitut�
ing them with �remote� main memory accesses�
There are two main areas where remote mem�
ory can be used to improve performance of a
transaction�based system�

Speeding up Read Accesses� The collective
main memory in a NOW can be used as a large
cache of the transaction�based system� This
cache is larger than any single workstation can
provide� and thus can be used to hold large
amounts of data� Reading data from remote
main memory �over a high speed interconnec�
tion network�� was shown to be signi�cantly
faster than reading data from a �local� mag�
netic disk �	�� Architecture trends suggest
that this disparity between magnetic disks and
interconnection networks will continue to in�
crease with time �	��

Speeding up Synchronous Write Operations
to Reliable Storage� Transaction�based systems
frequently use synchronous write operations to
force all modi�ed data to disk at transaction
commit time� We advocate �and show in this
paper� that the set of remote main memories
in a NOW has comparable reliability to a mag�
netic disk� and thus can be used to hold sensi�
tive data that must survive a system crash�

The �rst of the above issues has been some�
what explored in the areas of �le systems �
�
�� ��� paging �
� and global memory databases
for workstation clusters ��� ��� The thrust
of this paper is on exploring the second issue�
Transaction�based systems make many small
synchronous write operations to stable storage�
and thus they are going to bene�t signi�cantly
from any improvements to synchronous disk
write operations�

Based on the current architecture trends� we
believe that transaction�based systems should
make use of the remote main memory of a
NOW� in order to avoid �synchronous� disk
data transfers and substitute them with �syn�
chronous� network data transfers� To demon�
strate our approach� we implemented it in two
existing transaction�based systems� the EXO�
DUS storage manager ���� and the RVM �Re�
coverable Virtual Memory� System ����� Sec�
tion 	 describes the design and the implemen�
tation of our systems� We report our per�
formance results in section
� Section � places
our work in context by surveying previous work
and comparing it with our approach� Finally
section � concludes the paper�

� Remote�Memory�based
Transaction Systems

��� Reliable Main Memory

The performance of transaction�based systems
is usually limited by slow disk accesses� Dur�
ing its lifetime� a transaction makes a number
of disk accesses to read its data �if the data
have not been cached in main memory�� makes
a few calculations on the data� writes its results
back �via a Log �le�� and then commits� Disk
read operations can be sped up with the help
of large main memory caches� Disk write op�
erations at transaction commit time� however�
are di�cult to avoid since the data and meta�
data have to reach stable storage in order to
protect the application from crashes�
We believe� that in NOW the collective main

memory of all workstations in the system can
be made reliable in such a way as to survive
power outages and software failures� and thus
become a viable alternative to disk storage for
sensitive transaction data� The main sources
of system crashes that may lead to data loss
are�

Software failures are the result of software
malfunctions� operating system crashes� etc�
Data that must survive software failures are
replicated to the main memories of �at least�
two workstations so they are able to survive
software failures with high probability� �

�If each workstation crashes once every few months�
and stays crashed for several minutes� two workstations
will crash within the same time interval once every sev�

Power losses are the result of malfunctions
in the power supply system� To cope with
power losses we assume the existence of two
power supplies� one could be the main power
supply� and the second could be provided by
an uninterrupted power supply �UPS��
Based on our description we advocate that

using mirroring and UPSs� we can make the
�remote� main memory� a storage medium as
reliable as the magnetic disk� Thus� sensitive
data that need to be synchronously written to
disk� can be �synchronously� written to remote
main memory with the same level of reliabil�
ity�

��� EXODUS and RVM

To illustrate our approach we have modi�ed
a lightweight transaction�based system called
RVM ���� and the EXODUS storage manager
��� to use remote memory �instead of disks� for
synchronous write operations� After studying
the performance of the systems� we concluded
that they spend a signi�cant amount of their
time� synchronously writing transaction data
to their log �le� which is used to implement
a two�phase commit protocol� When a trans�
action commits� all the data the transaction
modi�ed are synchronously written to the log
�stored as a UNIX �le on a magnetic disk�� Af�
ter the mentioned data are successfully written
to the log� the system is allowed to proceed�
We have modi�ed both EXODUS and RVM

so as to keep a copy of their log �le in remote
main memory �as well as the disk�� The un�
modi�ed systems force all their sensitive data
to the disk at transaction commit time us�
ing synchronous disk write operations� In
our modi�ed systems� we substitute each syn�
chronous transaction commit operation with
the following operations�

�� At transaction commit time� the trans�
action�s sensitive data are synchronously
written to the log in remote main mem�
ory�

	� At the same time� these data are asyn�
chronously written to the local magnetic
disk�

eral years� which leads to higher reliability than current
disks provide

� Eventually� the data reach the magnetic
disk asynchronously�

The transaction is committed after step 	
completes� It seems that there is a �window of
vulnerability� between steps 	� and
�� that is
after the data have been safely written to re�
mote memory �and scheduled to be written on
the disk�� but before the data have been safely
written to magnetic disk� If the local system
crashes during this interval� then the data that
are still in the local main memory bu�er cache
will be lost during the crash� Fortunately� our
system can still recover the seemingly lost data�
since the same data reside in the remote mem�
ory as a result of step �� Data loss may happen
only if both local and remote systems crash
during this interval� However� we have argued
that the probability of both systems �which are
equipped with UPSs� crashing during the in�
terval of few minutes is comparable �or even
lower� than the probability of a magnetic disk
malfunction� Thereby our system provides lev�
els of reliability comparable to a magnetic disk�

��� Recovery

In the event of a workstation�network crash�
our system needs to recover data and continue
its operation� If the local workstation crashes�
and reboots� it will read all its �seemingly
lost� data from the remote memory� store them
safely on the disk� and continue its operation
normally� If the remote workstation crashes�
the local transaction manager will realize it af�
ter a timeout period� After the timeout� the
local manager may either search for another re�
mote memory server� or just stop using remote
memory� and commit transactions to disk as
usual� If the network crashes� the local work�
station will stop using remote memory and will
commit all transactions to disk� In all circum�
stances� the system can recover within a few
seconds� in the worst case� The reason is that
at all times there exist two copies of the log
data� if one copy is lost due to a crash� the sys�
tem can easily switch to the other copy quickly�

��� Implementation

We have made the described changes to RVM
and EXODUS� We call the resulting systems

RRVM �Remote RVM� and REX �Remote EX�
ODUS�� �

Our systems have been completely imple�
mented in user space� without any operating
system modi�cations� For each transaction
manager� we start a user�level remote memory
server on a remote workstation� The purpose
of this server is to accept synchronous write
requests from the transaction manager and ac�
knowledge them� In the case of a transaction
manager crash� the remote memory server is
responsible for providing the contents of the
Log �le it keeps in its main memory� At all
times� data written by committed transactions
either reside safely on the disk� or are stored in
the main memory of at least two workstations
�the local transaction manager� and the remote
memory server��

� Experimental Evaluation

In this section we report the performance ad�
vantages of our systems RRVM and REX com�
pared to the original RVM and EXODUS sys�
tems�

��� RVM performance

����� Experimental Environment

Our experimental environment consists of a
network of eight DEC Alpha 	��� worksta�
tions with Digital UNIX running at 	

 MHz�
equipped with �	� MBytes of main memory
each and a
GB local disk� The workstations
are connected through an Ethernet� an FDDI�
and a Memory Channel Interconnection Net�
work �����
In our experiments we demonstrated the

performance of RRVM and compared it with
its predecessor RVM ����� We have experi�
mented with four system con�gurations�

� RVM� Is the unmodi�ed RVM system�

� RRVM�ETHERNET� Is RRVM running on top
of Ethernet�

�Our modi�cation were rather small
 Out of about
������ lines of RVM code� we modi�ed �or added� less
than ��� lines ����
 Out of ������� lines of EXODUS
code� we modi�ed �or added� less than ��� lines �a �
��
change�

1

10

100

1000

10000

10 100 1000 10000 100000 1e+06

T
ra

ns
ac

tio
ns

pe

r
se

co
nd

I/O Block Size (in bytes)

LOG SIZE = 8 Mbytes

RRVM-MC
RRVM-FDDI

RRVM-ETHERNET
RVM

Figure �� Performance of RVM as a function of
the I�O block size� Data �le � ��� Mbytes� Log
File � � Mbytes�

� RRVM�FDDI� Is RRVM running on top of
FDDI�

� RRVM�MC� This is RRVM running on top
of the Memory Channel Network�

��� I�O Block Size

In our �rst set of experiments we would like to
�nd out how many transactions per second our
RRVM system is able to sustain� compared to
the number of transactions per second the un�
modi�ed RVM system is able to sustain� For
this reason we constructed the following ex�
periment� We create a �le ��� Mbytes long�
Then� we start a sequence of ����� transac�
tions� Each transaction writes a segment of the
�le and commits� Transactions modify the �le
in sequential manner� The size of the �le seg�
ment modi�ed by each transaction �also called
I�O block size� is the parameter of our experi�
ments�
Figure � plots the number of transactions

per second� for the original version of RVM� and
our RRVM�MC� RRVM�FDDI� and RRVM�ETHERNET�
We see that the unmodi�ed RVM system is
able to sustain up to at most �� transac�
tions per second for small transactions� which
agrees with previously reported results �����
However� the performance of RRVM�ETHERNET�
RRVM�FDDI and RRVM�MC manages to sustain
close to
���� transactions per second� almost
two orders of magnitude improvement over un�
modi�ed RVM� As the I�O block size increases�
badwidth and not latency is the dominating
factor� so the performance of all systems con�
verges�

1

10

100

1000

10000

1 10 100 1000 10000

T
ra

ns
ac

tio
ns

 p
er

 s
ec

on
d

Log Size (in Kbytes)

I/O Block Size = 128 Bytes

RRVM-MC
RRVM-FDDI

RRVM-ETHERNET
RVM

Figure 	� Performance of RVM as a function of
the size of the log� Data File � ��� Mbytes�

��� The Size of the Log

In this section we set out to answer how the
size of the log �le kept by RRVM in�uences
the performance of the system� The log �le is
synchronously written by transactions during
their commit phase� When the log �le �lls be�
yond a threshold� RVM reads it� truncates it and
updates the data �le�
To measure the performance e�ect of the log

�le size� we constructed the same experiment
as previously� but instead of varying the I�O
block size� we vary the log size and we keep
the I�O block size constant�
The results of our experiment �number of

transactions per second� as a function the log
size for I�O block size of �	� bytes are plot�
ted in Figure 	� In all cases the performance
of both RRVM systems is signi�cantly better
than the performance of the unmodi�ed RVM

system�

��� Random Accesses

Next� we set out to explore the performance
of our transaction�based system in a random
accessed environment� Thus� we repeated the
previous experiment� but instead of accessing
the data �le sequentially� the transactions ac�
cess the data �le completely randomly� The
performance of our systems for log size �
Mbytes is shown in Figure
�
We see that all RRVM�MC� RRVM�FDDI� and

RRVM�ETHERNET perform much better than
RVM� as expected� However� the num�
ber of transactions per second sustained by
RRVM�FDDI and RRVM�ETHERNET is a little less
than 	�� �for small transactions�� and around
	���� for RRVM�MC� a reduction in the perfor�

1

10

100

1000

10000

10 100 1000 10000 100000 1e+06

T
ra

ns
ac

tio
ns

pe

r
se

co
nd

I/O Block Size (in bytes)

LOG SIZE = 8 Mbytes

RVM
RRVM-FDDI

RRVM-ETHERNET
RRVM-MC

Figure
� Performance of RVM as a function of
the I�O block size � random accesses� Data File �
��� Mbytes� Log File � � Mbytes�

mance observed so far� There are two reasons
for this performance reduction� increased num�
ber of page faults� and disk I�O operations�
When a �le is accessed by ����� transactions�
and each transaction accesses
	 bytes of data�
a total of
	� Kbytes of data are accessed� If
these transactions access sequential data� they
will access in total
	��� � �� pages� If� how�
ever� the transactions access data randomly�
they will access many more pages� Thus� both
the number of page faults� and the number of
disk I�O operations are signi�cantly lower in
the case of sequential transaction accesses� as
compared to random transaction accesses�

��� Network and Server Load

Our next set of experiments explore how well
our system performs under a loaded network
and under a loaded server�
To answer the �rst question we constructed

the following experiment� We create several in�
stances of RRVM clients� For each client� there
is also an RRVM server� All clients and all
servers run on di�erent workstations� All work�
stations are connected to the same interconnec�
tion network� We progressively increase the
number of client�server pairs participating in
the experiment and measure the transactions
per second each RRVM system �client�server
pair� is able to sustain� Each RRVM system
executes the experiment described in Section

�	�
In our experiments the log size was set to

� Mbytes and the I�O block size to
	 Bytes�
Figure � presents the number of transactions
per second for each RRVM system �client�

1 2 3 4
Number of client/server pairs

0

100

200

300

400

500

600

700

T
ra

ns
ac

tio
ns

 P
er

 S
ec

on
d

RRVM-FDDI

RRVM-ETHERNET

RVM

Figure �� Network Load	 Performance of RVM as
a function of the network load � sequential accesses
� all servers and all clients run on di
erent work�
stations � I�O block size � �� bytes�

1 2 3 4
Number of Clients

0

100

200

300

400

500

600

T
ra

ns
ac

tio
ns

 P
er

 S
ec

on
d

RRVM-FDDI

RRVM-ETHER

RVM

Figure �� Server Load	 Performance of RVM as a
function of the number of the participating clients
� sequential accesses � all servers run on a single
workstation � I�O block size � �� bytes�

server pair� as a function of the number of
workstations participating in the experiment�
First of all� we see that the performance of the
unmodi�ed RVM system stays the same inde�
pendent of how many workstations participate
in the experiment� This is as expected� since
RVM only accesses its local disk� and does not
put any network load� We also notice that the
performance of RRVM�ETHERNET decreases with
the number of workstations whereas the per�
formance of RRVM�FDDI is practically constant�
This is expected since FDDI has ten times the
throughput of Ethernet�
The next experiment puts pressure not only

on the network� but on the single server work�
station as well� It is the same as the previous

Accounts RVM RRVM RRVM

������
Unmodi�ed� ETHER FDDI

TPCA�A	 Sequential Accesses
�� ����� ��� ���
��� ����� ��� ���
��� ����� ��� ���
���� ����� ��� ���

TPCA�A	 Random Accesses
�� ���� ��� ���
��� ���� ��� ���
��� ���� �� ��
���� ���� �� ��

TPCA�A	 Localized Accesses
�� ���� ��� ���
��� ���� ��� ���
��� ���� ��� ���
���� ���� �� ��

Figure
� Transactions per second sustained by
the TPCA�A Benchmark�

one with the di�erence that all RRVM servers
are running on a single workstation� The per�
formance of RRVM as a function of the number
of participating clients is shown in Figure �� for
I�O block size of
	 bytes� As expected the per�
formance of RRVM decreases as the number of
participating workstations increases� but it is
still signi�cantly better than that of RVM�

��� TPC�A

To place our RRVM system in the right
perspective with previously published perfor�
mance results� we ran the widely used TPC�A
database benchmark �which was also used to
evaluate the original system ����� � on top of
it�
Our results� summarized in Figure
� show

the number of transactions per second that
each system can achieve� The experiments
present sequential� random and localized ac�
cesses� RRVM�ETHERNET and RRVM�FDDI out�
perform the original RVM system by an order
of magnitude in almost every case�

��	 EXODUS

����� Experimental Environment

Our experimental environment for EXODUS
consists of a network of Supersparc�	� worksta�
tions� The workstations are connected through

t1 t2a t2b t3a t3b t3c t5do t6 t7 q1
OO7 bechmark

0

10

20

30

40

50

C
om

pl
et

io
n

T
im

e
(s

ec
on

ds
)

EXODUS

REX-ETHER

REX-FDDI

Figure �� Performance of OO� running on top of
EXODUS�

a ��� Mbps FDDI� and a ��Mbps Ethernet in�
terconnection network�

����� OO�

On top of EXODUS we ran a common database
benchmark called OO� ��	�� We used three ver�
sions of EXODUS�

� EXODUS� Is the unmodi�ed EXODUS sys�
tem ����

� REX�FDDI� Is our modi�ed EXODUS
�REX� system running on top of FDDI�

� REX�ETHERNET� Is REX running on top of
Ethernet�

Figure � plots the completion time of var�
ious parts of the OO� benchmark on top of
EXODUS� We see that in all cases REX has
superior performance compared to the unmod�
i�ed EXODUS systems� Actually� REX�FDDI
is sometimes more than
 times faster than
EXODUS �see for example t�do� and t
�� Al�
though we do not see the impressive perfor�
mance di�erence we demonstrated in the pre�
vious section �since OO� stresses all aspects
of the system� not just transaction commit��
our measurements suggest that REX results in
noticeable performance improvement over the
unmodi�ed EXODUS storage manager�

� Related Work

Using Remote Main Memory to improve the
performance and reliability of I�O in a NOW
has been previously explored in the literature
in �le systems �
� �� ��� pagers ��
� ���
�� even
Distributed Shared Memory systems �����
The closest to our research is the Harp �le

system ���� Harp uses replicated �le servers to
tolerate single server failure� Each �le server is
equipped with a UPS to tolerate power failures�
and speedup synchronous write operations� Al�
though we use similar techniques� there are
several di�erences between our work and Harp�

Data Granularity� Our work is focused on
transaction�based systems that make a lot of
small read and write operations� Harp oper�
ates on �le blocks and is able to sustain several
tens of such operations per second� according
to the published results� This is an order of
magnitude less than RRVM for small transac�
tions�

Open User Level Implementation� RRVM is
linked with user applications as a library� out�
side the operating system kernel� Thus� it is
portable and easily modi�able�
The Rio �le cache has been designed to sur�

vive operating system crashes by not destroy�
ing its main memory contents in case of a
crash ��
�� Systems like Rio may simplify the
implementation of our approach signi�cantly�
However it requires operating system kernel
changes not necessary in our approach�
Network �le systems like Sprite ���� and xfs

�
� ���� can also be used to store replicated
data and build a reliable network main mem�
ory� However� our approach� would still re�
sult in better performance due to the mini�
mum �block� size transfers that all �le systems
are forced to have� Moreover� our approach
would result in wider portability since� being
user�level� it can run on top of any operating
system�
Franklin et al� have proposed the use of

remote main memory in a NOW as a large
database cache ���� Feeley et al� proposed
a generalized memory management system�
where the collective main memory of all work�
stations in a cluster is handled by the oper�
ating system ����� We believe that our ap�
proach complements this work in the sense that
both ��� and ���� improve the performance of
read accesses �by providing large caches�� while

our approach improves the performance of syn�
chronous write accesses�
Papathanasiou and Markatos �	�� describe a

system to improve performance of main mem�
ory databases on top of Networks of Worksta�
tions� The approach described in this paper is
applicable to all databases� whether they �t in
main memory or not�
Gri�oen et al� proposed the DERBY stor�

age manager� that exploits remote memory and
UPSs to reliably store a transaction�s data ����
They simulate the performance of their system
and provide encouraging results� Although our
approach is related to the DERBY system�
there are signi�cant di�erences� �i� we provide
a full��edged implementation of our approach
on two independent transaction�based systems�
�ii� we demonstrate the performance improve�
ments of our system using the same bench�
marks that demonstrated the performance of
the original RVM and EXODUS systems� �iii�
DERBY places the burden of data reliability
to the clients of the database� while we place
it on the transaction managers who have bet�
ter knowledge of how to manage the various
resources �memory� disks� in the system�
To speed up database and �le system write

performance� several researchers have proposed
to use special hardware� For example� Wu and
Zwaenepoel have designed and simulated eNVy
�	��� and Baker et al� have proposed the use
of battery�backed SRAM �		�� Our approach
has the advantage that is does not need any
specialized hardware

� Conclusions

In this paper we described how to use sev�
eral workstations in a NOW to provide fast
and reliable access to stable storage� Our ap�
proach consists of using network main mem�
ory to avoid synchronous disk I�O as much as
possible� By using data replication and redun�
dant power supplies we increase the reliability
of remote main memory� and use it as a short�
term non�volatile storage medium� Based
on our implementation experience and perfor�
mance results we conclude�
Our approach can be easily incorporated in

existing database systems� It only took a few
weeks of programming to implemented our
approach on top of two di�erent transaction

based systems�
RRVM provides signi�cant performance im�

provements over RVM� even on top of Ether�
net interconnection networks� RRVM on top of
Ethernet is able to sustain ������ transactions
per second compared to
�� �� of the unmod�
i�ed RVM�

RRVM is able to sustain several clients on
top of the same interconnection network� Our
results suggest that even when four RRVM
systems operate on top of the same Ethernet
network� their performance is
�� times better
than the performance of RVM�

The performance bene�ts of our approach
will increase with time� Since the latency
and the bandwidth of interconnection networks
quickly improve with time� we expect the per�
formance bene�ts of RRVM to improve at sim�
ilar rates�
Based on our experiments� we believe that

remote memory is a viable alternative to syn�
chronous disk I�O and should be considered
seriously for implementation in databases and
transaction�based systems in general�

Acknowledgments

We like to thank Manolis Katevenis and
Catherine Chronaki who provided useful feed�
back in earlier versions of this document� as
well as the anonymous referees�

References

��� T�E� Anderson� D�E� Culler� and D�A� Patter�
son� A case for NOW� IEEE Micro� February
�����

��� M� Dahlin� Serverless Network File Systems�
PhD thesis� UC Berkeley� December �����

��� T� E� Anderson� M� D� Dahlin� J� M� Neefe�
D� A� Patterson� D� S� Roselli� and R� Y�
Wang� Serverless network �le systems� TOCS�
February �����

��� J� Hartman and J� Ousterhout� The zebra
striped network �le system� ��th SOSP� De�
cember �����

��� B� Liskov� S� Ghemawat� R� Gruber� P� John�
son� L� Shrira� and M� Williams� Replication
in the Harp �le system� ��th SOSP� �����

��� E�P� Markatos and G� Dramitinos� Implemen�
tation of a reliable remote memory pager� In
Usenix Technical Conference� �����

��� M� Franklin� M� Carey� and M� Livny� Global
memory management in client�server dbms ar�
chitectures� In �	th VLDB Conference� Au�
gust �����

��� J� Gri�oen� R� Vingralek� T� Anderson� and
Y� Breitbart� Derby	 A Memory Manage�
ment System for Distributed Main Memory
Databases� In RIDE
��� February �����

��� M� Carey et al� The EXODUS extensible
DBMS project	 An overview� In Readings in
Object�Oriented Database Systems� �����

���� M� Satyanarayanan� Henry H Mashburn�
Puneet Kumar� David C� Steere� and James J�
Kistler� Lightweight recoverable virtual mem�
ory� TOCS� �����

���� R� Gillett� Memory channel network for pci�
IEEE Micro� ��
��	������ February �����

���� M� Carey� D� DeWitt� and J� Naughton� The
OO� bechmark� In ACM SIGMOD� �����

���� L� Iftode� K� Li� and K� Petersen� Memory
servers for multicomputers� In COMPCON ���
�����

���� K� Li and K� Petersen� Evaluation of memory
system extensions� In ISCA� �����

���� M� Costa� P� Guedes� M� Sequeira� N� Neves�
and M� Castro� Lightweight logging for lazy
release consistent distributed shared memory�
In OSDI� �����

���� Peter M� Chen� Wee Teck Ng� Subhachandra
Chandra� Christopher Aycock� Gurushankar
Rajamani� and David Lowell� The Rio �le
cache	 Surviving operating system crashes� In
ASPLOS� �����

���� M� Nelson� B� Welch� and J� Ousterhout�
Caching in the Sprite network �le system�
TOCS� February �����

���� M�D� Dahlin� R�Y� Wang� T�E� Anderson� and
D�A� Patterson� Cooperative cahing	 Using
remote client memory to improve �le system
performance� In OSDI� �����

���� M� J� Feeley� W� E� Morgan� F� H� Pighin�
A� R� Karlin� H� M� Levy� and C� A� Thekkath�
Implementing global memory management in
a workstation cluster� In �
th SOSP� �����

���� A� E� Papathanassiou and E� P� Markatos�
Lightweight transactions on networks of work�
stations� In ICDCS� �����

���� Michael Wu and Willy Zwaenepoel� eNVy	 a
non�volatile main memory storage system� In
ASPLOS� �����

���� M� Baker� S� Asami� E� Deprit� J� Ousterhout�
and M� Seltzer� Non�volatile memory for fast�
reliable �le systems� In ASPLOS� �����

