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Abstract Transactions have been valued for their
atomicity and recoverability properties that are use-
ful to several systems, ranging from CAD environ-
ment to large-scale databases. Unfortunately, the
performance of transaction-based systems is usu-
ally limited by the magnetic disks that are used
to hold the data. In this paper we describe how
to use the collective main memory in a Network
of Workstations (NOW) to improve the perfor-
mance of transaction-based systems. We describe
the design of our system and its implementation in
two independent transaction-based systems, namely
EXODUS, and RVM. We evaluate the performance
of our prototype using several database benchmarks
(like OO7 and TPC-A). Our experimental results
indicate that our system delivers up to two orders
of magnitude performance improvement compared
to its predecessors.

1 Introduction

A major challenge in transaction-based sys-
tems is to decouple the performance of transac-
tion management from the performance of the
disks. In this paper we describe a novel way to
improve the performance of transaction man-
agement by using the collective main memory
(hereafter called remote memory) in a Network
of Workstations (NOW) [1].
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The main idea behind our approach is to re-
duce the number of disk accesses by substitut-
ing them with (remote) main memory accesses.
There are two main areas where remote mem-
ory can be used to improve performance of a
transaction-based system.

Speeding up Read Accesses: The collective
main memory in a NOW can be used as a large
cache of the transaction-based system. This
cache is larger than any single workstation can
provide, and thus can be used to hold large
amounts of data. Reading data from remote
main memory (over a high speed interconnec-
tion network), was shown to be significantly
faster than reading data from a (local) mag-
netic disk [2].  Architecture trends suggest
that this disparity between magnetic disks and
interconnection networks will continue to in-
crease with time [2].

Speeding up Synchronous Write Operations
to Reliable Storage: Transaction-based systems
frequently use synchronous write operations to
force all modified data to disk at transaction
commit time. We advocate (and show in this
paper) that the set of remote main memories
in a NOW has comparable reliability to a mag-
netic disk, and thus can be used to hold sensi-
tive data that must survive a system crash.

The first of the above issues has been some-
what explored in the areas of file systems [3,
4, 5], paging [6] and global memory databases
for workstation clusters [7, 8].  The thrust
of this paper is on exploring the second issue.
Transaction-based systems make many small
synchronous write operations to stable storage,
and thus they are going to benefit significantly
from any improvements to synchronous disk
write operations.



Based on the current architecture trends, we
believe that transaction-based systems should
make use of the remote main memory of a
NOW, in order to avoid (synchronous) disk
data transfers and substitute them with (syn-
chronous) network data transfers. To demon-
strate our approach, we implemented it in two
existing transaction-based systems: the EXO-
DUS storage manager [9], and the RVM (Re-
coverable Virtual Memory) System [10]. Sec-
tion 2 describes the design and the implemen-
tation of our systems.  We report our per-
formance results in section 3. Section 4 places
our work in context by surveying previous work
and comparing it with our approach. Finally
section 5 concludes the paper.

2 Remote-Memory-based
Transaction Systems

2.1 Reliable Main Memory

The performance of transaction-based systems
is usually limited by slow disk accesses. Dur-
ing its lifetime, a transaction makes a number
of disk accesses to read its data (if the data
have not been cached in main memory), makes
a few calculations on the data, writes its results
back (via a Log file), and then commits. Disk
read operations can be sped up with the help
of large main memory caches. Disk write op-
erations at transaction commit time, however,
are difficult to avoid since the data and meta-
data have to reach stable storage in order to
protect the application from crashes.

We believe, that in NOW the collective main
memory of all workstations in the system can
be made reliable in such a way as to survive
power outages and software failures, and thus
become a viable alternative to disk storage for
sensitive transaction data. The main sources
of system crashes that may lead to data loss
are:

Software failures are the result of software
malfunctions, operating system crashes, etc.
Data that must survive software failures are
replicated to the main memories of (at least)
two workstations so they are able to survive
software failures with high probability. '

11f each workstation crashes once every few months,
and stays crashed for several minutes, two workstations
will crash within the same time interval once every sev-

Power losses are the result of malfunctions
in the power supply system. To cope with
power losses we assume the existence of two
power supplies: one could be the main power
supply, and the second could be provided by
an uninterrupted power supply (UPS).

Based on our description we advocate that
using mirroring and UPSs, we can make the
(remote) main memory, a storage medium as
reliable as the magnetic disk. Thus, sensitive
data that need to be synchronously written to
disk, can be (synchronously) written to remote
main memory with the same level of reliabil-

1ty.

2.2 EXODUS and RVM

To illustrate our approach we have modified
a lightweight transaction-based system called
RVM [10] and the EXODUS storage manager
[9] to use remote memory (instead of disks) for
synchronous write operations. After studying
the performance of the systems, we concluded
that they spend a significant amount of their
time, synchronously writing transaction data
to their log file, which is used to implement
a two-phase commit protocol. When a trans-
action commits, all the data the transaction
modified are synchronously written to the log
(stored as a UNIX file on a magnetic disk). Af-
ter the mentioned data are successfully written
to the log, the system is allowed to proceed.

We have modified both EXODUS and RVM
so as to keep a copy of their log file in remote
main memory (as well as the disk). The un-
modified systems force all their sensitive data
to the disk at transaction commit time us-
ing synchronous disk write operations. In
our modified systems, we substitute each syn-
chronous transaction commit operation with
the following operations:

1. At transaction commit time, the trans-
action’s sensitive data are synchronously
written to the log in remote main mem-
ory.

2. At the same time, these data are asyn-
chronously written to the local magnetic
disk.

eral years, which leads to higher reliability than current
disks provide.



3. Eventually, the data reach the magnetic
disk asynchronously.

The transaction is committed after step 2
completes. It seems that there is a “window of
vulnerability” between steps 2. and 3., that is
after the data have been safely written to re-
mote memory (and scheduled to be written on
the disk), but before the data have been safely
written to magnetic disk. If the local system
crashes during this interval, then the data that
are still in the local main memory buffer cache
will be lost during the crash. Fortunately, our
system can still recover the seemingly lost data,
since the same data reside in the remote mem-
ory as a result of step 1. Data loss may happen
only if both local and remote systems crash
during this interval. However, we have argued
that the probability of both systems (which are
equipped with UPSs) crashing during the in-
terval of few minutes is comparable (or even
lower) than the probability of a magnetic disk
malfunction. Thereby our system provides lev-
els of reliability comparable to a magnetic disk.

2.3 Recovery

In the event of a workstation/network crash,
our system needs to recover data and continue
its operation. If the local workstation crashes,
and reboots, it will read all its “seemingly
lost” data from the remote memory, store them
safely on the disk, and continue its operation
normally. If the remote workstation crashes,
the local transaction manager will realize it af-
ter a timeout period. After the timeout, the
local manager may either search for another re-
mote memory server, or just stop using remote
memory, and commit transactions to disk as
usual. If the network crashes, the local work-
station will stop using remote memory and will
commit all transactions to disk. In all circum-
stances, the system can recover within a few
seconds, in the worst case. The reason is that
at all times there exist two copies of the log
data: if one copy is lost due to a crash, the sys-
tem can easily switch to the other copy quickly.

2.4 Implementation

We have made the described changes to RVM
and EXODUS. We call the resulting systems

RRVM (Remote RVM) and REX (Remote EX-
ODUS). ?

Our systems have been completely imple-
mented in user space, without any operating
system modifications. For each transaction
manager, we start a user-level remote memory
server on a remote workstation. The purpose
of this server is to accept synchronous write
requests from the transaction manager and ac-
knowledge them. In the case of a transaction
manager crash, the remote memory server is
responsible for providing the contents of the
Log file it keeps in its main memory. At all
times, data written by commitied transactions
either reside safely on the disk, or are stored in
the main memory of at least two workstations
(the local transaction manager, and the remote
memory server).

3 Experimental Evaluation

In this section we report the performance ad-
vantages of our systems RRVM and REX com-
pared to the original RVM and EXODUS sys-
tems.

3.1 RVM performance
3.1.1 Experimental Environment

Our experimental environment consists of a
network of eight DEC Alpha 2000 worksta-
tions with Digital UNIX running at 233 MHz,
equipped with 128 MBytes of main memory
each and a 6GB local disk. The workstations
are connected through an Ethernet, an FDDI,
and a Memory Channel Interconnection Net-
work [11].

In our experiments we demonstrated the
performance of RRVM and compared it with
its predecessor RVM [10]. We have experi-
mented with four system configurations:

e RVM: Is the unmodified RVM system.

e RRVM-ETHERNET: Is RRVM running on top
of Ethernet.

20ur modification were rather small. Out of about
30,000 lines of RVM code, we modified (or added) less
than 600 lines (2%). Out of 200,000 lines of EXODUS
code, we modified (or added) less than 700 lines (a 0.3%
change).
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Figure 1: Performance of RVM as a function of
the I/O block size. Data file = 100 Mbytes, Log
File = 8 Mbytes.

e RRVM-FDDI: Is RRVM running on top of
FDDI.

e RRVM-MC: This is RRVM running on top
of the Memory Channel Network.

3.2 I/0 Block Size

In our first set of experiments we would like to
find out how many transactions per second our
RRVM system is able to sustain, compared to
the number of transactions per second the un-
modified RVM system is able to sustain. For
this reason we constructed the following ex-
periment: We create a file 100 Mbytes long.
Then, we start a sequence of 10000 transac-
tions. Each transaction writes a segment of the
file and commits. Transactions modify the file
in sequential manner. The size of the file seg-
ment modified by each transaction (also called
I/0 block size) is the parameter of our experi-
ments.

Figure 1 plots the number of transactions
per second, for the original version of RVM, and
our RRVM-MC, RRVM-FDDI, and RRVM-ETHERNET.
We see that the unmodified RVM system is
able to sustain up to at most 40 transac-
tions per second for small transactions, which
agrees with previously reported results [10].
However, the performance of RRVM-ETHERNET,
RRVM-FDDI and RRVM-MC manages to sustain
close to 3,000 transactions per second: almost
two orders of magnitude improvement over un-
modified RVM. As the I/O block size increases,
badwidth and not latency is the dominating
factor, so the performance of all systems con-
verges.
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Figure 2: Performance of RVM as a function of
the size of the log. Data File = 100 Mbytes.

3.3 The Size of the Log

In this section we set out to answer how the
size of the log file kept by RRVM influences
the performance of the system. The log file is
synchronously written by transactions during
their commit phase. When the log file fills be-
yond a threshold, RVM reads it, truncates it and
updates the data file.

To measure the performance effect of the log
file size, we constructed the same experiment
as previously, but instead of varying the I/O
block size, we vary the log size and we keep
the I/O block size constant.

The results of our experiment (number of
transactions per second) as a function the log
size for I/O block size of 128 bytes are plot-
ted in Figure 2. In all cases the performance
of both RRVM systems is significantly better
than the performance of the unmodified RVM
system.

3.4 Random Accesses

Next, we set out to explore the performance
of our transaction-based system in a random
accessed environment. Thus, we repeated the
previous experiment, but instead of accessing
the data file sequentially, the transactions ac-
cess the data file completely randomly. The
performance of our systems for log size 8
Mbytes is shown in Figure 3.

We see that all RRVM-MC, RRVM-FDDI, and
RRVM-ETHERNET perform much better than
RVM, as expected. However, the num-
ber of transactions per second sustained by
RRVM-FDDI and RRVM-ETHERNET is a little less
than 200 (for small transactions), and around
2,500 for RRVM-MC: a reduction in the perfor-
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Figure 3: Performance of RVM as a function of
the I/O block size - random accesses. Data File =
100 Mbytes, Log File = 8 Mbytes.

mance observed so far. There are two reasons
for this performance reduction: increased num-
ber of page faults, and disk I/O operations.
When a file is accessed by 10000 transactions,
and each transaction accesses 32 bytes of data,
a total of 320 Kbytes of data are accessed. If
these transactions access sequential data, they
will access in total 320/8 = 40 pages. If, how-
ever, the transactions access data randomly,
they will access many more pages. Thus, both
the number of page faults, and the number of
disk I/O operations are significantly lower in
the case of sequential transaction accesses, as
compared to random transaction accesses.

3.5 Network and Server Load

Our next set of experiments explore how well
our system performs under a loaded network
and under a loaded server.

To answer the first question we constructed
the following experiment. We create several in-
stances of RRVM clients. For each client, there
is also an RRVM server. All clients and all
servers run on different workstations. All work-
stations are connected to the same interconnec-
tion network. We progressively increase the
number of client/server pairs participating in
the experiment and measure the transactions
per second each RRVM system (client/server
pair) is able to sustain. Each RRVM system
executes the experiment described in Section
3.2.

In our experiments the log size was set to
8 Mbytes and the I/O block size to 32 Bytes.
Figure 4 presents the number of transactions
per second for each RRVM system (client-
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Figure 4: Network Load: Performance of RVM as
a function of the network load - sequential accesses
- all servers and all clients run on different work-
stations - I/O block size = 32 bytes.
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function of the number of the participating clients
- sequential accesses - all servers run on a single
workstation - I/O block size = 32 bytes.

server pair) as a function of the number of
workstations participating in the experiment.
First of all, we see that the performance of the
unmodified RVM system stays the same inde-
pendent of how many workstations participate
in the experiment. This is as expected, since
RVM only accesses its local disk, and does not
put any network load. We also notice that the
performance of RRVM-ETHERNET decreases with
the number of workstations whereas the per-
formance of RRVM-FDDI is practically constant.
This is expected since FDDI has ten times the
throughput of Ethernet.

The next experiment puts pressure not only
on the network, but on the single server work-
station as well. It is the same as the previous



Accounts RVM RRVM | RRVM
(x1024) | (Unmodified) | ETHER | FDDI
TPCA-A: Sequential Accesses
32 44.24 203 262
128 44.41 201 261
512 44.35 199 260
1024 31.08 193 250
TPCA-A: Random Accesses
32 43.2 182 230
128 40.4 144 171
512 41.6 89 96
1024 21.6 53 67
TPCA-A: Localized Accesses
32 43.4 186 239
128 41.8 159 197
512 41.9 127 154
1024 28.7 84 93

Figure 6: Transactions per second sustained by
the TPCA-A Benchmark.

one with the difference that all RRVM servers
are running on a single workstation. The per-
formance of RRVM as a function of the number
of participating clients is shown in Figure 5, for
I/0 block size of 32 bytes. As expected the per-
formance of RRVM decreases as the number of
participating workstations increases, but it is
still significantly better than that of RVM.

3.6 TPC-A

To place our RRVM system in the right
perspective with previously published perfor-
mance results, we ran the widely used TPC-A
database benchmark (which was also used to
evaluate the original system [10]) , on top of
it.

Our results, summarized in Figure 6, show
the number of transactions per second that
each system can achieve. The experiments
present sequential, random and localized ac-
cesses. RRVM-ETHERNET and RRVM-FDDI out-
perform the original RVM system by an order
of magnitude in almost every case.

3.7 EXODUS
3.7.1 Experimental Environment

Our experimental environment for EXODUS
consists of a network of Supersparc-20 worksta-
tions. The workstations are connected through
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Figure 7: Performance of OO7 running on top of
EXODUS.

a 100 Mbps FDDI, and a 10Mbps Ethernet in-
terconnection network.

3.7.2 007

On top of EXODUS we ran a common database
benchmark called OO7 [12]. We used three ver-
sions of EXODUS:

e EXODUS: Is the unmodified EXODUS sys-
tem [9].

e REX-FDDI: Is our modified EXODUS
(REX) system running on top of FDDI.

e REX-ETHERNET: Is REX running on top of
Ethernet.

Figure 7 plots the completion time of var-
ious parts of the OO7 benchmark on top of
EXODUS. We see that in all cases REX has
superior performance compared to the unmod-
ified EXODUS systems. Actually, REX-FDDI
is sometimes more than 3 times faster than
EXODUS (see for example tbdo, and t6). Al-
though we do not see the impressive perfor-
mance difference we demonstrated in the pre-
vious section (since OO7 stresses all aspects
of the system, not just transaction commit),
our measurements suggest that REX results in
noticeable performance improvement over the
unmodified EXODUS storage manager.



4 Related Work

Using Remote Main Memory to improve the
performance and reliability of I/O in a NOW
has been previously explored in the literature
in file systems [3, 4, 5], pagers [13, 14, 6], even
Distributed Shared Memory systems [15].

The closest to our research is the Harp file
system [5]. Harp uses replicated file servers to
tolerate single server failure. Each file server is
equipped with a UPS to tolerate power failures,
and speedup synchronous write operations. Al-
though we use similar techniques, there are
several differences between our work and Harp.

Data Granularity: Our work is focused on
transaction-based systems that make a lot of
small read and write operations. Harp oper-
ates on file blocks and is able to sustain several
tens of such operations per second, according
to the published results. This is an order of
magnitude less than RRVM for small transac-
tions.

Open User Level Implementation: RRVM is
linked with user applications as a library, out-
side the operating system kernel. Thus, it is
portable and easily modifiable.

The Rio file cache has been designed to sur-
vive operating system crashes by not destroy-
ing its main memory contents in case of a
crash [16]. Systems like Rio may simplify the
implementation of our approach significantly.
However it requires operating system kernel
changes not necessary in our approach.

Network file systems like Sprite [17] and xfs
[3, 18], can also be used to store replicated
data and build a reliable network main mem-
ory. However, our approach, would still re-
sult in better performance due to the mini-
mum (block) size transfers that all file systems
are forced to have. Moreover, our approach
would result in wider portability since, being
user-level, it can run on top of any operating
system.

Franklin et al. have proposed the use of
remote main memory in a NOW as a large
database cache [7]. Feeley et al. proposed
a generalized memory management system,
where the collective main memory of all work-
stations in a cluster is handled by the oper-
ating system [19]. We believe that our ap-
proach complements this work in the sense that
both [7] and [19] improve the performance of
read accesses (by providing large caches), while

our approach improves the performance of syn-
chronous write accesses.

Papathanasiou and Markatos [20] describe a
system to improve performance of main mem-
ory databases on top of Networks of Worksta-
tions. The approach described in this paper is
applicable to all databases, whether they fit in
main memory or not.

Griffioen et al. proposed the DERBY stor-
age manager, that exploits remote memory and
UPSs to reliably store a transaction’s data [8].
They simulate the performance of their system
and provide encouraging results. Although our
approach is related to the DERBY system,
there are significant differences: (i) we provide
a full-fledged implementation of our approach
on two independent transaction-based systems,
(ii) we demonstrate the performance improve-
ments of our system using the same bench-
marks that demonstrated the performance of
the original RVM and EXODUS systems, (iii)
DERBY places the burden of data reliability
to the clients of the database, while we place
it on the transaction managers who have bet-
ter knowledge of how to manage the various
resources (memory, disks) in the system.

To speed up database and file system write
performance, several researchers have proposed
to use special hardware. For example, Wu and
Zwaenepoel have designed and simulated eNVy
[21], and Baker et al. have proposed the use
of battery-backed SRAM [22]. Our approach
has the advantage that is does not need any
specialized hardware

5 Conclusions

In this paper we described how to use sev-
eral workstations in a NOW to provide fast
and reliable access to stable storage. Our ap-
proach consists of using network main mem-
ory to avoid synchronous disk I/O as much as
possible. By using data replication and redun-
dant power supplies we increase the reliability
of remote main memory, and use it as a short-
term non-volatile storage medium. Based
on our implementation experience and perfor-
mance results we conclude:

Our approach can be easily incorporated in
existing database systems. It only took a few
weeks of programming to implemented our
approach on top of two different transaction



based systems.

RRVM provides significant performance im-
provements over RVM, even on top of Ether-
net interconnection networks. RRVM on top of
Ethernet is able to sustain 70-500 transactions
per second compared to 30— 50 of the unmod-
ified RVM.

RRVM s able to sustain several clients on
top of the same interconnection network. Our
results suggest that even when four RRVM
systems operate on top of the same Ethernet
network, their performance is 3-4 times better
than the performance of RVM.

The performance benefits of our approach
will increase with time. Since the latency
and the bandwidth of interconnection networks
quickly improve with time, we expect the per-
formance benefits of RRVM to improve at sim-
ilar rates.

Based on our experiments, we believe that
remote memory is a viable alternative to syn-
chronous disk I/O and should be considered
seriously for implementation in databases and
transaction-based systems in general.
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