
The Remote Enqueue Operation on Networks

of Workstations

Evangelos P� Markatos and Manolis G�H� Katevenis and Penny Vatsolaki�

Institute of Computer Science �ICS�
Foundation for Research � Technology � Hellas �FORTH�� Crete

P�O�Box ���	 Heraklio� Crete� GR
���
�� GREECE
markatosics�forth�gr

http���www�ics�forth�gr�proj�avg�telegraphos�html

Abstract� Modern networks of workstations connected by Gigabit net

works have the ability to run high
performance computing applications
at a reasonable performance� but at a signi�cantly lower cost� The per

formance of these applications is usually dominated by their e�ciency of
the underlying communication mechanisms� However� e�cient communi

cation requires that not only messages themselves are sent fast� but also
noti�cation about message arrival should be fast as well� For example� a
message that has arrived at its destination is worthless until the recipient
is alerted to the message arrival�

In this paper we describe a new operation� the remote�enqueue atomic
operation� which can be used in multiprocessors� and workstation clus

ters� This operation atomically inserts a data element in a queue that
physically resides in a remote processor�s memory� This operation can
be used for fast noti�cation of message arrival� and for fast passing of
small messages� Compared to other software and hardware queueing al

ternatives� remote
enqueue provides high speed at a low implementation
cost without compromising protection in a general
purpose computing
environment�

� Introduction

Popular contemporary computing environments are comprised of powerful work�
stations connected via a network which� in many cases� may have a high through�
put� giving rise to systems called workstation clusters or Networks of Worksta�
tions �NOWs� ���� The availability of such computing and communication power
gives rise to new applications like multimedia� high performance scienti�c com�
puting� real�time applications� engineering design and simulation� and so on� Up
to recently� only high performance parallel processors and supercomputers were
able to satisfy the computing requirements that these applications need� For�
tunately� modern networks of workstations connected by Gigabit networks have
the ability to run most applications that run on supercomputers� at a reasonable

� The authors are also with the University of Crete�

performance� but at a signi�cantly lower cost� This is because most modern Gi�
gabit interconnection networks provide both low latency and high throughput�
However� e	cient communication requires that not only messages themselves
are sent fast� but also noti�cation about message arrival should be fast as well�
For example� a message that has arrived at its destination is worthless until the
recipient is alerted to the message arrival�

In this paper we present the Remote Enqueue atomic operation� which al�
lows user�level processes to enqueue �short� data in remote queues that reside in
various workstations in a cluster� with no need for prior synchronization� This
operation was developed within the Telegraphos project ��
�� in order to pro�
vide a fast message arrival noti�cation mechanism� The Telegraphos network
interface provides user applications with the ability to read�write remote mem�
ory locations� using regular load�store instructions to remote memory addresses�
Sending �short� messages in Telegraphos can be done by issuing one or more re�
mote write operation� which eliminates traditional operating system overheads
that used to dominate message passing� Thus� sending �short� messages can be
done from user�level by issuing a few store assembly instructions� Although send�
ing a message can be done fast� notifying the recipient of the message arrival may
take signi�cant overhead� For example� one might use a shared �ag in which the
sender writes the memory location �in the recipients memory� where the mes�
sage was written� When the recipient checks for messages� it reads this shared
�ag and �nds out if there is an arrived message and where it is� However� if two
or more senders attempt to send a message at about the same time� only one of
them will manage to update the �ag� and the others update will be lost� A solu�
tion would be to have a separate �ag for each possible sender� However� if there
are several potential senders� this solution may result in signi�cant overhead for
the receiver� who would be required to poll too many �ags� Arranging the �ags
in hierarchical �scalable� data structures might reduce the polling overhead� but
it would increase the message noti�cation arrival overhead�

Our solution to the message arrival noti�cation problem is to create a re�
mote queue of message arrival noti�cations� A remote queue is a data structure
that resides in the remote nodes main memory� After writing their message to
the receivers main memory� senders enqueue their message arrival noti�cations
in the remote queue� Receivers poll their noti�cation queues to learn about ar�
rived messages� Although enqueueing noti�cations in remote queues can be done
completely in software� we propose a hardware remote enqueue operation that
atomically enqueues a message noti�cation in a remote queue� The bene�ts of
our approach are�

� Atomicity at low cost� to prevent race conditions� all software�implemented
enqueue operations are based on locking �or on fetch and �� operations
that appropriately serialize concurrent accesses to the queue� These oper�
ations incur the overhead of at least one network round�trip delay� Our
hardware�implemented remote enqueue operation serializes concurrent en�
queue operations at the receivers network interface� alleviating the need for
round�trip messages�

� Low�latency �ow control� Most software�implemented enqueue operations
may delay �block� the enqueing process if the queue is full� For this reason�
most software�implemented enqueue operations need to read some metadata
associated with the remote queue in order to make sure that the remote
queue is not full� Unfortunately� reading remote data may take at least one
round�trip network delay� In our approach� the enqueueing process always
succeeds� if the queue �lls up after an enqueue operation� a software handler
is invoked �at the remote node� to allocate more space for the queue� Since
our remote enqueue operation is non�blocking� and does not need to read re�
mote data� it can return control to its calling processes� as soon as the data
to be enqueued have been entered in the senders network interface� that
is the remote enqueue operation may return control within a few �network
interface� clock cycles � usually a fraction of a microsecond�

The rest of the paper is organized as follows� Section � surveys previous work�
Section � presents a summary of the Telegraphos workstation cluster� Section �
presents the remote enqueue operation� and section � summarizes this paper�

� Related Work

Although networks of workstations may have an �aggregate� computing power
comparable to that of supercomputers �while costing signi�cantly less�� they
have rarely been used to support high�performance computing� because com�
munication on them has traditionally been very expensive� There have been
several projects to provide e	cient communication primitives in networks of
workstations via a combination of hardware and software� Dolphins SCI in�
terface ����� PRAM ����� Memory Channel ����� Myrinet ���� ServerNet ����� Ac�
tive Messages ����� Fast Messages ����� Galactica Net ����� Hamlyn ���� U�Net
����� NOW ���� Parastation ��
�� StarT Jt ����� Avalanche ����� Panda ���� and
SHRIMP ��� provide e	cient message passing on networks of workstations based
on memory�mapped interfaces� We view our work as complimentary to these
projects� in the sense that we propose a fast message noti�cation mechanism
that can improve the performance of all these message passing systems�

Brewer et� al proposed Remote Queues� a communication model that is
based on enqueueing and dequeuing information in queues in remote processors
�
�� Although their model is mostly software based� it can be tuned to exploit any
existing hardware mechanisms �e�g� hardware queues� that may exist in a parallel
machine� Although their work is related to ours we see two major di�erences�

� Remote queues combine message transfer with message noti�cation� the mes�
sage itself is enqueued in the remote queue� The receiver reads the message
from the queue and �if appropriate� copies the message to its �nal destina�
tion in its local memory� In our approach we assume that the message has
been posted directly in its �nal destination in the receivers memory� and
only the noti�cation of the message arrival need to be put in the queue � our
approach results in less message copy operations� Suppose for example that

the sender and the receiver share a common data structure �e�g� a graph��
Using out approach� the sender deposits its information directly in the re�
mote graph� where the receiver will read it from� On the contrary� in the
remote queues approach� the messages are �rst placed in a queue� and the
receiver will have to copy the messages from the queue and put their infor�
mation on the common graph� resulting in one extra copy operation� Recent
commercial network interfaces like the Memory Channel and the PCI�SCI
e	ciently support our approach of the direct deposit of data in the receivers
memory�

� Remote Queues have been designed and implemented in commercial and ex�
perimental massively parallel processors that run parallel applications in a
controlled environment� supporting little or no multiprogramming� Our ap�
proach has been designed for low�cost Networks of Workstations that support
sequential and parallel applications at the same time�

In single�address�space multiprocessors� our remote enqueue operation can be
completely implemented in software using any standard queue library� Brewer
et� al propose such an implementation on top of the Cray T�D shared�memory
multiprocessor �
�� Any such implementation �including the one in �
�� su�ers
from software overhead that includes at least one atomic operation �to atomically
get an empty slot in the queue�� plus several remote memory accesses �to place
the data in the remote queue and update the remote pointers�� This overhead is
bound to be signi�cant in a Network of Workstations�

In many multiprocessors� nodes have a network co�processor� Then� the re�
mote enqueue operation can be implemented with the help of this co�processor�
The co�processor implements sophisticated forms of communication with the
processes running on the host processor� For example� a process that wants to
enqueue a message in a remote queue� sends the message to the co�processor�
which forwards it to the co�processor in the remote node� which in turn places
the message in the remote queue� Although the existence co�processors improves
the communication abilities of a node� it may result �i� in software overhead
�after all they are regular microprocessors executing a software protocol�� and
�ii� in increased end�system cost�

� The Telegraphos NOW

The Remote enqueue operation described in this paper is developed within
the Telegraphos project ����� Telegraphos is a distributed system that consists
of network interfaces and switches for e	cient support of parallel and dis�
tributed applications on a workstation cluster� We call this project Telegraphos
or T��������o� from the greek words T����meaning remote� and ������ meaning
write� because the central operation on Telegraphos is the remote write opera�
tion� A remote write operation is triggered by a simple store assembly instruc�
tion� whose argument is a �virtual� memory address mapped on the physical
memory of another workstation� The remote write operation makes possible the

�user�to�user� fully protected� sending of short messages with a single instruc�
tion� For comparison� traditional workstation clusters connected via FDDI and
ATM take several thousands of instructions to send even the shortest message
across the network� Telegraphos also provides remote read operations� DMA
operations� atomic operations �like fetch and increment� on remote memory
locations� and a non�blocking fetch�remote�local� operation that copies a re�
mote memory location into a local one� Finally� Telegraphos also provides an
eager�update multicast mechanism which can be used to support both multicas�
ted message�passing� and update�based coherent shared memory�

Telegraphos provides a variety of hardware primitives which� when combined
with appropriate software will result in e	cient support for shared�memory ap�
plications� These primitives include�

� Single remote memory access� On a remote memory access� traditional sys�
tems require the help of the operating system� which either replicates locally
the remote page and makes a local memory access� or makes the single re�
mote access on behalf of the requesting process� To avoid this operating sys�
tem overhead� Telegraphos provides the processor with the ability to make a
read or write operation to a remote memory location without replicating the
page locally and without any software intervention� just like shared�memory
multiprocessors do ����

� Access counters� If a page is accessed by a processor frequently� it may be
worthwhile to replicate the page and make all accesses to it locally� To allow
informed decisions� Telegraphos provides access counters for each remotely�
mapped page� Each time the processor accesses a remote page� the counter is
decremented� and when it reaches zero an interrupt is sent to the processor
which should probably replicate the page locally ��� ��� ����

� Hardware multicasting� Telegraphos provides a write multicast mechanism
in hardware which can be used to implement one�to�many message passing
operations� as well as an update�based memory coherence protocol� This
multicast mechanism uses a novel memory coherency protocol that makes
sure that even when several processors try to update the same data and
multicast their updates at the same time� they will all see a consistent view
of the updated data� details about the protocol can be found at �����

� User�level DMA� To facilitate e	cient message passing� Telegraphos allows
user�level initiation of all shared�memory operations including DMA� Thus�
Telegraphos does not need the involvement of the Operating System to trans�
fer information from one workstation to another �����

The Telegraphos network interface has been prototyped using FPGAs� it
plugs into the TurboChannel I�O bus of DEC Alpha ���� model ��� �Pelican�
workstations�

� Remote Enqueue

We propose a new atomic operation� the remote enqueue �REQ� atomic opera�
tion� The REQ atomic operation is invoked with two arguments��

� REQ�vaddr�data�� where vaddr is the virtual address that uniquely identi�es
a remote queue �a remote queue always resides on the physical memory of
a di�erent processor from the one invoking the REQ operation�� and data is
a single word of information to be inserted in the queue� This information
is most usually a virtual address �pointer� that identi�es the message body
that the processor invoking the REQ operation has just sent to the processor
that hosts the queue in its memory� ��

We de�ne a remote queue to be a portion of a remote processors memory
that is managed as a FIFO queue� This FIFO queue is a linked list of bu�ers
which are physically allocated in the remote processors memory�Data are placed
in this FIFO queue by the remote enqueue �REQ� operation� implemented in
hardware� Data are removed from this FIFO queue with a dequeue operation
which is implemented in user�level software�

The following limitations are imposed to the bu�ers of a remote queue� for
the hardware remote enqueue operation to be e	cient�

� The starting address of each bu�er should be an integer multiple of the bu�er
size� which is a power of two�

� The maximum bu�er size is ��KB �for a ���bit word processor��
� If the bu�er size is larger than the page size� each bu�er should be allocated
in contiguous physical pages�

k- 12

addr

ptr to nxt Q buffer

tailsize

headsize

3

0

2

1

4

Fig� �� Layout of a data bu�er� A remote queue is just a linked list of such bu�ers�
The �rst three words of the bu�er are reserved to store the size� the tail� the head� and
the pointer to the next Q bu�er�

The layout of the bu�er is shown in �gure �� The head and tail are indices
in the data bu�er� A queue is a linked list of such data bu�ers� For a ���bit�
word processor� both tail� and head are �� bit quantities� and not full memory

� The Telegraphos network always delivers remote data in�order from a given source
to a given destination node� Thus� data can never arrive before the corresponding
REQ operation is posted

addresses� The reason is that� in traditional systems �where tail and head are
full addresses�� we calculate the pointer to the head �or the tail� of the queue
by adding addr with head �or tail�� meaning that we need to pay the hardware
cost of an extra adder� and the performance cost of a word�length addition� In
our system instead� where the addr is a multiple of a power of two� and both
head and tail are always less than this power of two� we calculate the pointer to
the head �or the tail� of the queue by performing an inexpensive OR operation
instead of an expensive addition�

��� The Enqueue Operation

When processor A wants to enqueue some data in the remote queue vaddr
that physically resides on processor Bs memory� it invokes the REQ�vaddr�data�
atomic operation� A portion of this operation in implemented on the sender
nodes network interface� and another portion of this operation is implemented
on the receiver nodes network interface�

The Sender Node� When the software issues a REQ�vaddr�data� atomic opera�
tion� the local network interface takes the following actions�

� It prepares a remote�enqueue�request packet to be sent to the remote node
that contains paddr �the physical address that corresponds to virtual address
vaddr�� and data� and

� It releases the issuing processor� which is able to continue with the rest of
its program� without having to wait for the remote enqueue operation to
complete�

The Receiver Node� When the destination node receives a remote�enqueue�request
packet it extracts the paddr and data arguments from the packet and performs
the remote�enqueue operation as the following atomic sequence of steps�

� Writes the data to the bu�er entry pointed by the tail index �the address
of the entry is calculated as �paddr OR tail��

� Increments the tail by � modulo bu�er size �If the tail equals the size of the
bu�er� then tail gets the value of the �rst available bu�er location� � �see
�gure ����

� If the bu�er over�ows �tail � head�� the network interface stops accept�
ing incoming network requests� and sends an interrupt to the �destination�
processor�

The hardware �nite state machine �FSM� of the destination HIB for the
remote enqueue operation �req�addr� data�� is shown in table ��

Hardware Diagram� The Telegraphos datapath for the remote enqueue opera�
tion �at the receiver side� is shown in �gure �� The whole operation is controlled
by �ve control signals� LD�� RD�� WR�� RD�� and WR�� that are generated by
a simple Finite State Machine in the above order�

�� read �addr� �� �size� tail� �� read tail and size of Q

�� write �addr OR tail�	� �data� �� insert new element in Q

�� Note
 �addr OR tail� points to the first free element in the Q

�� thus
 no adder is needed

�� tmp 	� �tail � �� �� increment tail modulo size

�� if �tmp size� then tail �

�� if �tmp � size� then

tail 	� �

else

tail 	� tmp

�� Note
 if �tmp size� then �tmp � size� �

�� else �tmp � size� ��

�� thus the comparison can be implemented with AND

�� gates instead of a general purpose comparator

�� read �addr��� �� �size�head� �� read head of Q

�� if �head tail� then

stop�accepting�network�requests��

interrupt host �overflow�

else

write �addr� 	� �size�tail�

Table �� Finite State Machine for the Remote Enqueue Operation�

� LD� loads the ADDRESS and DATA registers with the address and data
that are the arguments of the remote enqueue operation�

� RD� starts the reading of the �size	 tail� pair from address�
� WR� starts the writing of the data into the remote queue at address addr OR tail

� RD� starts the reading of the �size	 head� pair from �address� ���
� Finally� WR� writes the new �size	 tail� pair into address

��� Handling Bu�er Over�ow

When the current bu�er �lls up� an interrupt is sent to the processor which
starts executing the operating system� The actions that the operating system
should take are�

� Copy the contents of the full bu�er into an empty one� Mark the previously
over�owed bu�er as empty�

� Link the new bu�er into a queue of bu�ers associated with this queue� The
next �eld in the queue is used for this purpose�

� Enable the Network Interface to handle all requests�

��� Dequeuing and Queue Handling in the Receiver Software

In this section we outline how the dequeue operation can be e	ciently imple�
mented in software at user�level� A straightforward implementation of the de�

queue operation would be�

deq�queue�

�

buffer � find�last�buffer�following�the�next�pointers�� �

if �is�empty�buffer� �

if �is�first�buffer� queue��

return EMPTY�QUEUE �

else �

deallocate�buffer� �

buffer � find�last�buffer�following�the�next�pointers�� �

�

�

result � buffer�head	 � head

 �

if �head �� size�

head � � �

return result

�

Unfortunately� the above solution does not always work� because it is executed
in user�space� and as such� it may be interrupted at any time� For example�
consider the following scenario�

� A dequeue operation starts executing� taking an element from the head bu�er
�say A� of the queue�

� Before the operation completes� it is interrupted�
� In the meanwhile� the head bu�er over�ows� the operating system takes con�
trol� copies the bu�er A into an empty one �say B�� resetting the previously
full bu�er A�

� Some more remote enqueue operations are executed� completely overwriting
the previous data on A �which are safely copied into the recently allocated
bu�er B��

� The dequeue operation eventually resumes execution trying to dequeue ele�
ments from bu�er A� which does not have the elements the dequeue operation
expects to �nd� which are now in bu�er B�

Fortunately� on the Alpha processor there is a special mode the PAL mode
which enables �super� users to write their own code �of limited size� and run it
uninterrupted ����� Thus� if the above code is turned into PAL code� it will run
uninterrupted� PAL code is invoked via the special cal pal routine� that the DEC
Alpha processor provides� Although any user is allowed to call a PAL function�
only the super user is allowed to install new PAL functions� thereby protecting
the integrity of the system� Thus� the above mentioned race conditions disappear
because the dequeue operation runs uninterrupted in PAL mode�

Although PAL calls are an elegant way of executing short sequences of in�
structions uninterrupted� they are speci�c to the Alpha processor� Moreover�
interrupt disabling �and of course PAL calls� is an e�ective way of synchroniza�
tion only in uniprocessors� Disabling interrupts in symmetric multiprocessing

comparator equ

16
0001

16

2

14

16

16

RD1

 Data in

 Data out

MEMORY
Add

ress

WR0

DATA

tail

WR0
RD1

RD1

ADDRESS

1

RD0 size size tailhead

16
size[0:15]

Tmp = Tmp & Size

Tmp = Tail + 1

zero

Tmp = 3

NewTail

If (head == tail)

Interrupt host

size

If (Tmp == 0)

LD0 LD0

16

32

32

32

32

0 1
2

11

WR0

WR1

RD1

RD0

Fig� �� The enqueue hardware�

systems that share a common network interface does not necessarily guarantee
the absence of race conditions� For this reason� we have developed a more gen�
eral solution that allows dequeue operations to proceed at user�level without the
need to invoke PAL calls� Our solution is based on the collaboration between the
operating system and the library that implements the dequeue operation� We
assume the existence of a �do�not�preempt�me� bit �per queue� that is shared by
the user application and the kernel� � When the application is about to execute a
dequeue operation� it sets the �do�not�preempt�me� bit� When the dequeue op�
eration completes� it resets the �do�not�preempt�me� bit� If the queue becomes
full while an application is dequeuing something from the queue� the operating

� Similar mechanisms has been used to avoid preempting a user
level thread while
executing in a critical section �����

system driver that handles the bu�er over�ow interrupt� does not allocate a new
bu�er but sets a �full�queue� �ag� When the interrupt handler returns� the appli�
cation will resume execution� and it will complete the dequeue operation� When
the dequeue operation completes� it checks the �full�queue� �ag� If the �ag is set�
the application will invoke the network interface driver �e�g� through an ioctl

call� to allocate more space for the queue and to enable the network interface to
handle further enqueue operations� This solution works even in multiprocessor
workstations that share a single network interface� with only one additional re�
quirement� threads that execute concurrent dequeue operations �from the same
queue� have to synchronize through a lock variable �associated with the queue��
The �rst instruction of a dequeue operation is to acquire the lock� and the last
instruction is to release the lock� Thus� while a thread is dequeuing data from a
queue� no other thread is allowed to do the same� and thus no other thread can
access shared information like the �do�not�preempt�me� bit and the �full�queue�
�ag� In case of bu�er over�ow� user�level threads should keep the lock up till the
time the operating system allocates more space for the queue� If the queue �lls
up while at the same time a thread is executing a dequeue operation� the op�
erating system allows the dequeue operation to complete� after the operation
completes it invokes the operating system to allocate more space for the queue
and to enable further network transactions�

��� Issuing an Enqueue Operation

An enqueue operation is invoked as� enq�vaddress�data� �where vaddress is the
virtual address of the base of the �rst queue bu�er and data are the data to be
enqueued�� In order to create a valid remote enqueue request packet� the network
interface needs to know the physical address paddr that corresponds to virtual
address vaddr� as well as the data argument� However� users are not allowed to
communicate physical addresses to the network interface� because �i� they no dot
know the mapping between virtual and physical pages� and �ii� malicious or igno�
rant users may request enqueue operations to physical addresses on which they
do not have read�write access� To alleviate this problem we use the mechanism
of shadow�addressing ��� ��� ���� The method of shadow addressing is used to
securely translate virtual to physical addresses and pass them to the network in�
terface from user�level processes� For each virtual address vaddr that is mapped
in the physical address paddr� there is also a shadow address shadow�vaddr��
which is mapped in the shadow physical address shadow�paddr��� The shadow
function is simple and known to the network interface� One simple shadow func�
tion is to concatenate each address with an extra shadow bit� When the shadow
bit is set� then the address is a shadow one� For example� �x�FFFFFFFF is a
regular ���bit address� while �x�FFFFFFFF is its shadow address�

An access to a shadow address is always interpreted by the network inter�
face as a special argument passing operation� For example� suppose that virtual

� The Operating System is responsible for creating both mappings at memory alloca

tion �initialization� time�

address vaddr is mapped to physical address paddr� and that the virtual ad�
dress shadow�vaddr� is mapped into shadow�paddr�� Normally� a load �store�
operation to virtual address vaddr by a user application is translated by the
TLB �page�table� into a load �store� operation to physical address paddr and
is performed by the appropriate memory controller� Similarly� a load �store� op�
eration to virtual address shadow�vaddr� is translated by the TLB into a load
�store� operation to physical address shadow�paddr�� When� however� this op�
eration reaches the network interface it will be treated as an argument passing
operation� and neither a load nor a store operation will be performed to physical
address shadow�paddr�� Thus� when the user application wants to pass to the
network interface the physical address paddr� it makes a store operation to vir�
tual address shadow�vaddr�� Eventually the physical address shadow�paddr�

reaches the network interface� which recognizes the shadow address and takes
the physical address paddr by applying function shadow�� to physical address
shadow�paddr�� �

Thus� a remote enqueue atomic operation is issued using a single assembly
instruction as follows�

REQ �vaddr� data�
�	 pass physical address shadow�paddr� to the
		 network interface 	�
STORE data TO shadow�vaddr�

� Summary

In this paper we describe a new operation� the remote�enqueue atomic operation�
which can be used in multiprocessors� and workstation clusters� This operation
atomically inserts a data element in a queue that physically resides in a re�
mote processors memory� This operation can be used for fast noti�cation of
message arrival� and for fast passing of small messages� Both enqueue and de�
queue operations can be issued from user�level processes without any need to
call the operating system� Both operations enforce standard virtual memory pro�
tection when accessing remote queues� and thus they provide full protection in
a general�purposed multiprogrammed environment� Compared to other software
and hardware queueing alternatives� remote�enqueue provides high speed at a
low implementation cost without compromising protection in a general�purpose
computing environment�

Acknowledgments

This work was supported in part by ESPRIT project ���� �Supercomputer
Highly Parallel System� �SHIPS�� funded by the European Union� through DG

� All shadow addresses should be within the physical address range of the network
interface� and distinct from the normal physical addresses used by that network
interface�

III of its Commission� HPCN Unit� We deeply appreciate this �nancial support�
without which this work would have not existed� A patent application for the
above work has been �led� E� Markatos� M Katevenis� and P� Vatsolaki� �No�
ti�cation of message arrival in a parallel computer system�� Patent application
number ����������� �Europe� March ��th �����

References

�� T�E� Anderson� D�E� Culler� and D�A� Patterson� A Case for NOW �Networks of
Workstations�� IEEE Micro� �	����	����� February ���	�

�� H� Bal� R� Hofman� and K� Verstoep� A Comparison of Three High Speed Net

works for Parallel Cluster Computing� In Proc� �st International Workshop on
Communication and Arch� Support for Network�Based Parallel Computing� pages
�������� �����

�� BBN Advanced Computers Inc� Inside the TC����TM Computer� Cambridge�
Massachusetts� February �����

�� M� Blumrich� K� Li� R� Alpert� C� Dubnicki� E� Felten� and J� Sandberg� Virtual
Memory Mapped Network Interface for the SHRIMP Multicomputer� In Proc� ���
th International Symposium on Comp� Arch�� pages �����	�� Chicago� IL� April
�����

	� M�A� Blumrich� C�Dubnicki� E�W� Felten� and K� Li� Protected� User
level DMA
for the SHRIMP Network Interface� In Proc� of the �nd International Sympo�
sium on High Performance Computer Architecture� pages �	����	� San Jose� CA�
February �����

�� N�J� Boden� D� Cohen� and W�
K� Su� Myrinet� A Gigabit
per
Second Local Area
Network� IEEE Micro� �	������� February ���	�

�� William J� Bolosky� Michael L� Scott� Robert P� Fitzgerald� Robert J� Fowler� and
Alan L� Cox� NUMA Policies and Their Relation to Memory Architecture� In
Proceedings of the Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems� pages �������� Santa Clara� CA�
April �����

�� E�A� Brewer� F�T� Chong� L�Tl Liu� S�D� Sharma� and J�D� Kubiatowicz� Remote
Queues� Exposing Message Queues for Optimization and Atomicity� In Symp� on
Parallel Algorithms and Architecures� ���	�

�� G� Buzzard� D� Jacobson� S� Marovich� and J� Wilkes� Hamlyn� a High

performance Network Interface� with Sender
Based Memory Management� In Pro�
ceedings of the Hot Interconnects III Symposium� August ���	�

��� A� Davis� M� Swanson� and M� Parker� E�cient Communication Mechanisms for
Cluster Based Parallel Computing� Technical report� University of Utah� Dept� of
Computer Science� �����

��� J� Edler� J� Lipkis� and E� Schonberg� Process Management for Highly Parallel
UNIX Systems� Technical Report Ultracomputer Note ���� Ultracomputer Re

search Laboratory� New York University� April �����

��� T� von Eicken� D� E� Culler� S� C� Goldstein� and K� E� Schauser� Active Messages�
A Mechanism for Integrated Communication and Computation� In Proc� ���th
International Symposium on Comp� Arch�� pages �	������ Gold Coast� Australia�
May �����

��� R� Gillett� Memory Channel Network for PCI� IEEE Micro� ��������� February
�����

��� J� Heinlein� K� Gharachorloo� S� Dresser� and A� Gupta� Integration of Message
Passing and Shared Memory in the Stanford FLASH Multiprocessor� In Proc�
of the ��th International Conference on Architectural Support for Programming
Languages and Operating Systems� pages ���	�� �����

�	� James C� Hoe and Mike Ehrlich� StarT
JR� A Parallel System from Commodity
Technology� In Proceedings of the �th Transputer�Occam International Conference�
November ���	� Tokyo� Japan�

��� Andrew W� Wilson Jr�� Richard P� LaRowe Jr�� and Marc J� Teller� Hardware
Assist for Distributed Shared Memory� In Proc� �	�th Int� Conf� on Distr� Comp�
Syst�� pages �����		� Pittsburgh� PA� May �����

��� V� Karamcheti� S� Pakin� and A� Chien� High Performance Messaging on Work

stations� Illinois Fast Messages �FM� for Myrinet� In Supercomputing �
� ���	�

��� Manolis G� H� Katevenis� Evangelos P� Markatos� George Kalokerinos� and Aposto

los Dollas� Telegraphos� A Substrate for High
Performance Computing on Work

station Clusters� Journal of Parallel and Distributed Computing� �������������
June �����

��� O� Lysne� S� Gjessing� and K� Lochsen� Running the SCI Protocol over HIC Net

works� In Proceedings of the Second International Workshop on SCI�based Low�
cost�High�perfocmance Computing �SCIzzL���� March ���	� Santa Barbara� CA�

��� E�P� Markatos� Using Remote Memory to avoid Disk Thrashing� A Simulation
Study� In Proceedings of the ACM International Workshop on Modeling Analysis
and Simulation of Computer and Telecommunication Systems �MASCOTS �����
pages ������ February �����

��� E�P� Markatos and C�E� Chronaki� Trace
Driven Simulations of Data
Alignment
and Other Factors a�ecting Update and Invalidate Based Coherent Memory� In
Proceedings of the ACM International Workshop on Modeling Analysis and Sim�
ulation of Computer and Telecommunication Systems �MASCOTS ����� pages ���
	�� January �����

��� E�P� Markatos and M� G�H� Katevenis� Telegraphos� High
Performance Net

working for Parallel Processing on Workstation Clusters� In Proc� of the
�nd International Symposium on High Performance Computer Architecture�
pages �����	�� Feb ����� URL� http���www�csi�forth�gr� proj�arch
vlsi�papers�
�����HPCA���Telegraphos�ps�gz�

��� E�P� Markatos and M� G�H� Katevenis� User
Level DMA without Operating
System Kernel Modi�cation� In Proc� of the 	rd International Symposium on
High Performance Computer Architecture� pages �������� Feb ����� URL�
http���www�csi�forth�gr�proj�aavg�papers� �����HPCA���user level dma�ps�gz�

��� D� Serpanos� Scalable Shared�Memory Interconnections� PhD thesis� Princeton
University� Dept� of Computer Science� October �����

�	� R� Sites� Alpha AXP Architecture� Communications of the ACM� ������������
February �����

��� Tandem Computers Inc�
ServerNet Technology� Introducing the Worlds First System Area Network� �����
http���www�tandem�com�INFOCTR�BRFS WPS�SNTSANWP�SNTSANWP�HTM�

��� Thorsten von Eicken� Anindya Basu� Vineet Buch� and Werner Vogels� U
Net� A
User
Level Network Interface for Parallel and Distributed Computing� In Proc�
�
�th Symposium on Operating Systems Principles� pages ���	�� December ���	�

��� Thomas M� Warschko� Joachim M� Blum� and Walter F� Tichy� The ParaPC �
ParaStation Project� E�cient Parallel Computing by Clustering Workstations�
Technical Report ������ University of Karlsruhe� Dept� of Informatics� �����

This article was processed using the LaTEX macro package with LLNCS style

