The Remote Enqueue Operation on Networks
of Workstations

Evangelos P. Markatos and Manolis G.H. Katevenis and Penny Vatsolaki*

Institute of Computer Science (ICS)

Foundation for Research & Technology — Hellas (FORTH), Crete
P.O.Box 1385 Heraklio, Crete, GR-711-10 GREECE
markatos@ics.forth.gr
http://www.ics.forth.gr/proj/avg/telegraphos.html

Abstract. Modern networks of workstations connected by Gigabit net-
works have the ability to run high-performance computing applications
at a reasonable performance, but at a significantly lower cost. The per-
formance of these applications is usually dominated by their efficiency of
the underlying communication mechanisms. However, efficient communi-
cation requires that not only messages themselves are sent fast, but also
notification about message arrival should be fast as well. For example, a
message that has arrived at its destination is worthless until the recipient
is alerted to the message arrival.

In this paper we describe a new operation, the remote-enqueue atomic
operation, which can be used in multiprocessors, and workstation clus-
ters. This operation atomically inserts a data element in a queue that
physically resides in a remote processor’s memory. This operation can
be used for fast notification of message arrival, and for fast passing of
small messages. Compared to other software and hardware queueing al-
ternatives, remote-enqueue provides high speed at a low implementation
cost without compromising protection in a general-purpose computing
environment.

1 Introduction

Popular contemporary computing environments are comprised of powerful work-
stations connected via a network which, in many cases, may have a high through-
put, giving rise to systems called workstation clusters or Networks of Worksta-
tions (NOWSs) [1]. The availability of such computing and communication power
gives rise to new applications like multimedia, high performance scientific com-
puting, real-time applications, engineering design and simulation, and so on. Up
to recently, only high performance parallel processors and supercomputers were
able to satisfy the computing requirements that these applications need. For-
tunately, modern networks of workstations connected by Gigabit networks have
the ability to run most applications that run on supercomputers, at a reasonable

* The authors are also with the University of Crete.

performance, but at a significantly lower cost. This is because most modern Gi-
gabit interconnection networks provide both low latency and high throughput.
However, efficient communication requires that not only messages themselves
are sent fast, but also notification about message arrival should be fast as well.
For example, a message that has arrived at its destination is worthless until the
recipient is alerted to the message arrival.

In this paper we present the Remote Enqueue atomic operation, which al-
lows user-level processes to enqueue (short) data in remote queues that reside in
various workstations in a cluster, with no need for prior synchronization. This
operation was developed within the Telegraphos project [18], in order to pro-
vide a fast message arrival notification mechanism. The Telegraphos network
interface provides user applications with the ability to read/write remote mem-
ory locations, using regular load/store instructions to remote memory addresses.
Sending (short) messages in Telegraphos can be done by issuing one or more re-
mote write operation, which eliminates traditional operating system overheads
that used to dominate message passing. Thus, sending (short) messages can be
done from user-level by issuing a few store assembly instructions. Although send-
ing a message can be done fast, notifying the recipient of the message arrival may
take significant overhead. For example, one might use a shared flag in which the
sender writes the memory location (in the recipient’s memory) where the mes-
sage was written. When the recipient checks for messages, it reads this shared
flag and finds out if there is an arrived message and where it is. However, if two
or more senders attempt to send a message at about the same time, only one of
them will manage to update the flag, and the other’s update will be lost. A solu-
tion would be to have a separate flag for each possible sender. However, if there
are several potential senders, this solution may result in significant overhead for
the receiver, who would be required to poll too many flags. Arranging the flags
in hierarchical (scalable) data structures might reduce the polling overhead, but
it would increase the message notification arrival overhead.

Our solution to the message arrival notification problem is to create a re-
mote queue of message arrival notifications. A remote queue is a data structure
that resides in the remote node’s main memory. After writing their message to
the receiver’s main memory, senders enqueue their message arrival notifications
in the remote queue. Receivers poll their notification queues to learn about ar-
rived messages. Although enqueueing notifications in remote queues can be done
completely in software, we propose a hardware remote enqueue operation that
atomically enqueues a message notification in a remote queue. The benefits of
our approach are:

— Atomicity at low cost: to prevent race conditions, all software-implemented
enqueue operations are based on locking (or on fetch_and_¢) operations
that appropriately serialize concurrent accesses to the queue. These oper-
ations incur the overhead of at least one network round-trip delay. Our
hardware-implemented remote enqueue operation serializes concurrent en-
queue operations at the receiver’s network interface, alleviating the need for
round-trip messages.

— Low-latency flow control: Most software-implemented enqueue operations
may delay (block) the enqueing process if the queue is full. For this reason,
most software-implemented enqueue operations need to read some metadata
associated with the remote queue in order to make sure that the remote
queue is not full. Unfortunately, reading remote data may take at least one
round-trip network delay. In our approach, the enqueueing process always
succeeds; if the queue fills up after an enqueue operation, a software handler
is invoked (at the remote node) to allocate more space for the queue. Since
our remote enqueue operation is non-blocking, and does not need to read re-
mote data, it can return control to its calling processes, as soon as the data
to be enqueued have been entered in the sender’s network interface, that
is the remote enqueue operation may return control within a few (network
interface) clock cycles - usually a fraction of a microsecond.

The rest of the paper is organized as follows: Section 2 surveys previous work.
Section 3 presents a summary of the Telegraphos workstation cluster. Section 4
presents the remote enqueue operation, and section 5 summarizes this paper.

2 Related Work

Although networks of workstations may have an (aggregate) computing power
comparable to that of supercomputers (while costing significantly less), they
have rarely been used to support high-performance computing, because com-
munication on them has traditionally been very expensive. There have been
several projects to provide efficient communication primitives in networks of
workstations via a combination of hardware and software: Dolphin’s SCI in-
terface [19], PRAM [24], Memory Channel [13], Myrinet [6], ServerNet [26], Ac-
tive Messages [12], Fast Messages [17], Galactica Net [16], Hamlyn [9], U-Net
[27], NOW [1], Parastation [28], StarT Jt [15], Avalanche [10], Panda [2], and
SHRIMP [4] provide efficient message passing on networks of workstations based
on memory-mapped interfaces. We view our work as complimentary to these
projects, in the sense that we propose a fast message notification mechanism
that can improve the performance of all these message passing systems.

Brewer et. al proposed Remote Queues, a communication model that is
based on enqueueing and dequeuing information in queues in remote processors
[8]. Although their model is mostly software based, it can be tuned to exploit any
existing hardware mechanisms (e.g. hardware queues) that may exist in a parallel
machine. Although their work is related to ours we see two major differences:

— Remote quenes combine message transfer with message notification: the mes-
sage itself is enqueued in the remote queue. The receiver reads the message
from the queue and (if appropriate) copies the message to its final destina-
tion in its local memory. In our approach we assume that the message has
been posted directly in its final destination in the receiver’s memory, and
only the notification of the message arrival need to be put in the queue - our
approach results in less message copy operations. Suppose for example that

the sender and the receiver share a common data structure (e.g. a graph).
Using out approach, the sender deposits its information directly in the re-
mote graph, where the receiver will read it from. On the contrary, in the
remote queues approach, the messages are first placed in a queue, and the
receiver will have to copy the messages from the queue and put their infor-
mation on the common graph, resulting in one extra copy operation. Recent
commercial network interfaces like the Memory Channel and the PCI-SCI
efficiently support our approach of the direct deposit of data in the receiver’s
mermory.

— Remote Queues have been designed and implemented in commercial and ex-
perimental massively parallel processors that run parallel applications in a
controlled environment, supporting little or no multiprogramming. Our ap-
proach has been designed for low-cost Networks of Workstations that support
sequential and parallel applications at the same time.

In single-address-space multiprocessors, our remote enqueue operation can be
completely implemented in software using any standard queue library. Brewer
et. al propose such an implementation on top of the Cray T3D shared-memory
multiprocessor [8]. Any such implementation (including the one in [8]) suffers
from software overhead that includes at least one atomic operation (to atomically
get an empty slot in the queue), plus several remote memory accesses (to place
the data in the remote queue and update the remote pointers). This overhead is
bound to be significant in a Network of Workstations.

In many multiprocessors, nodes have a network co-processor. Then, the re-
mote enqueue operation can be implemented with the help of this co-processor.
The co-processor implements sophisticated forms of communication with the
processes running on the host processor. For example, a process that wants to
enqueue a message in a remote queue, sends the message to the co-processor,
which forwards it to the co-processor in the remote node, which in turn places
the message in the remote queue. Although the existence co-processors improves
the communication abilities of a node, it may result (i) in software overhead
(after all they are regular microprocessors executing a software protocol), and
(ii) in increased end-system cost.

3 The Telegraphos NOW

The Remote enqueue operation described in this paper is developed within
the Telegraphos project [22]. Telegraphos is a distributed system that consists
of network interfaces and switches for efficient support of parallel and dis-
tributed applications on a workstation cluster. We call this project Telegraphos
or TnAéypados from the greek words TnAé meaning remote, and vpd ¢w meaning
write, because the central operation on Telegraphos is the remote write opera-
tion. A remote write operation is triggered by a simple store assembly instruc-
tion, whose argument is a (virtual) memory address mapped on the physical
memory of another workstation. The remote write operation makes possible the

(user-to-user, fully protected) sending of short messages with a single instruc-
tion. For comparison, traditional workstation clusters connected via FDDI and
ATM take several thousands of instructions to send even the shortest message
across the network. Telegraphos also provides remote read operations, DMA
operations, atomic operations (like fetch_and_increment) on remote memory
locations, and a non-blocking fetch(remote,local) operation that copies a re-
mote memory location into a local one. Finally, Telegraphos also provides an
eager-update multicast mechanism which can be used to support both multicas-
ted message-passing, and update-based coherent shared memory.

Telegraphos provides a variety of hardware primitives which, when combined
with appropriate software will result in efficient support for shared-memory ap-
plications. These primitives include:

— Single remote memory access: On a remote memory access, traditional sys-
tems require the help of the operating system, which either replicates locally
the remote page and makes a local memory access, or makes the single re-
mote access on behalf of the requesting process. To avoid this operating sys-
tem overhead, Telegraphos provides the processor with the ability to make a
read or write operation to a remote memory location without replicating the
page locally and without any software intervention; just like shared-memory
multiprocessors do [3].

— Access counters: If a page 1s accessed by a processor frequently, it may be
worthwhile to replicate the page and make all accesses to it locally. To allow
informed decisions, Telegraphos provides access counters for each remotely-
mapped page. Each time the processor accesses a remote page, the counter is
decremented, and when it reaches zero an interrupt is sent to the processor
which should probably replicate the page locally [7, 20, 21].

— Hardware multicasting: Telegraphos provides a write multicast mechanism
in hardware which can be used to implement one-to-many message passing
operations, as well as an update-based memory coherence protocol. This
multicast mechanism uses a novel memory coherency protocol that makes
sure that even when several processors try to update the same data and
multicast their updates at the same time, they will all see a consistent view
of the updated data; details about the protocol can be found at [22].

— User-level DMA: To facilitate efficient message passing, Telegraphos allows
user-level initiation of all shared-memory operations including DMA. Thus,
Telegraphos does not need the involvement of the Operating System to trans-
fer information from one workstation to another [23].

The Telegraphos network interface has been prototyped using FPGA’s; it
plugs into the TurboChannel I/O bus of DEC Alpha 3000 model 300 (Pelican)
workstations.

4 Remote Enqueue

We propose a new atomic operation, the remote enquene (REQ) atomic opera-
tion. The REQ atomic operation is invoked with two arguments:,

— REQ(vaddr,data), where vaddris the virtual address that uniquely identifies
a remote queue (a remote queue always resides on the physical memory of
a different processor from the one invoking the REQ operation), and data is
a single word of information to be inserted in the queue. This information
is most usually a virtual address (pointer) that identifies the message body
that the processor invoking the REQ operation has just sent to the processor
that hosts the queue in its memory. 2.

We define a remote queue to be a portion of a remote processor’s memory
that is managed as a FIFO queue. This FIFO queue is a linked list of buffers
which are physically allocated in the remote processor’s memory. Data are placed
in this FIFO queue by the remote enqueue (REQ) operation, implemented in
hardware. Data are removed from this FIFO queue with a dequeue operation
which is implemented in user-level software.

The following limitations are imposed to the buffers of a remote queue, for
the hardware remote enqueue operation to be efficient:

— The starting address of each buffer should be an integer multiple of the buffer
size, which is a power of two.

— The maximum buffer size is 64KB (for a 32-bit word processor).

— If the buffer size is larger than the page size, each buffer should be allocated

in contiguous physical pages.

addr — size | tail
0 |

1 Sze | head

2 | ptrtonxt Q buffer

Fig. 1. Layout of a data buffer. A remote queue is just a linked list of such buffers.
The first three words of the buffer are reserved to store the size, the tail, the head, and
the pointer to the next Q buffer.

The layout of the buffer is shown in figure 1. The head and tail are indices
in the data buffer. A queue is a linked list of such data buffers. For a 32-bit-
word processor, both ta:l, and head are 16 bit quantities, and not full memory

2 The Telegraphos network always delivers remote data in-order from a given source
to a given destination node. Thus, data can never arrive before the corresponding

REQ operation is posted

addresses. The reason is that, in traditional systems (where tail and head are
full addresses), we calculate the pointer to the head (or the tail) of the queue
by adding addr with head (or tail), meaning that we need to pay the hardware
cost of an extra adder, and the performance cost of a word-length addition. In
our system instead, where the addr is a multiple of a power of two, and both
head and tail are always less than this power of two, we calculate the pointer to
the head (or the tail) of the queue by performing an inexpensive OR operation
instead of an expensive addition.

4.1 The Enqueue Operation

When processor A wants to enqueue some data in the remote queue wvaddr
that physically resides on processor B’s memory, it invokes the REQ(vaddr,data)
atomic operation. A portion of this operation in implemented on the sender
node’s network interface, and another portion of this operation is implemented
on the receiver node’s network interface.

The Sender Node: When the software issues a REQ(vaddr,data) atomic opera-
tion, the local network interface takes the following actions:

— It prepares a remote-enqueuc-request packet to be sent to the remote node
that contains paddr (the physical address that corresponds to virtual address
vaddr), and data, and

— It releases the issuing processor, which is able to continue with the rest of
its program, without having to wait for the remote enqueue operation to
complete.

The Receiver Node: When the destination node receives a remote-enqueue-request
packet it extracts the paddr and data arguments from the packet and performs
the remote-enqueue operation as the following atomic sequence of steps:

— Writes the data to the buffer entry pointed by the fail index (the address
of the entry is calculated as (paddr OR tail).

— Increments the {ail by 1 modulo buffer size (If the tail equals the size of the
buffer, then tail gets the value of the first available buffer location: 3 (see
figure 1)).

— If the buffer overflows (tail = head), the network interface stops accept-
ing incoming network requests, and sends an interrupt to the (destination)
processor.

The hardware finite state machine (FSM) of the destination HIB for the
remote enqueue operation “req(addr, data)” is shown in table 1.

Hardware Diagram: The Telegraphos datapath for the remote enqueue opera-
tion (at the receiver side) is shown in figure 2. The whole operation is controlled
by five control signals: LD0, RD0, WRO0, RD1, and WRI1, that are generated by
a simple Finite State Machine in the above order.

1. read (addr) -> (size, tail) // read tail and size of Q
2. write (addr OR tail)<- (data) // insert new element in Q

// Note: (addr OR tail) points to the first free element in the

// thus: no adder is needed

3. tmp <- (tail + 1) // increment tail modulo size
// if (tmp == size) then tail = 3
4. if (tmp & size) then
tail <- 3
else

tail <- tmp
// Note: if (tmp == size) then (tmp & size) ==
// else (tmp & size) == 0,
// thus the comparison can be implemented with AND
// gates instead of a general purpose comparator
5. read (addr+1) -> (size,head) // read head of Q
6. if (head == tail) then
stop_accepting_network_requests()
interrupt host (overflow)
else
write (addr) <- (size,tail)

Table 1. Finite State Machine for the Remote Enqueue Operation.

LDO0 loads the ADDRESS and DATA registers with the address and data
that are the arguments of the remote enqueue operation.
— RDO starts the reading of the (size,tail) pair from address.

— RDI1 starts the reading of the (size, head) pair from (address + 1).
Finally, WR1 writes the new (size,tail) pair into address

4.2 Handling Buffer Overflow

When the current buffer fills up, an interrupt is sent to the processor which
starts executing the operating system. The actions that the operating system
should take are:

— Copy the contents of the full buffer into an empty one. Mark the previously
overflowed buffer as empty.

— Link the new buffer into a queue of buffers associated with this queue. The
next field in the queue is used for this purpose.

— Enable the Network Interface to handle all requests.

4.3 Dequeuing and Queue Handling in the Receiver Software

In this section we outline how the dequeue operation can be efficiently imple-
mented in software at user-level. A straightforward implementation of the de-

WRO starts the writing of the data into the remote queue at address addr O R tazl

queue operation would be:

deq(queue)
{
buffer = find_last_buffer_following_the_next_pointers() ;
if (is_empty(buffer) {
if (is_first(buffer, queue))
return EMPTY_QUEUE ;
else {
deallocate(buffer) ;
buffer = find_last_buffer_following_the_next_pointers() ;

}
result = buffer[head] ; head ++ ;
if (head == size)
head = 3 ;
return result

3

Unfortunately, the above solution does not always work, because it is executed
in user-space, and as such, it may be interrupted at any time. For example,
consider the following scenario:

— A dequeue operation starts executing, taking an element from the head buffer
(say A) of the queue.

— Before the operation completes, it is interrupted.

— In the meanwhile, the head buffer overflows, the operating system takes con-
trol, copies the buffer A into an empty one (say B), resetting the previously
full buffer A.

— Some more remote enqueue operations are executed, completely overwriting
the previous data on A (which are safely copied into the recently allocated
buffer B).

— The dequeue operation eventually resumes execution trying to dequeue ele-
ments from buffer A, which does not have the elements the dequeue operation
expects to find, which are now in buffer B!

Fortunately, on the Alpha processor there is a special mode the PAL mode
which enables (super) users to write their own code (of limited size) and run it
uninterrupted [25]. Thus, if the above code is turned into PAL code, it will run
uninterrupted. PAL code is invoked via the special cal_pal routine, that the DEC
Alpha processor provides. Although any user is allowed to call a PAL function,
only the super user is allowed to install new PAL functions, thereby protecting
the integrity of the system. Thus, the above mentioned race conditions disappear
because the dequeue operation runs uninterrupted in PAL mode.

Although PAL calls are an elegant way of executing short sequences of in-
structions uninterrupted, they are specific to the Alpha processor. Moreover,
interrupt disabling (and of course PAL calls) is an effective way of synchroniza-
tion only in uniprocessors. Disabling interrupts in symmetric multiprocessing

ADDRESS LDo

MEMORY

w0 ———oloze [veaa] [sze |t J~—— ro

0001

Trp= Tail + 1
size[0:15]

Tmp=Trp & Size

o 20 1t (Tmp == 0)
; =3
2
NewT4il
.
e 1f (head == tail)
Interrupt host

ze tal

Fig. 2. The enqueue hardware.

systems that share a common network interface does not necessarily guarantee
the absence of race conditions. For this reason, we have developed a more gen-
eral solution that allows dequeue operations to proceed at user-level without the
need to invoke PAL calls. Our solution is based on the collaboration between the
operating system and the library that implements the dequeue operation. We
assume the existence of a “do-not-preempt-me” bit (per queue) that is shared by
the user application and the kernel. > When the application is about to execute a
dequeue operation, it sets the “do-not-preempt-me” bit. When the dequeue op-
eration completes, it resets the “do-not-preempt-me” bit. If the queue becomes
full while an application is dequeuing something from the queue, the operating

% Similar mechanisms has been used to avoid preempting a user-level thread while
executing in a critical section [11].

system driver that handles the buffer overflow interrupt, does not allocate a new
buffer but sets a “full-queue” flag. When the interrupt handler returns, the appli-
cation will resume execution, and it will complete the dequeue operation. When
the dequeue operation completes, it checks the “full-queue” flag. If the flag is set,
the application will invoke the network interface driver (e.g. through an ioctl
call) to allocate more space for the queue and to enable the network interface to
handle further enqueue operations. This solution works even in multiprocessor
workstations that share a single network interface, with only one additional re-
quirement: threads that execute concurrent dequeue operations (from the same
queue) have to synchronize through a lock variable (associated with the queue).
The first instruction of a dequeue operation is to acquire the lock, and the last
instruction is to release the lock. Thus, while a thread is dequeuing data from a
queue, no other thread is allowed to do the same, and thus no other thread can
access shared information like the “do-not-preempt-me” bit and the “full-queue”
flag. In case of buffer overflow, user-level threads should keep the lock up till the
time the operating system allocates more space for the queue. If the queue fills
up while at the same time a thread is executing a dequeue operation, the op-
erating system allows the dequeue operation to complete; after the operation
completes it invokes the operating system to allocate more space for the queue
and to enable further network transactions.

4.4 Issuing an Enqueue Operation

An enqueue operation is invoked as: eng(vaddress,data) (where vaddress is the
virtual address of the base of the first queue buffer and data are the data to be
enqueued). In order to create a valid remote enqueune request packet, the network
interface needs to know the physical address paddr that corresponds to virtual
address vaddr, as well as the data argument. However, users are not allowed to
communicate physical addresses to the network interface, because (i) they no dot
know the mapping between virtual and physical pages, and (ii) malicious or igno-
rant users may request enqueue operations to physical addresses on which they
do not have read/write access. To alleviate this problem we use the mechanism
of shadow-addressing [5, 14, 23]. The method of shadow addressing is used to
securely translate virtual to physical addresses and pass them to the network in-
terface from user-level processes. For each virtual address vaddr that is mapped
in the physical address paddr, there is also a shadow address shadow(vaddr),
which is mapped in the shadow physical address shadow(paddr).* The shadow
function is simple and known to the network interface. One simple shadow func-
tion is to concatenate each address with an extra shadow bit. When the shadow
bit is set, then the address is a shadow one. For example, 0xOFFFFFFFF is a
regular 33-bit address, while 0x1FFFFFFFF is its shadow address.

An access to a shadow address is always interpreted by the network inter-
face as a special argument passing operation. For example, suppose that virtual

* The Operating System is responsible for creating both mappings at memory alloca-
tion (initialization) time.

address vaddr is mapped to physical address paddr, and that the virtual ad-
dress shadow(vaddr) is mapped into shadow(paddr). Normally, a load (store)
operation to virtual address vaddr by a user application is translated by the
TLB (page-table) into a load (store) operation to physical address paddr and
is performed by the appropriate memory controller. Similarly, a load (store) op-
eration to virtual address shadow(vaddr) is translated by the TLB into a load
(store) operation to physical address shadow(paddr). When, however, this op-
eration reaches the network interface it will be treated as an argument passing
operation, and neither a load nor a store operation will be performed to physical
address shadow(paddr). Thus, when the user application wants to pass to the
network interface the physical address paddr, it makes a store operation to vir-
tual address shadow(vaddr). Eventually the physical address shadow(paddr)
reaches the network interface, which recognizes the shadow address and takes
the physical address paddr by applying function shadow™! to physical address
shadow(paddr).

Thus, a remote enqueue atomic operation is issued using a single assembly
instruction as follows:

REQ (vaddr, data)
/¥ pass physical address shadow(paddr) to the
** petwork interface */
STORE data TO shadow(vaddr)

5 Summary

In this paper we describe a new operation, the remote-enqueune atomic operation,
which can be used in multiprocessors, and workstation clusters. This operation
atomically inserts a data element in a queue that physically resides in a re-
mote processor’s memory. This operation can be used for fast notification of
message arrival, and for fast passing of small messages. Both enqueue and de-
queue operations can be issued from user-level processes without any need to
call the operating system. Both operations enforce standard virtual memory pro-
tection when accessing remote queues, and thus they provide full protection in
a general-purposed multiprogrammed environment. Compared to other software
and hardware queueing alternatives, remote-enqueue provides high speed at a
low implementation cost without compromising protection in a general-purpose
computing environment.

Acknowledgments

This work was supported in part by ESPRIT project 6253 “Supercomputer
Highly Parallel System” (SHIPS), funded by the European Union, through DG

® All shadow addresses should be within the physical address range of the network
interface, and distinct from the normal physical addresses used by that network
interface.

IIT of its Commission, HPCN Unit. We deeply appreciate this financial support,
without which this work would have not existed. A patent application for the
above work has been filed: E. Markatos, M Katevenis, and P. Vatsolaki: “No-
tification of message arrival in a parallel computer system”, Patent application
number 97410036.4, (Europe) March 19th 1997.

References

1.

10.

11.

12.

13.

T.E. Anderson, D.E. Culler, and D.A. Patterson. A Case for NOW (Networks of
Workstations). [EEE Micro, 15(1):54—64, February 1995.

H. Bal, R. Hofman, and K. Verstoep. A Comparison of Three High Speed Net-
works for Parallel Cluster Computing. In Proc. 1st International Workshop on
Communication and Arch. Support for Network-Based Parallel Computing, pages
184-197, 1997.

. BBN Advanced Computers Inc. Inside the TC2000™™ Computer. Cambridge,

Massachusetts, February 1990.

M. Blumrich, K. Li; R. Alpert, C. Dubnicki, E. Felten, and J. Sandberg. Virtual
Memory Mapped Network Interface for the SHRIMP Multicomputer. In Proc. 21-
th International Symposium on Comp. Arch., pages 142-153, Chicago, IL, April
1994.

M.A. Blumrich, C.Dubnicki, E.W. Felten, and K. Li. Protected, User-level DMA
for the SHRIMP Network Interface. In Proc. of the 2nd International Sympo-
stum on High Performance Computer Architecture, pages 154-165, San Jose, CA,
February 1996.

N.J. Boden, D. Cohen, and W.-K. Su. Myrinet: A Gigabit-per-Second Local Area
Network. IEEE Micro, 15(1):29, February 1995.

William J. Bolosky, Michael L. Scott, Robert P. Fitzgerald, Robert J. Fowler, and
Alan L. Cox. NUMA Policies and Their Relation to Memory Architecture. In
Proceedings of the Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 212-221, Santa Clara, CA,
April 1991.

. E.A. Brewer, F.T. Chong, L.T1 Liu, S.D. Sharma, and J.D. Kubiatowicz. Remote

Queues: Exposing Message Queues for Optimization and Atomicity. In Symp. on
Parallel Algorithms and Architecures, 1995.

G. Buzzard, D. Jacobson, S. Marovich, and J. Wilkes. Hamlyn: a High-
performance Network Interface, with Sender-Based Memory Management. In Pro-
ceedings of the Hot Interconnects III Symposium, August 1995.

A. Davis, M. Swanson, and M. Parker. Efficient Communication Mechanisms for
Cluster Based Parallel Computing. Technical report, University of Utah, Dept. of
Computer Science, 1996.

J. Edler, J. Lipkis, and E. Schonberg. Process Management for Highly Parallel
UNIX Systems. Technical Report Ultracomputer Note 136, Ultracomputer Re-
search Laboratory, New York University, April 1988.

T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser. Active Messages:
A Mechanism for Integrated Communication and Computation. In Proc. 19-th
International Symposium on Comp. Arch., pages 256-266, Gold Coast, Australia,
May 1992.

R. Gillett. Memory Channel Network for PCL. IEEE Micro, 16(1):12, February
1996.

14. J. Heinlein, K. Gharachorloo, S. Dresser, and A. Gupta. Integration of Message
Passing and Shared Memory in the Stanford FLASH Multiprocessor. In Proc.
of the 6-th International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 38-50, 1994.

15. James C. Hoe and Mike Ehrlich. StarT-JR: A Parallel System from Commodity
Technology. In Proceedings of the 7th Transputer/Occam International Conference,
November 1995. Tokyo, Japan.

16. Andrew W. Wilson Jr., Richard P. LaRowe Jr., and Marc J. Teller. Hardware
Assist for Distributed Shared Memory. In Proc. 13-th Int. Conf. on Distr. Comp.
Syst., pages 246-255, Pittsburgh, PA, May 1993.

17. V. Karamcheti, S. Pakin, and A. Chien. High Performance Messaging on Work-
stations: Illinois Fast Messages (FM) for Myrinet. In Supercomputing 95, 1995.

18. Manolis G. H. Katevenis, Evangelos P. Markatos, George Kalokerinos, and Aposto-
los Dollas. Telegraphos: A Substrate for High-Performance Computing on Work-
station Clusters. Journal of Parallel and Distributed Computing, 43(2):94-108,
June 1997.

19. O. Lysne, S. Gjessing, and K. Lochsen. Running the SCI Protocol over HIC Net-
works. In Proceedings of the Second International Workshop on SCI-based Low-
cost/High-perfocmance Computing (SClzzL-2), March 1995. Santa Barbara, CA.

20. E.P. Markatos. Using Remote Memory to avoid Disk Thrashing: A Simulation
Study. In Proceedings of the ACM International Workshop on Modeling, Analysis,
and Simulation of Computer and Telecommunication Systems (MASCOTS ’96),
pages 69-73, February 1996.

21. E.P. Markatos and C.E. Chronaki. Trace-Driven Simulations of Data-Alignment
and Other Factors affecting Update and Invalidate Based Coherent Memory. In
Proceedings of the ACM International Workshop on Modeling, Analysis, and Sim-
ulation of Computer and Telecommunication Systems (MASCOTS '94), pages 44—
52, January 1994.

22. E.P. Markatos and M. G.H. Katevenis. Telegraphos: High-Performance Net-
working for Parallel Processing on Workstation Clusters. In Proc. of the
2nd International Symposium on High Performance Computer Architecture,
pages 144-153, Feb 1996. URL: http://www.csi.forth.gr/ proj/arch-vlsi/papers/
1996 . HPCA96.Telegraphos.ps.gz.

23. E.P. Markatos and M. G.H. Katevenis. User-Level DMA without Operating
System Kernel Modification. In Proc. of the 3rd International Symposium on
High Performance Computer Architecture, pages 322-331, Feb 1997. URL:
http://www.csi.forth.gr/proj/aavg/papers/ 1997.HPCA97.user_level_dma.ps.gz.

24. D. Serpanos. Scalable Shared-Memory Interconnections. PhD thesis, Princeton
University, Dept. of Computer Science, October 1990.

25. R. Sites. Alpha AXP Architecture. Communications of the ACM, 36(2):33—44,
February 1993.

26. Tandem Computers Inc.
ServerNet Technology: Introducing the Worlds First System Area Network, 1996.
http://www.tandem.com/INFOCTR/BRFS_WPS/SNTSANWP/SNTSANWP.HTM.

27. Thorsten von Eicken, Anindya Basu, Vineet Buch, and Werner Vogels. U-Net: A
User-Level Network Interface for Parallel and Distributed Computing. In Proc.
15-th Symposium on Operating Systems Principles, pages 40-53, December 1995.

28. Thomas M. Warschko, Joachim M. Blum, and Walter F. Tichy. The ParaPC /
ParaStation Project: Efficient Parallel Computing by Clustering Workstations.
Technical Report 13/96, University of Karlsruhe, Dept. of Informatics, 1996.

This article was processed using the INTEX macro package with LLNCS style

