
Lightweight Transactions on Networks of Workstations

Athanasios E� Papathanasiou Evangelos P� Markatos�

Institute of Computer Science �ICS�

Foundation for Research � Technology � Hellas �FORTH�� Crete

P�O�Box ���	 Heraklio� Crete� GR
���
�� GREECE

markatos
ics�forth�gr� papathan
ics�forth�gr

http���www�ics�forth�gr�proj�avg�paging�html

Technical Report ���

September ����

Abstract

Although transactions have been a valuable abstraction of atomicity� persistency� and

recoverability� they have not been widely used in programming environments today� mostly

because of their high overheads that have been driven by the low performance of magnetic

disks� A major challenge in transaction�based systems is to remove the magnetic disk from

the critical path of transaction management�

In this paper we present PERSEAS� a transaction library for main memory databases

that decouples the performance of transactions from the magnetic disk speed� Our system

is based on a layer of reliable main memory that provides fast and recoverable storage of

data� We have implemented our system as a user�level library on top of the Windows NT

operating system� Our experimental results suggest that PERSEAS achieves performance

that is orders of magnitude better than traditional recoverable main memory systems�

� Introduction

Transactions have been valued for their atomicity� persistency� and recoverability properties�

which are useful to several systems� ranging from CAD environments� to �le systems and

�The authors are also with the University of Crete�

�



databases� Unfortunately� adding transaction support to an existing data repository has been

traditionally expensive� mostly due to the fact that the performance of transaction�based sys�

tems is usually limited by the performance of the magnetic disks that are used to hold the data

repository� A major challenge in transaction�based systems is to decouple the performance of

transaction management from the magnetic disk speed�

In this paper we present PERSEAS�� a transaction library for main memory databases that

decouples the performance of transactions from the magnetic disk speed� Our system is based

on a layer of reliable main memory that provides fast and recoverable storage of data� This

reliable memory layer is achieved by mirroring data into more than one main memories of �at

least two� di�erent PCs �or workstations�� connected to di�erent power supplies� E�cient data

mirroring is achieved by copying data from the main memory of one PC to the main memory

of another PC over a high�speed interconnection network�

On top of this reliable main memory layer PERSEAS builds an e�cient transaction library�

The existence of this reliable memory layer allows PERSEAS to implement fast transactions

that do not need magnetic disks as a reliable storage medium� If a workstation crashes� all its

main memory data can still be recovered� since they have been mirrored in the main memory of

another workstation� Data can be completely lost only if all mirror workstations crash �during

the same time interval�� However� such an event �unless scheduled by the system administra�

tors� in which case the database can gracefully shut down� is unlikely to happen� The most

likely reasons that cause a workstation to crash involve �a� power outage� �b� hardware error�

and �c� software error� Power outages are unlikely to lead to data loss� since mirror worksta�

tions are connected to di�erent power supplies �e�g� UPS	s�� which are unlikely to malfunction

concurrently� Software and hardware errors �in di�erent PCs� usually occur independent from

each other� and thus they can not lead to data loss� On the other hand� it is true that di�erent

�Perseas was one of the famous heroes of the ancient Greek mythology� Among the several achievements he

accomplished the most important one was the elimination of Medusa� a woman�like beast with snakes instead

of hair and the ability to turn into stone everyone� who looked at her gaze� Perseas managed to outcome her

by using his shield as a mirror� When Medusa tried to petrify him� her gaze fell upon her re�ection on Perseas�

shield� while Perseas got the chance to approach her and cut her head� In the same way Perseas killed Medusa�

the PERSEAS transactional library uses mirroring to support reliable and atomic transactions while at the same

time eliminating its own opponent� the overhead imposed to transactions due to synchronous accesses to stable

storage �usually magnetic disks��






PCs may block �i�e� hang� together at the same time if they access a common crashed source

�e�g� a crashed �le server�� Although such correlated disruptions in service may happen� they

do not lead to workstation crashes and correspondingly to data loss� that is� they may a�ect

the performance� but not the correctness of the mirroring mechanism� Thus� we believe that

our approach leads to a level of reliable memory on top of which transactions can be e�ciently

implemented� The rest of the paper is structured as follows� Section 
 surveys previous work�

Sections � and 
 present the design and implementation of our system� Section � presents our

experimental results� and section � concludes the paper�

� Related Work

Using Remote Main Memory to improve the performance and reliability of I�O in a Network of

Workstations �NOW� has been previously explored in the literature� For example� several �le

systems �
� �� ��� 

� use the collective main memory of several clients and servers as a large �le

system cache� Paging systems may also use remote main memory in a workstation cluster to

improve application performance ��
� ��� 
�� 

�� Even Distributed Shared Memory systems can

exploit the remote main memory in a NOW ���� �� for increased performance and reliability� For

example� Feeley et� al describe a log�based coherent system that integrates coherency support

with recoverability of persistent data ����� Their objective is to allow several clients share a

persistent storage through network accesses� Our approach is signi�cantly simpler than �����

in that we do not provide recoverable support for shared�memory applications� but for tradi�

tional sequential applications� The simplicity in our approach leads to signi�cant performance

improvements� For example� ���� reports at most a factor of � improvement over unmodi�ed tra�

ditional recoverable systems �i�e� RVM�� while our performance results suggest that PERSEAS

results in four orders of magnitude performance improvement compared to unmodi�ed RVM�

Persistent storage systems provide a layer of virtual memory� �navigated though pointers��

which may outlive the process that accesses the persistent store �
�� 
��� We believe that our

approach complements persistent stores in that it provides a high�speed front�end trsansaction

library that can be used in conjuction with the persistent store�

The Harp �le system uses replicated �le servers to tolerate single server failures �

� as

follows� each �le server is equipped with a UPS to tolerate power failures� and speedup syn�

�



chronous write operations� Although PERSEAS and Harp use similar approaches �redundant

power supplies and information replication� to survive both hardware and software failures�

there are several di�erences� the most important being that our work is concerned mostly with

user�level transaction�based systems that make lots of small read and write operations� In

contrast� Harp is a kernel�based �le system that sustains hardware and software failure�

The Rio �le system changes the operating system to avoid destroying its main memory

contents in case of a crash ���� Thus� if a workstation is equipped with a UPS and the Rio �le

system� it can survive all failures� power failures do not happen �due to the UPS�� and software

failures do not destroy the contents of the main memory� However� even Rio may lead to data

loss in case of UPS malfunction� In these cases� our approach that keeps two copies of sensitive

data in two workstations connected to two di�erent power supplies� will be able to avoid data

loss� Vista �
�� is a recoverable memory library being implemented on top of Rio� Although

Vista achieves impressive performance� it can provide recoverability only if run on top of Rio�

which� by being a �le system is not available in commercial operating systems� On the contrary�

our approach provides performance comparable to Vista� while at the same time� it can be used

on top of any operating system� In our current implementation� PERSEAS runs on top of

the unmodi�ed Windows NT operating system� In case of long crashes �e�g� due to hardware

malfunction� data� although safe in Vista	s cache� are not accessible� until the crashed machine

is up and running again� In PERSEAS� even during long crashes� data are always available�

since data exist in the main memories of �at least� two di�erent workstations� if one of them

crashes� the data can still be accessed through the other workstation�

Ioanidis et al� have proposed the use of remote memory to speed up synchronous write

operations used in the Write Ahead Log �WAL� protocol ����� In their approach� they repli�

cate the Log �le in two main memories and substitute synchronous disk write operations with

synchronous remote memory write operations and asynchronous disk write operations� Al�

though their approach is related to ours� there still exist signi�cant di�erences� In case of

heavy load� write bu�ers will become full and the asynchronous write operations of ���� will

become synchronous� thereby delaying transaction completion� Moreover� the transaction com�

mit performance of ���� is limited by disk throughput �all transactions write their data to disk

even if they do so asynchronously�� In PERSEAS� transaction performance is limited only by

network performance� and not magnetic disk speed� Current architecture trends suggest that






disk latency �throughput� improves ��� �
��� per year� while interconnection network latency

�throughput� improves at the much higher rates of 
�� �
��� per year ���� Thus� approaches

that get rid of magnetic disk accesses �like PERSEAS � provide increasingly better performance�

Network �le systems like Sprite �
�� and xfs �
� ��� can also be used to store replicated data

and build a reliable network main memory� However� our approach� would still result in better

performance due to the minimum �block� size transfers that all �le systems are forced to have�

Moreover� our approach would result in wider portability since� being user�level� it can run on

top of any operating system� while several �le systems� are implemented inside the operating

system kernel�

Franklin� Carey� and Livny have proposed the use of remote main memory in a NOW as a

large database cache ����� They validate their approach using simulation� and report very en�

couraging results� Gri�oen et� al proposed the DERBY storage manager� that exploits remote

memory and UPSs to reliably store a transaction	s data ����� They simulate the performance

of their system and provide encouraging results�

Feeley et� al� proposed a generalized memory management system� where the collective

main memory of all workstations in a cluster is handled by the operating system ����� Their ex�

periments suggest that generalized memory management results in performance improvements�

For example� OO� on top of their system runs up to 
�� times faster� than it used to run on top

of a standard UNIX system� We believe that our approach complements this work in the sense

that both ���� and ���� improve the performance of read accesses �by providing large caches��

while our approach improves the performance of write�dominated transaction�based systems�

To speed up database and �le system write performance� several researchers have proposed to

use special hardware� For example� Wu and Zwaenepoel have designed and simulated eNVy �����

a large non�volatile main memory storage system built primarily with FLASH memory� Their

simulation results suggest that a 
 Gbyte eNVy system can support I�O rates corresponding

to ������ transactions per second� To avoid frequent writes to FLASH memory� eNVy uses

about 

 Mbytes of battery�backed SRAM per Gbyte of FLASH memory� Although the cost

of eNVy is comparable to the cost of a DRAM system of the same size� eNVy realizes its cost

e�ectiveness only for very large con�gurations� for hundreds of Mbytes� Furthermore� although

the chip cost of eNVy may be low� its market price will probably be much higher� unless

it is massively produced and sold� Thus� eNVy would be used only for expensive and high�

�



�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

Local DRAM

DB

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

DB
Mirrored

Network
DRAM

Local Node

Remote Nodes

Figure �� Reliable Network RAM � Mirroring� The unexploited memory of idle work�

stations is used to create a layer of reliable network RAM� Sensitive data� like those of a Main

Memory Database System �MMDB�� can be mirrored in remote memory to increase their reli�

ability�

performance database servers� and not for ordinary workstations� As another example� Baker

et al� have proposed the use of battery�backed SRAM to improve �le system performance ����

Through trace�driven simulation they have shown that even a small amount of SRAM reduces

disk accesses between 
�� and ��� even for write�optimized �le systems� like log�based �le

systems�

Summarizing� PERSEAS is a user�level� easily portable transactional library� implemented

on top of a user�level reliable main memory� which can result in good transaction performance�

Previous approaches have been mostly based on providing fast recoverability by modifying

operating system internals� an approach that signi�cantly limits their widespread use�

� Design

The work presented in this paper may be separated into two di�erent layers� a level of reliable

�or recoverable� network RAM and PERSEAS� a user�level transactional library�

In a network of workstations� signi�cant portions of main memory remain idle for long

periods of time� In this project� these segments of �free� physical memory are used as a form of

reliable memory� Sensitive data are stored in the main memory of more than one workstations�

�mirroring�� and may be recovered in case of workstation failures �Figure ���

�



main memory
database

undo log

database redo log
magnetic disks

(1)

(2)

(3)

Figure 
� The Write�ahead logging Protocol� Three copies are necessary for an update

operation� Firstly� the undo log is created with a memory copy operation� Secondly� the modi�ed

data propagate to the redo log� Finally� when several transactions have commited� data from

the redo log propagate to the database in stable storage�

Transactional libraries provide the characteristics of atomicity and persistence to transac�

tions� and can be used to support database systems� persistent languages and �le systems� To

implement reliable transactions� most database systems use a �write ahead� log �le� which must

reside in stable storage �usually magnetic disks�� Accesses to the log �le are usually in the crit�

ical path of the transaction processing and need synchronous input�output� Some well�known

examples of systems that use the Write�Ahead Logging Protocols are RVM ���� and ARIES

�
���

As shown in Figure 
� the Write�Ahead Logging Protocol involves three copy operations�

When a transaction begins the original data of the portion of the database to be updated are

copied temporarily to a memory region called undo log� The undo log is used to undo quickly

any modi�cations in the database in case the transaction aborts� When the transaction has

updated the database� the modi�cations propagate to a �le� which resides in stable storage� the

write�ahead log �le or redo �le� At this point the transaction commits and the space occupied

by the undo log is freed� When several transactions have commited� the updates that have

been logged in the redo �le are copied to the original database and space from the redo log is

reclaimed�

PERSEAS eliminates the redo log �le� used in the Write�Ahead Logging Protocol� as well

as synchronous disk accesses by using network memory as reliable memory� A reliable network

�



memory layer may be developped over a high�throughput� low�latency network interface� like

Myrinet �
�� U�net ��
�� Memory Channel ��
�� SCI ����� and ATM� Some Network interfaces

have transparent hardware support for mirroring� which makes PERSEAS easier to implement�

Such systems include PRAM ����� Telegraphos �
��� and SHRIMP ����

Three major operations are necessary to make this possible�

� remote malloc� The remote malloc operation can be used to map physical memory from

a remote node to the calling process	s virtual address space�

� remote free� Remote free is used to free an occupied remote main memory segment�

� remote memory copy� The remote memory copy operation is similar to a memcpy or

bcopy operation with the exception that it copies data between local and remote main

memory segments�

The operations described above create the layer of reliable network RAM� which is used by

PERSEAS to support atomic and recoverable transactions without the need for a redo log �le�

PERSEAS o�ers a simple interface through which applications can make persistent stores

and atomic updates� PERSEAS	 interface consists of the following procedures�

� PERSEAS init

� PERSEAS malloc

� PERSEAS init remote db

� PERSEAS begin transaction

� PERSEAS set range

� PERSEAS commit transaction

� PERSEAS abort transaction

After calling PERSEAS init� which initializes the PERSEAS transactional library� the ap�

plication can call PERSEAS malloc in order to get local memory space for the database records�

In addition to the above� PERSEAS malloc prepares the remote memory segments� in which

the database records will be mirrored� As soon as the local records have been set to their initial

�



Network
DRAM

Local Node

Remote Nodes

Local DRAM

DB

DB
Mirrored

undo log

(1)

remote undo log

(2)

(3)

Figure �� Atomic � Reliable Transactions with PERSEAS � Only threememory copies

are necessary for a transaction� Firstly� the before image of the database is copied in the undo

log in local memory �Step ��� Data in the local undo log propagate to the remote undo log with

a remote write operation �Step 
�� Finally� the updated portion of the local database is copied

to the equivalent portion in the remote database �Step ��� All accesses to stable storage� like

magnetic disks� have been eliminated�

values� the application has to call PERSEAS init remote db to initialize the remote database

segments� At this point the database has been completely mirrored to network DRAM�

Applications start a transaction by calling PERSEAS begin transaction� Before making

any updates� the applicaton should notify the transactional library of the portion �or por�

tions� of the database that is going to be updated� This is done through a call �or more� to

PERSEAS set range� This call has as a result the logging of the segment	s original image to

an undo log� To reassure the correct recovery of the database in case of a system crash the

undo log is also copied to the remote node	s memory� The local undo log is used to undo quickly

any modi�cations to the database records in case the transaction aborts� The remote undo log

might be necessary during recovery� if some modi�cations of the database propagated to the

remote node before the local system	s failure� After this step� the application can update any

portions of the database� for which PERSEAS set range has been called �Figure ���

After the completion of the update operation� the modi�ed portions of the database have to

be copied to the equivalent portions in the memory of the remote nodes� This is done through a

call to PERSEAS commit transaction� With this call the undo logs are discarded and the trans�

action commits� In case the transaction aborts� the application may use

�



PERSEAS abort transaction to undo any modi�cations to the database� This function per�

forms just a local memory copy operation�

In case of failure of the primary �local� node� PERSEAS can use the data found in the

network memory to recover the database� If the modi�ed data had started propagating to the

remote �secondary� node before the local system	s failure� then the original data� which can be

found in the remote undo logs are copied back to the remote database� in order to discard any

illegal updates� With this memory copy operation the remote database is brought in a legal

state and can be used to recover the local database� In any other case� the remote database

segments are legal and the local database is recovered with just one �for each database record�

remote�to�local memory copy operation�

Another important advantage of PERSEAS is the availability of data� Data in network

memory are always available and accessible by every node� In any case of single node failures�

the database may be reconstructed quickly in any workstation of the network and normal

operation of the database system can be restarted immediately�

� Implementation

Our current version of PERSEAS is implemented on top of two PCs with ���MHz Pentium

processors and ��MB of main memory� running Windows NT 
��� The network interface used

is a PCI�SCI �Scalable Coherent Interface� Cluster Adapter Card manufactured by Dolphin

and con�gured in ring topology� The PCI�SCI card is a high�throughput� low�latency network

interface� which can support remote write and remote read operations�

Write operations to contigious remote memory addresses through the PCI�SCI network

interface can give throughput similar to the local memory subsystem� The application end�to�

end one�way latency for one 
�Byte remote store is 
�� microseconds� To achieve this kind of

performance� the PCI�SCI card contains �� internal �
�byte bu�ers� Half of them are used for

write operations� while the other half is used by read operations� The PCI�SCI card devides

the physical memory of a node into �
�Byte chunks� Every �
�byte memory region is aligned

on a �
�byte boundary� Each chunk is mapped to a �
�Byte bu�er in the PCI�SCI chip� The

six least�signi�cant bits of the address de�ne its o�set in the bu�er� while bits ��� identify the

bu�er which relates to the speci�c address �Figure 
�� Stores to contigious memory addresses are

��



31 6 5 08

Eight 64-byte (16-word)
SCI Buffers

word 0

word 15

buffer 0

buffer 7

Sci buffer id

offset

Word’s Physical Address
Bit:

Figure 
� SCI Internal Bu�ers � Physical Address Mapping� The six least signi�cant

bits of a word	s physical address de�ne the word	s o�set in an SCI bu�er� while bits � through

� specify to which of the eight internal bu�er the word belongs�

gathered in the bu�ers �store gathering�� and each address stream �bu�er� can be transmitted

or gather data independently of each other �bu�er streaming�� In this way� the overhead of

sending an SCI packet through the network is amortized over many store operations� Full SCI

bu�ers are �ushed as whole �
�byte SCI packets� while half��lled bu�ers are transmitted as a

set of ���Byte packets� In addition to the above� store operations which involve the last word

of a bu�er give better latency results� because of the way the bu�ers of the PCI�SCI chip are

�ushed�

Several experiments conducted with the PCI�SCI network interface have shown us that for

memory copy operations of �
 bytes or more� it is better to copy �
�byte memory regions aligned

on �
�byte boundary �Figure ��� In this way� the PCI�SCI interface transmits whole �
�byte

packets� while the store gathering and bu�er streaming techniques work more e�ectively� For

data sizes of �� byte or less the store operation is performed as is� The PCI�SCI card sends

one or two �if the address range crosses the ���byte alignment boundary� ���byte packets� This

results to an end�to�end one way latency of 
������ or ��� microseconds respectively� Memory

copy operations of ����
 bytes may be performed as a �
�byte copy operation of a �
�byte

aligned memory region� if none of the word addresses maps to the last word of a bu�er� or

as a ����
 byte copy operation� if the sixteenth word of a bu�er is written� The second case

��



2

4

6

8

10

12

14

16

18

0 20 40 60 80 100 120 140 160 180 200

R
em

ot
e 

W
ri

te
 L

at
en

cy
 (

in
 m

ic
ro

se
co

nd
s)

Data size (in bytes)

"WordOffset0"

Figure �� SCI Remote Write Latency� This graph shows the application	s end�to�end one�

way latency for SCI remote write operations for data sizes between 
 and ��� bytes� The �rst

word of every write operation maps to the �rst word of an SCI bu�er� Stores of whole �
�byte

regions �aligned on �
�byte boundary� have the lowest latency for all data sizes greater than �


bytes� Remote stores of �
 and ��� bytes need ��� and ��� microseconds respectively�

may result in the creation of two ���byte SCI�packets �if the address range crosses the �
�byte

alignment boundary�� but the overhead for the creation of the second packet overlaps with that

of the �rst one due to bu�er streaming�

As mentioned in the previous section� the reliable network memory layer can be used through

three major operations� remote malloc� remote free and remote memory copy� To implement

these on top of PCI�SCI a client�server model is used� The server process� runs in the remote

node and is responsible for accepting requests �remote malloc and free� and manipulating its

main memory �exporting physical memory segments and freeing them when necessary�� The

client process sends requests to the server process and in the case of malloc requests blocks

until the request is serviced� As fas as the remote memory copy operation is concerned� the

memcpy function can be used� since remote memory is mapped to the virtual address space

of the client process� However� in our current implementation of PERSEAS� we have used a

more complicated sci memcpy function with several optimizations� that take advantage of the

PCI�SCI card	s behavior� described in the previous paragraph�

The PERSEAS communicates with the reliable network memory layer through the following

basic functions�

� sci get new segment

�




� sci free segment

� sci memcpy

� sci connect segment

The sci get new segment� sci free segment and sci memcpy functions implement the remote mal�

loc� free andmemory copy operations� while sci connect segment is used by PERSEAS to connect

to already created segments� The last function is necessary after a system crash� in which case

the remote node has already exported the requested segments� but the local node has lost the

pointers� through which it can access them� Speci�cally� sci connect segment maps to the calling

application	s virtual address space the requested remote memory segment�

PERSEAS malloc calls sci malloc to get memory space from a remote node� In this way�

for every database segment created in the local memory an equivalent segment is created

in remote memory� When the local database records have been initialized� the application

calls PERSEAS init remote db to copy them to the remote node� This call results to an

sci malloc call� At this point� the whole database has been mirrored to the remote node�

and the application can start executing transactions� The other basic PERSEAS functions

�PERSEAS begin transaction� PERSEAS commit transaction� PERSEAS set range and

PERSEAS abort transaction� perform only local memory copy operations and remote write

operations� using the sci memcpy or simple store commands� according to the occasion�

During recovery the primary node has to reconnect to the portions of memory where

PERSEAS metadata are kept� as well as to the remote database segments� Since the remote

segments already exist� the sci malloc function cannot be used� Instead� sci connect segment

is called every time a remote segment has to be remapped to the local virtual address space�

Firstly� the segments containing the PERSEAS metadata are reconnected� From these� the in�

formation� that is necessary to �nd and reconnect to the remote database records� is retrieved�

After this point all the information about the database status becomes available and recovery

proceeds as described in the previous section�

� Experimental Results

To evaluate the performance of our system and compare it to previous systems� we conducted

a series of performance measurements using a number of benchmarks� including TPC�B and

��



TPC�C� We draw on the benchmarks used by Lowell and Chen �
�� to measure the per�

formance of RVM ����� and Vista �
��� Actually� we use the exact code distributed from

http���www�eecs�umich�edu�Rio�� The benchmarks used include�

� Synthetic� a benchmark that measures the transaction overhead as a function of the

transaction size �i�e� the size of the data that the transaction modi�es�� Each transaction

modi�es a random location of the database� We vary the amount of data changed by each

transaction from 
 bytes to � Mbyte�

� debit�credit� a processes banking transactions very similar to the TPC�B�

� order�entry� a benchmark that follows TPC�C and models the activities of a wholesale

supplier�

All our experiments were run on two PCs connected with an SCI interconnection network

�
��� Each PC was equipped with a ��� MHz processor�

��� Performance Results

Figure � plots the transaction latency as a function of the transaction size� We see that for

very small transactions� the latency that PERSEAS imposes is less than �
 �s� which implies

that our system is able to complete more than ������ �short synthetic� transactions per second�

Previously reported results for main memory databases ����� suggest that the original imple�

mentation of the RVM main memory database can sustain at most �� �short� transactions per

second � a ��orders of magnitude performance di�erence� When RVM is implemented on top of

the Rio �le cache it can sustain about ����� �short� transactions per second �
��� Comparing

to Rio�RVM� our implementation achieves two orders of magnitude better performance� The

Vista main memory database� which is the fastest main memory database known to us� is able

to achieve very low latency for small transactions �in the area of � �s� �
���

Table � shows the performance of PERSEAS when running the debit�credit and order�

entry benchmarks� We have used various�sized databases� and in all cases the performance of

PERSEAS was almost constant� as long as the database was smaller than the main memory

size�

We see that PERSEAS manages to execute more than 
����� transactions per second for

debit�credit� Published performance results report that RVM barely achieves ��� transac�

�




10

100

1000

10000

100000

1 10 100 1000 10000 100000 1e+06 1e+07

T
ra

ns
ac

tio
n 

O
ve

rh
ea

d 
(i

n 
m

ic
ro

se
co

nd
s)

Transaction Size (in bytes)

Figure �� Transaction Overhead of PERSEAS � Very small transactions can be completed

in as little as �
 microseconds� resulting in a throughput of more than ������ transactions per

second� Even large transactions �� MByte� can be completed in less than a tenth of a second�

Benchmark Transactions per second

debit�credit 
��

�

order�entry ��
�


Table �� Performance of PERSEAS for benchmarks debit�credit and order�entry�

��



tions per second� RVM�Rio achieves little more than ����� transactions per second� and Vista

achieves close to ������ transactions per second� For order�entry� PERSEAS manages to exe�

cute about ����� transactions per second� Previously reported performance results suggest that

RVM achieves less than �� transactions per second� and Vista achieves a bit more than ������

transactions per second�

Summarizing� we see that PERSEAS clearly outperforms traditional recoverable virtual

memory systems by several orders of magnitude� Moreover� PERSEAS performs very close to

Vista �which is the most e�cient sequential recoverable main memory system today�� while it re�

tains its independence from operating system internals� while the performance of Vista depends

on extensive operating system kernel modi�cations� as manifested by the Rio �le cache� We

believe that PERSEAS composes the best features from RVM and Vista� the great performance

of Vista� with the operating system independence of RVM�

� Conclusions

In this paper we describe how to construct a layer of fast and reliable main memory in a Network

of Workstations� and how to build a fast transaction library on top of it� We implemented our

approach as a user�level library on top of a cluster of personal computers running Windows NT�

Based on our experiences and performance results we conclude�

� PERSEAS decouples transaction performance from magnetic disk speed� The performance

of traditional transaction systems is tied to disk latency� which is rather large and improves

slowly with time� Sophisticated optimization methods �like group commit� stripping� etc�

improve performance by decoupling transaction performance from disk latency and couple

it to disk throughput� On the other hand� PERSEAS decouples transaction performance

from magnetic disk speed� because it does not use disks as a short�term reliable storage

medium� Instead� it uses redundant power supplies� mirroring and fast main memories to

provide a layer of recoverable memory� which in turn can be used to implement transaction

libraries�

� PERSEAS results in signi�cant performance improvements� Compared to traditional

RVM� PERSEAS results in � orders of magnitude of performance improvement� PERSEAS

outperforms even sophisticated optimization methods �like group commit� by an order of

��



magnitude�

� PERSEAS provides e�cient and simple recovery� Mirrored data are accessible from any

node in the network� Thus� in case of any kind of failure in the primary node� the recov�

ery procedure can be started right�away in any available �working� workstation allowing

immediate recovery of the database� even if the crashed node remains out�of�order for a

long time�

� The performance bene�ts of our approach will increase with time� PERSEAS gains its

performance improvements by substituting disk accesses with remote memory accesses

�over a fast interconnection network�� According to current architecture trends� magnetic

disk speed improves ���
�� per year� while interconnection network speed improves much

faster� at a rate of 
��
�� per year ���� Thus� the performance gains of our approach will

probably increase with time�

Acknowledgments

This work was supported in part by PENED project �Exploitation of idle memory in a work�

station cluster� �
�
� 

�����
����� and in part by the ESPRIT�OMI project �ARCHES�

�ESPIRIT 
������ funded by the European Union� We deeply appreciate this �nancial support�

We also thank Dolphin Inc�� for giving us access to the PCI�SCI network interfaces� where

the described experiments were run�

References

��� R� D� Alpert� A� Bilas� M� A� Blumrich� D� W� Clark� S� Damianakis� C� Dubnicki� W� Fel�

ten E� L� Iftode� and K� Li� Early Experience with Message�Passing on the SHRIMP

Multicomputer� In Proc� ���th International Symposium on Comp� Arch�� Philadelphia�

PA� May �����

�
� T� E� Anderson� M� D� Dahlin� J� M� Neefe� D� A� Patterson� D� S� Roselli� and R� Y� Wang�

Serverless Network File Systems� ACM Transactions on Computer Systems� �
����
�����

February �����

��



��� M� Baker� S� Asami� E� Deprit� J� Ousterhout� and M� Seltzer� Non�volatile Memory for

Fast� Reliable File Systems� In Proc� of the ��th International Conference on Architectural

Support for Programming Languages and Operating Systems� pages ���

� Boston� MA�

October ���
�

�
� N�J� Boden� D� Cohen� and W��K� Su� Myrinet� A Gigabit�per�Second Local Area Network�

IEEE Micro� ������
�� February �����

��� Peter M� Chen� Wee Teck Ng� Subhachandra Chandra� Christopher Aycock� Gurushankar

Rajamani� and David Lowell� The Rio File Cache� Surviving Operating System Crashes�

In Proc� of the 	�th International Conference on Architectural Support for Programming

Languages and Operating Systems� pages �
���� �����

��� T� Cortes� S� Girona� and J� Labarta� PACA� A Cooperative File System Cache for Parallel

Machines� In �nd International Euro�Par Conference 
Euro�Par��
�� pages 
���
��� �����

Lecture Notes in Computer Science ��
��

��� M� Costa� P� Guedes� M� Sequeira� N� Neves� and M� Castro� Lightweight Logging for

Lazy Release Consistent Distributed Shared Memory� In Second Symposium on Operating

System Design and Implementation� pages ����
� October �����

��� M� Dahlin� Serverless Network File Systems� PhD thesis� UC Berkeley� December �����

��� M�D� Dahlin� R�Y� Wang� T�E� Anderson� and D�A� Patterson� Cooperative Cahing� Using

Remote Client Memory to Improve File System Performance� In First Symposium on

Operating System Design and Implementation� pages 
���
��� ���
�

���� M� J� Feeley� W� E� Morgan� F� H� Pighin� A� R� Karlin� H� M� Levy� and C� A� Thekkath�

Implementing Global Memory Management in a Workstation Cluster� In Proc� ���th Sym�

posium on Operating Systems Principles� pages 
���
�
� December �����

���� Michael J� Feeley� Je�rey S� Chase� Vivek R� Narasayya� and Henry M� Levy� Integrating

Coherency and Recovery in Distributed Systems� First Symposium on Operating System

Design and Implementation� pages 
���

�� November ���
�

��



��
� E� W� Felten and J� Zahorjan� Issues in the Implementation of a Remote Memory Paging

System� Technical Report ��������� Computer Science Department� University of Wash�

ington� November �����

���� M� Franklin� M� Carey� and M� Livny� Global Memory Management in Client�Server DBMS

Architectures� In Proceedings of the ��th VLDB Conference� pages �������� August ���
�

��
� R� Gillett� Memory Channel Network for PCI� IEEE Micro� �������
� February �����

���� J� Gri�oen� R� Vingralek� T� Anderson� and Y� Breitbart� Derby� A Memory Management

System for Distributed Main Memory Databases� In Proceedings of the 
th Internations

Workshop on Research Issues in Data Engineering 
RIDE ��
�� pages �������� February

�����

���� J� Hartman and J� Ousterhout� The Zebra Striped Network File System� Proc� ���th

Symposium on Operating Systems Principles� pages 
��
�� December �����

���� Dolphin ICS� PCI�SCI Cluster Adapter Speci�cation� ARCHES project Working Paper

No� �
�

���� L� Iftode� K� Li� and K� Petersen� Memory Servers for Multicomputers� In Proceedings of

COMPCON ��� pages �����
�� �����

���� S� Ioanidis� E�P� Markatos� and J� Sevaslidou� On using Network Memory to Improve the

Performance of Transaction�Based Systems� Technical Report ���� Institute of Computer

Science � FO�R�T�H�� March ����� Available from ftp���ftp�ics�forth�gr�tech�reports�

�
�� D� V� James� A� T� Laundrie� S� Gjessing� and G� S� Sohi� Scalable Coherent Interface�

IEEE Computer� 
������
���� June �����

�
�� K� Li and K� Petersen� Evaluation of Memory System Extensions� In Proc� ���th Interna�

tional Symposium on Comp� Arch�� pages �
���� �����

�

� B� Liskov� S� Ghemawat� R� Gruber� P� Johnson� L� Shrira� and M� Williams� Replication

in the Harp File System� Proc� ���th Symposium on Operating Systems Principles� pages



��
��� October �����

��



�
�� David E� Lowell and Peter M� Chen� Free Transactions With Rio Vista� In Proc� �
�th

Symposium on Operating Systems Principles� October �����

�

� E�P� Markatos and G� Dramitinos� Implementation of a Reliable Remote Memory Pager�

In Proceedings of the ���
 Usenix Technical Conference� pages �������� January �����

�
�� E�P� Markatos and M� Katevenis� Telegraphos� High�Performance Networking for Parallel

Processing on Workstation Clusters� In Proceedings of the Second International Symposium

on High�Performance Computer Architecture� pages �

����� February �����

�
�� M�J�Carey� D�J� Dewitt� and M�J� Franklin� Shoring up persistent applications� In Proc�

of the ���� ACM SIGMOD Conf� on Management of Data� ���
�

�
�� C� Mohan� D� Haderle� B� Lindsay� H� Pirahesh� and P� Schwarz� ARIES� A Transaction

Recovery Method Supporting Fine�Granularity Locking and Partial Rollbacks Using Write�

Ahead Logging� ACM Transactions on Database Systems� �������
���
� ���
�

�
�� J�E�B� Moss� Design of the Meneme Peristent Storage� ACM Transactions on O�ce

Information Systems� ��
���������� �����

�
�� M� Nelson� B� Welch� and J� Ousterhout� Caching in the Sprite Network File System� ACM

Transactions on Computer Systems� �������
���
� February �����

���� Dimitrios N� Serpanos� Scalable Shared Memory Interconnections 
Thesis�� Technical Re�

port CS�TR�

����� Department of Computer Science� Princeton University� October �����

���� M� Stayanarayanan� Henry H Mashburn� Puneet Kumar� David C� Steere� and James J�

Kistler� Lightweight Recoverable Virtual Memory� ACM Transactions on Computer Sys�

tems� �
���������� ���
�

��
� Thorsten von Eicken� Anindya Basu� Vineet Buch� and Werner Vogels� U�Net� A User�

Level Network Interface for Parallel and Distributed Computing� In Proc� ���th Symposium

on Operating Systems Principles� pages 
����� December �����

���� Michael Wu and Willy Zwaenepoel� eNVy� a Non�Volatile Main Memory Storage System�

In Proc� of the 
�th International Conference on Architectural Support for Programming

Languages and Operating Systems� pages ������ ���
�


�


