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Abstract

Although transactions have been a valuable abstrac-
tion of atomicity, persistency, and recoverability, they
have mnot been widely used in programming environ-
ments today, mostly because of their high overheads
that have been driven by the low performance of mag-
netic disks. A major challenge in transaction-based
systems is to remove the magnetic disk from the crit-
ical path of transaction management.

In this paper we present PERSEAS, a transaction
library for main memory databases that decouples the
performance of transactions from the magnetic disk
speed. Qur system is based on a layer of reliable main
memory that provides fast and recoverable storage of
data. We have implemented our system as a user-level
library on top of the Windows NT operating system in
a network of workstations connected with the SCI in-
terconnection network. Our experimental results sug-
gest that PERSEAS achieves performance that is or-
ders of magnitude better than traditional recoverable
main memory systems.

1 Introduction

Transactions have been valued for their atomicity,
persistency, and recoverability properties, which are
useful to several systems, ranging from CAD environ-
ments, to file systems and databases. Unfortunately,
adding transaction support to an existing data repos-
itory has been traditionally expensive, mostly due to
the fact that the performance of transaction-based sys-
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tems is usually limited by the performance of the mag-
netic disks that are used to hold the data repository.
A major challenge in transaction-based systems is to
decouple the performance of transaction management
from the magnetic disk speed.

In this paper we present PERSEAS,! a transaction
library for main memory databases that decouples the
performance of transactions from the magnetic disk
speed. Our system is based on a layer of reliable main
memory that provides fast and recoverable storage of
data. This reliable memory layer is achieved by mir-
roring data into more than one main memories of (at
least two) different PCs (or workstations), connected
to different power supplies. Efficient data mirroring
is achieved by copying data from the main memory
of one PC to the main memory of another PC over a
high-speed interconnection network.

On top of this reliable main memory layer
PERSEAS builds an efficient transaction library.
The existence of this reliable memory layer allows
PERSEAS to implement fast transactions that do not
need magnetic disks as a reliable storage medium. If
a workstation crashes, all its main memory data can
still be recovered, since they have been mirrored in the
main memory of another workstation. Data can be
completely lost only if all mirror workstations crash
(during the same time interval). However, such an

1 Perseas was one of the heroes of the ancient Greek mythol-
ogy. Among the several achievements he accomplished the
most important one was the elimination of Medusa, a woman-
like beast with snakes instead of hair and the ability to turn
into stone everyone, who looked at her gaze. Perseas man-
aged to outcome her by using his shield as a mirror. When
Medusa tried to petrify him, her gaze fell upon her reflection
on Perseas’ shield, while Perseas got the chance to approach
her and cut her head. In the same way Perseas killed Medusa,
the PERSEAS transactional library uses mirroring to support
reliable and atomic transactions while at the same time elimi-
nating its own opponent, the overhead imposed to transactions
due to synchronous accesses to stable storage (usually magnetic
disks).



event (unless scheduled by the system administrators,
in which case the database can gracefully shut down)
is unlikely to happen. The most likely reasons that
cause a workstation to crash involve (a) power out-
age, (b) hardware error, and (c) software error. Power
outages are unlikely to lead to data loss, since mir-
ror workstations are connected to different power sup-
plies (e.g. UPS’s), which are unlikely to malfunction
concurrently. Software and hardware errors (in differ-
ent PCs) usually occur independent from each other,
and thus they can not lead to data loss. On the
other hand, it is true that different PCs may block
(i.e. hang) together at the same time if they access
a common crashed source (e.g. a crashed file server).
Although such correlated disruptions in service may
happen, they do not lead to workstation crashes and
correspondingly to data loss, that is, they may affect
the performance, but not the correctness of the mirror-
ing mechanism. Thus, we believe that our approach
leads to a level of reliable memory on top of which
transactions can be efficiently implemented.

The rest of the paper is structured as follows: Sec-
tion 2 surveys previous work. Sections 3 and 4 present
the design and implementation of our system. Section
5 presents our experimental results, and section 6 con-
cludes the paper.

2 Related Work

Using Remote Main Memory to improve the perfor-
mance and reliability of I/O in a Network of Worksta-
tions (NOW) has been previously explored in the lit-
erature. For example, several file systems [2, 7, 17, 23]
use the collective main memory of several clients and
servers as a large file system cache. Paging sys-
tems may also use remote main memory in a work-
station cluster to improve application performance
[13, 19, 25]. Even Distributed Shared Memory systems
can exploit the remote main memory in a NOW [8, 12]
for increased performance and reliability. For exam-
ple, Feeley et. al describe a log-based coherent system
that integrates coherency support with recoverability
of persistent data [12]. Their objective is to allow sev-
eral clients share a persistent storage through network
accesses. Our approach is significantly simpler than
[12], in that we do not provide recoverable support
for shared-memory applications, but for traditional se-
quential applications. The simplicity in our approach
leads to significant performance improvements. For
example, [12] reports at most a factor of 9 improve-
ment over unmodified traditional recoverable systems
(i.e. RVM), while our performance results suggest that
PERSEAS results in four orders of magnitude perfor-
mance improvement compared to unmodified RVM.

Persistent storage systems provide a layer of vir-
tual memory (navigated through pointers), which may
outlive the process which accesses the persistent store
[5, 27]. Our approach complements persistent stores

in that it provides a high-speed front-end transaction
library which can be used in conjunction with the per-
sistent store.

The Harp file system uses replicated file servers to
tolerate single server failures [23] and speedups write
operations as follows: each file server is equipped with
a UPS to tolerate power failures, and disk accesses
are removed from the critical path, by being replaced
with communication between the primary and backup
servers. Although PERSEAS and Harp use similar
approaches (redundant power supplies and informa-
tion replication) to survive both hardware and soft-
ware failures, there are several differences, the most
important being that our work is concerned mostly
with user-level transaction-based systems that make
lots of small read and write operations. In contrast,
Harp runs at kernel level and is intended to be used
as a file service.

The Rio file system changes the operating system
to avoid destroying its main memory contents in case
of a crash [6]. Thus, if a workstation is equipped with
a UPS and the Rio file system, it can survive all fail-
ures: power failures do not happen (due to the UPS),
and software failures do not destroy the contents of
the main memory. However, even Rio may lead to
data loss in case of UPS malfunction. In these cases,
our approach that keeps two copies of sensitive data
in two workstations connected to two different power
supplies, will be able to avoid data loss. Vista [24] is
a recoverable memory library being implemented on
top of Rio. Although Vista achieves impressive per-
formance, it can provide recoverability only if run on
top of Rio, which, by being a file system is not avail-
able in commercial operating systems. On the con-
trary, our approach provides performance comparable
(although somewhat inferior) to Vista, while at the
same time, it can be used on top of any operating sys-
tem. In our current implementation, PERSEAS runs
on top of the unmodified commercial Windows NT op-
erating system. In case of long crashes (e.g. due to
hardware malfunction) data, although safe in Vista’s
cache, are not accessible, until the crashed machine is
up and running again. In PERSEAS, even during long
crashes, data are always available, since data exist in
the main memories of (at least) two different work-
stations: if one of them crashes, the data can still be
accessed through the other workstation.

Toanidis et al. have proposed the use of remote
memory to speed up synchronous write operations
used in the Write Ahead Log (WAL) protocol [20].
In their approach, they replicate the Log file in two
main memories and substitute synchronous disk write
operations with synchronous remote memory write op-
erations and asynchronous disk write operations. Al-
though their approach is related to ours, there still ex-
ist significant differences. In case of heavy load, write
buffers will become full and the asynchronous write



operations of [20] will become synchronous, thereby
delaying transaction completion. Moreover, the trans-
action commit performance of [20] is limited by disk
throughput (all transactions write their data to disk
even if they do so asynchronously). In PERSEAS,
transaction performance is limited only by network
performance, and not magnetic disk speed. Current
architecture trends suggest that disk latency (through-
put) improves 10% (20%) per year, while intercon-
nection network latency (throughput) improves at the
much higher rates of 20% (45%) per year [9]. Thus,
approaches that get rid of magnetic disk accesses (like
PERSEAS ) provide increasingly better performance.

Network file systems like Sprite [28] and xfs [2, 10],
can also be used to store replicated data and build
a reliable network main memory. However, our ap-
proach, would still result in better performance due to
the minimum (block) size transfers that all file systems
are forced to have. Moreover, our approach would re-
sult in wider portability since, being user-level, it can
run on top of any operating system, while several file
systems, are implemented inside the operating system
kernel.

Franklin, Carey, and Livny have proposed the use
of remote main memory in a NOW as a large database
cache [14]. They validate their approach using simu-
lation, and report very encouraging results. Griffioen
et. al proposed the DERBY storage manager, that
exploits remote memory and UPSs to reliably store
a transaction’s data [16]. They simulate the perfor-
mance of their system and provide encouraging results.

Feeley et. al. proposed a generalized memory man-
agement system, where the collective main memory of
all workstations in a cluster is handled by the operat-
ing system [11]. Their experiments suggest that gen-
eralized memory management results in performance
improvements. For example, OO7 on top of their sys-
tem runs up to 2.5 times faster, than it used to run
on top of a standard UNIX system. We believe that
our approach complements this work in the sense that
both [14] and [11] improve the performance of read
accesses (by providing large caches), while our ap-
proach improves the performance of write-dominated
transaction-based systems.

To speed up database and file system write per-
formance, several researchers have proposed to use
special hardware. For example, Wu and Zwaenepoel
have designed and simulated eNVy [32], a large non-
volatile main memory storage system built primarily
with FLASH memory. Their simulation results sug-
gest that a 2 Gbyte eNVy system can support I/O
rates corresponding to 30,000 transactions per sec-
ond. To avoid frequent writes to FLASH memory,
eNVy uses about 24 Mbytes of battery-backed SRAM
per Gbyte of FLASH memory. Although the cost of
eNVy is comparable to the cost of a DRAM system
of the same size, eNVy realizes its cost effectiveness

only for very large configurations: for hundreds of
Mbytes. Furthermore, although the chip cost of eNVy
may be low, its market price will probably be much
higher, unless it is massively produced and sold. Thus,
eNVy would be used only for expensive and high-
performance database servers, and not for ordinary
workstations. As another example, Baker et al. have
proposed the use of battery-backed SRAM to improve
file system performance [3]. Through trace-driven sim-
ulation they have shown that even a small amount of
SRAM reduces disk accesses between 20% and 90%
even for write-optimized file systems, like log-based
file systems.

Although PERSEAS may resemble existing concur-
rency control mechanisms (like the Optimistic Concur-
rency Control [22]), PERSEAS does not provide (or
favor) any particular Concurrency Control algorithm.
Concurrency Control can be easily implemented on
top of PERSEAS .

Summarizing, PERSEAS is a user-level, easily
portable transactional library, implemented on top of
a user-level reliable main memory, which can result in
good transaction performance. Previous approaches
have been mostly based on providing fast recoverabil-
ity by modifying operating system internals, an ap-
proach that significantly limits their widespread use.

3 Design

The work presented in this paper may be separated
into two different layers: a level of reliable (or recover-
able) network RAM and PERSEAS, a user-level trans-
actional library.

In a network of workstations, significant portions of
main memory remain idle for long periods of time. In
this project, these segments of “free” physical memory
are used as a form of reliable memory. Sensitive data
are stored in the main memory of more than one work-
stations, (mirroring), and may be recovered in case of
workstation failures (Figure 1). 2

Transactional libraries provide the characteristics
of atomicity and persistence to transactions, and can
be used to support database systems, persistent lan-
guages and file systems. To implement reliable trans-
actions, most database systems use a (write ahead)
log file, which must reside in stable storage (usually
magnetic disks). Accesses to the log file are usually
in the critical path of the transaction processing and
need synchronous input/output. Some examples of

2 Although replicating the database in more than one main
memories may seem expensive, it is not. Since modern inter-
connection networks (like ATM) have throughput comparable to
(and usually higher than) magnetic disks, replicating a database
over a high-speed network is no more expensive than loading the
database from the disk to main memory. Moreover, these two
operations (loading from the disk and replicating over the net-
work) may proceed in parallel, effectively “hiding” the latency
of database replication.
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Figure 1: Reliable Network RAM & Mirroring:
The unexploited memory of idle workstations is used
to create a layer of reliable network RAM. Sensitive
data, like those of a Main Memory Database System
(MMDB), can be mirrored in remote memory to in-
crease their reliability.

systems that use the Write-Ahead Logging Protocols
are RVM [30] and ARIES [26].

As shown in Figure 2, the Write-Ahead Logging
Protocol involves three copy operations. When a
transaction begins the original data of the portion of
the database to be updated are copied temporarily to
a memory region called undo log. The undo log is used
to undo quickly any modifications in the database in
case the transaction aborts. When the transaction has
updated the database, the modifications propagate to
a file, which resides in stable storage, the write-ahead
log file or redo file. At this point the transaction com-
mits and the space occupied by the undo log is freed.
When several transactions have committed, the up-
dates that have been logged in the redo file are copied
to the original database and space from the redo log
is reclaimed.

PERSEAS eliminates the redo log file, used in the
Write-Ahead Logging Protocol, as well as synchronous
disk accesses by using network memory as reliable
memory. A reliable network memory layer may be
developed over a high-throughput, low-latency net-
work interface, like Myrinet [4], U-net [31], Memory
Channel [15], SCI [18], and ATM. Some Network in-
terfaces have transparent hardware support for mir-
roring, which makes PERSEAS easier to implement.
Such systems include PRAM [29], Telegraphos [21],
and SHRIMP [1].

PERSEAS is based on three main functions:

e remote malloc: The remote malloc operation
can be used to map physical memory from a re-
mote node to the calling process’s virtual address
space.

e remote free: Remote free is used to free an oc-
cupied remote main memory segment.

main memory
database 1) D
undo log

)
©)
——

database redo log

magnetic disks

Figure 2: The Write-ahead logging Protocol:

Three copies are necessary for an update operation.
Firstly, the undo log is created with a memory copy
operation. Secondly, the modified data propagate to
the redo log. Finally, when several transactions have
committed, data from the redo log propagate to the
database in stable storage.

e remote memory copy: The remote memory
copy operation is similar to a memcpy or bcopy
operation with the exception that it copies data
between local and remote main memory seg-
ments.

The operations described above create the layer of
reliable network RAM, which is used by PERSEAS to
support, atomic and recoverable transactions without
the need for a redo log file.

PERSEAS offers a simple interface through which
applications can make persistent stores and atomic up-
dates. PERSEAS’ interface consists of the following
procedures:

¢ PERSEAS init

e PERSEAS malloc

¢ PERSEAS _ init_remote_db

e PERSEAS begin_transaction

e PERSEAS set_range

¢ PERSEAS_commit_transaction
¢ PERSEAS _abort_transaction

After calling PERSEAS _init, which initializes the
PERSEAS transactional library, the application can
call PERSEAS _malloc in order to get local memory
space for the database records. In addition to the
above, PERSEAS _malloc prepares the remote mem-
ory segments, in which the database records will be
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Figure 3: Atomic & Reliable Transactions with
PERSEAS : Only three memory copies are nec-
essary for a transaction. Firstly, the before image of
the database is copied in the undo log in local mem-
ory (Step 1). Data in the local undo log propagate
to the remote undo log with a remote write operation
(Step 2). Finally, the updated portion of the local
database is copied to the equivalent portion in the
remote database (Step 3). All accesses to magnetic
disks, have been eliminated.

mirrored. As soon as the local records have been
set to their initial values, the application has to
call PERSEAS _init_-remote_db to initialize the remote
database segments. At this point the database has
been completely mirrored to network DRAM.

Applications start a transaction by calling
PERSEAS _begin_transaction. Before making any up-
dates, the application should notify the transactional
library of the portion (or portions) of the database
that is going to be updated. This is done through one
(or more) calls to PERSEAS _set_range. This call has
as a result the logging of the segment’s original image
to an undo log. To reassure the correct recovery of the
database in case of a system crash the undo log is also
copied to the remote node’s memory. The local undo
log is used to undo quickly any modifications to the
database records in case the transaction aborts. The
remote undo log might be necessary during recovery, if
some modifications of the database propagated to the
remote node before the local system’s failure. After
this step, the application can update any portions of
the database, for which PERSEAS_set_range has been
called (Figure 3).

After the completion of the update operation,
the modified portions of the database have to be
copied to the equivalent portions in the memory of
the remote nodes. This is done through a call to
PERSEAS _commit_transaction. With this call the
undo logs are discarded and the transaction commits.
In case the transaction aborts, the application may use
PERSEAS _abort_transaction to undo any modifica-
tions to the database. This function performs just
a local memory copy operation.

In case of failure of the primary (local) node,
PERSEAS can use the data found in the network
memory to recover the database. If the modified data
had started propagating to the remote (secondary)
node before the local system’s failure, then the origi-
nal data, which can be found in the remote undo logs
are copied back to the remote database, in order to
discard any illegal updates. With this memory copy
operation the remote database is brought in a legal
state and can be used to recover the local database. In
any other case, the remote database segments are legal
and the local database is recovered with just one (for
each database record) remote-to-local memory copy
operation.

Another important advantage of PERSEAS is the
availability of data. Data in network memory are al-
ways available and accessible by every node. In any
case of single node failures, the database may be re-
constructed quickly in any workstation of the network
and normal operation of the database system can be
restarted immediately.

4 Implementation

Our current version of PERSEAS is implemented
on top of two PCs with 133MHz Pentium processors
and 96MB of main memory, running Windows NT 4.0.
The network interface used is a PCI-SCI (Scalable Co-
herent Interface) Cluster Adapter Card manufactured
by Dolphin and configured in ring topology. The PCI-
SCI card is a high-throughput, low-latency network
interface, which can support remote write and remote
read operations.

The end-to-end one-way latency for one 4-byte re-
mote store operation is 2.6 microseconds. Write opera-
tions to contiguous remote memory addresses through
the PCI-SCI network interface can give throughput
similar to the local memory subsystem. To achieve
this kind of performance, the PCI-SCI card contains
16 internal 64-byte buffers. Half of them are used for
write operations, while the other half is used for read
operations. The PCI-SCI card divides the physical
memory of a node into 64-byte chunks. Every 64-byte
memory region is aligned on a 64-byte boundary. Each
chunk is mapped to a 64-byte buffer in the PCI-SCI
chip. The six least-significant bits of the address define
its offset in the buffer, while bits 6-8 identify the buffer
which relates to the specific address.Stores to con-
tiguous memory addresses are gathered in the buffers
(store gathering), and each address stream (buffer) can
be transmitted or gather data independently of each

3In case of wery long power outages, the UPSs will proba-
bly not have enough power to support the main memories of
all workstations. In such cases we expect that the systems in
general, and the databases in particular will be gracefully shut
down, which implies that the sensitive main memory data will
be safely transferred to magnetic disks, until the power is re-
stored again.



other (buffer streaming). In this way, the overhead of
sending an SCI packet through the network is amor-
tized over many store operations. Full SCI buffers are
flushed as whole 64-byte SCI packets, while half-filled
buffers are transmitted as a set of 16-byte packets. In
addition to the above, store operations which involve
the last word of a buffer give better latency results,
because of the way the buffers of the PCI-SCI chip
are flushed.

As mentioned in the previous section, the reliable
network memory layer can be used through three ma-
jor operations: remote malloc, remote free and remote
memory copy. To implement these on top of PCI-SCI
a client-server model is used. The server process runs
in the remote node and is responsible for accepting re-
quests (remote malloc and free) and manipulating its
main memory (exporting physical memory segments
and freeing them when necessary). The client pro-
cess sends requests to the server process and in the
case of malloc requests blocks until the request is ser-
viced. As fas as the remote memory copy operation is
concerned, the memcpy function can be used, since re-
mote memory is mapped to the virtual address space
of the client process. However, in our current imple-
mentation of PERSEAS, we have used a more compli-
cated sci-memcpy function with several optimizations,
that take advantage of the PCI-SCI card’s behavior,
described in the previous paragraph.

The PERSEAS communicates with the reliable net-
work memory layer through the following basic func-
tions:

e sci_get_new_segment
e sci_free_segment

e sci_memcpy

e sci_connect_segment

The sci_get_new_segment, sci_free_segment, and
sciimemcpy functions implement the remote mal-
loc, free and memory copy operations, while
sci_connect_segment is used by PERSEAS to connect
to already created segments. The last function is nec-
essary after a system crash, in which case the remote
node has already exported the requested segments,
but the local node has lost the pointers, through which
it can access them. Specifically, sci_connect_segment
maps to the calling application’s virtual address space
the requested remote memory segment.

PERSEAS _malloc calls sci_get_new_segment to get
memory space from a remote node. In this way, for
every database segment created in the local memory
an equivalent segment is created in remote memory.
When the local database records have been initial-
ized, the application calls PERSEAS init_remote_db
to copy them to the remote node. This call results in a
sci_memcpy call. At this point, the whole database has

been mirrored to the remote node, and the applica-
tion can start executing transactions. The other basic
PERSEAS functions (PERSEAS _begin_transaction,
PERSEAS _commit_transaction, PERSEAS _set_range
and, PERSEAS _abort_transaction) perform only local
memory copy operations and remote write operations,
using the sci_memcpy or simple store commands, ac-
cording to the occasion.

During recovery the primary node has to reconnect
to the portions of memory where PERSEAS meta-
data are kept, as well as to the remote database
segments. Since the remote segments already ex-
ist, the sci_malloc function cannot be used. Instead,
sci_connect_segment is called every time a remote seg-
ment has to be remapped to the local virtual address
space. Firstly, the segments containing the PERSEAS
metadata are reconnected. From these, the informa-
tion, that is necessary to find and reconnect to the
remote database records, is retrieved. After this point
all the information about the database status becomes
available and recovery proceeds as described in the
previous section.

5 Experimental Results

To evaluate the performance of our system and
compare it to previous systems, we conducted a se-
ries of performance measurements using a number of
benchmarks. We draw on the benchmarks used by
Lowell and Chen [24] to measure the performance of
RVM [30], and Vista [24]. The benchmarks used in-
clude:

e Synthetic: a benchmark that measures the trans-
action overhead as a function of the transaction
size (i.e. the size of the data that the transaction
modifies). Each transaction modifies a random
location of the database. We vary the amount of
data changed by each transaction from 4 bytes to
1 Mbyte.

o debit-credit: a processes banking transactions
very similar to the TPC-B.

e order-entry: a benchmark that follows TPC-C
and models the activities of a wholesale supplier.

5.1 Performance Results

Figure 4 plots the transaction latency as a function
of the transaction size. We see that for very small
transactions, the latency that PERSEAS imposes is
less than 14 us, which implies that our system is able
to complete more than 70,000 (short synthetic) trans-
actions per second. Previously reported results for
main memory databases [30], suggest that the original
implementation of the RVM main memory database
can sustain at most 50 (short) transactions per second
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Figure 4: Transaction Overhead of PERSEAS :
Very small transactions can be completed in as lit-
tle as 14 microseconds, resulting in a throughput of
more than 70,000 transactions per second. Even large
transactions (1 MByte) can be completed in less than
a tenth of a second.

Benchmark | Transactions per second ||
debit-credit 23,223
order-entry 8,432

Table 1: Performance of PERSEAS for benchmarks
debit-credit and order-entry.

- a 3-orders of magnitude performance difference. *

When RVM is implemented on top of the Rio file cache
it can sustain about 1,000 (short) transactions per sec-
ond [24]. Comparing to Rio-RVM, our implementation
achieves two orders of magnitude better performance.
The Vista main memory database, which is the fastest
main memory database known to us, is able to achieve
very low latency for small transactions (in the area of
5 us) [24].

Table 1 shows the performance of PERSEAS when
running the debit-credit and order-entry benchmarks.
We have used various-sized databases, and in all cases
the performance of PERSEAS was almost constant,
as long as the database was smaller than the main
memory size.

We see that PERSEAS manages to execute more
than 23,000 transactions per second for debit-credit.
Published performance results (for the same bench-
mark) report that RVM barely achieves 100 transac-

4To increase reliability (in case of fires, floods, etc.), the mir-
ror data of PERSEAS could be stored on a remote Internet ma-
chine (instead of a local machine in the same cluster). However,
this would increase transaction cost from tens of microseconds
to tens of milliseconds.

tions per second, RVM with group commit achieves
less than 1,000 transactions per second, RVM-Rio
achieves little more than 1,000 transactions per sec-
ond, and Vista achieves close to 50,000 transactions
per second. For order-entry, PERSEAS manages to
execute about 8,500 transactions per second. Previ-
ously reported performance results suggest that RVM
achieves less than 90 transactions per second, RVM
with group commit achieves less than 1,000 transac-
tions per second, RVM-Rio achieves little more than
900 transactions per second, and Vista achieves a bit
more than 10,000 transactions per second.

Summarizing, we see that PERSEAS clearly out-
performs traditional recoverable virtual memory sys-
tems (even when they use group commit to increase
their throughput) by 1-2 orders of magnitude. More-
over, PERSEAS performs very close to Vista (which
is the most efficient sequential recoverable main mem-
ory system today), while it retains its independence
from operating system internals. On the contrary, the
performance of Vista depends on extensive operating
system kernel modifications, as manifested by the Rio
file cache. For this reason, PERSEAS runs on top of
a widely used unmodified commercial operating sys-
tem, while Vista must run on top of a modified Digital
UNIX operating system. We believe that PERSEAS
composes the best features from RVM and Vista: the
great performance of Vista, with the operating system
independence of RVM.

6 Conclusions

In this paper we describe how to construct a layer of
fast and reliable main memory in a Network of Work-
stations, and how to build a fast transaction library
on top of it. We implemented our approach as a user-
level library on top of a cluster of personal computers
running Windows NT.

Based on our experiences and performance results
we conclude:

e PERSEAS decouples transaction performance
from magnetic disk speed. The performance of
traditional transaction systems is tied to disk la-
tency, which is rather large and improves slowly
with time. Sophisticated optimization methods
(like group commit, stripping, etc) improve per-
formance by decoupling transaction performance
from disk latency and couple it to disk through-
put. On the other hand, PERSEAS decou-
ples transaction performance from magnetic disk
speed, because it does not use disks as a short-
term reliable storage medium. Instead, it uses re-
dundant power supplies, mirroring and fast main
memories to provide a layer of recoverable mem-
ory, which in turn can be used to implement
transaction libraries.

e PERSEAS results in significant performance im-



provements.  Compared to traditional RVM,
PERSEAS results in 3 orders of magnitude of
performance improvement. PERSEAS outper-
forms even sophisticated optimization methods
(like group commit) by an order of magnitude.

e PERSEAS provides efficient and simple recovery.
Mirrored data are accessible from any node in
the network. Thus, in case of any kind of fail-
ure in the primary node, the recovery procedure
can be started right-away in any available (work-
ing) workstation allowing immediate recovery of
the database, even if the crashed node remains
out-of-order for a long time.

e The performance benefits of our approach will
increase with time. PERSEAS gains its per-
formance improvements by substituting disk ac-
cesses with remote memory accesses (over a fast
interconnection network). According to current
architecture trends, magnetic disk speed improves
10-20% per year, while interconnection network
speed improves much faster, at a rate of 20-45%
per year [9]. Thus, the performance gains of our
approach will probably increase with time.
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