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Abstract

Transactions have been valued for their atomicity and recoverability properties that are useful
to several systems, ranging from CAD environment to large-scale databases. Unfortunately, adding
transaction support to an existing data repository was traditionally thought to be expensive, mostly
due to the fact that the performance of transaction-based systems is usually limited by the perfor-
mance of the magnetic disks that are used to hold the data repository. In this paper we describe how
to use the collective main memory in a Network of Workstations (NOW) to improve the performance
of transaction-based systems. We describe the design of our system and its implementation in two in-
dependent transaction-based systems, namely EXODUS, and RVM. We evaluate the performance of
our prototype using several database benchmarks (like OOT and TPC-A). Our experimental results
indicate that our system delivers up to two orders of magnitude performance improvement compared
to its predecessors.

1 Introduction

Transactions have been valued for their atomicity and recoverability properties that are useful to several
systems, ranging from CAD environment to large-scale databases. Unfortunately, adding transaction
support to an existing data repository was traditionally thought to be expensive, mostly due to the fast
that the performance of transaction-based systems is usually limited by the performance of the magnetic
disks that are used to hold the data repository. A major challenge in transaction-based systems is to
decouple the performance of transaction management from the performance of the disks.

In this paper we describe a novel way to improve the performance of transaction management by
using the collective main memory (hereafter called remote memory) in a Network of Workstations (NOW)
[2, 4, 16]. The main idea behind our approach is to reduce the number of disk accesses by substituting
them with (remote) main memory accesses. There are two main areas where remote memory can be
used to improve performance of a transaction-based system:

o Speeding up Read Accesses: The collective main memory in a NOW can be used as a large cache
of the transaction-based system. This cache is larger than any single workstation can provide,
and thus can be used to hold large amounts of data. Reading data from remote main memory
(over a high speed interconnection network), was shown to be significantly faster than reading data
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from a (local) magnetic disk [10]. This is due to the fact that current high-speed networks provide
higher throughput and lower latency than current high-speed disks. Architecture trends suggest
that this disparity between magnetic disks and interconnection networks will continue to increase
with time [10]. Thereby, the use of remote memory instead of magnetic disks (whenever possible)
will continue to result in everincreasing performance improvements.

o Speeding up Synchronous Write Operations to Reliable Storage: Transaction-based systems fre-
quently use synchronous write operations to force all modified data to disk at transaction commit
time. This is done so that the system will be able to recover in a consistent state after a hardware
or a software failure. We advocate (and show in this paper) that the set of remote main memories
in a NOW has comparable reliability to a magnetic disk, and thus can be used to hold sensitive
data that must survive a system crash. ' Synchronous write operations are dominated by the la-
tency of the medium where the write is performed. Remote memory latency is dictated by network
latency and is usually significantly lower than disk latency. Moreover, remote memory latency is
mostly induced by communication protocol processing (e.g. TCP/IP), which improves with pro-
cessor speed. On the other hand, disk latency is mostly induced by mechanical arm movements,
which does not improve at as fast. Thus, data can be synchronously written to remote memories
much faster than they can be written to a magnetic disk. This performance disparity will continue
to increase, according to current architecture trends.

The first of the above issues (reading from remote memory) has been somewhat explored in the areas
of file systems [1, 18, 21], paging [22] and global memory databases for workstation clusters [15, 17].
All previous work suggests that the use of remote main memory as a large file (database) cache results
in significant performance improvements. The thrust of this paper is on exploring the second issue:
using remote memory to speed up synchronous disk write operations. We believe that transaction-based
systems make lots of small synchronous write operations to stable storage, and thus they are going to
benefit significantly from any improvements to synchronous disk write operations.

Recent architecture trends in the area of interconnection networks, and Networks of Workstations
(NOWSs) make it more attractive than ever to use the main memory of remote workstations (within the
same workstation cluster) to speedup synchronous disk I/O operations, because the latency of Local
Area Networks has significantly decreased over the last few years. Traditional interconnection networks
(like Ethernet and FDDI) have latency in the range of several hundred microseconds. ATM networks
have latency in the range of a few hundred microseconds [26], while more recent networks (like SCI [24]
and Memory Channel [16]) have latency in the range of few microseconds. At the same time, disk latency
has remained in the order of a few milliseconds for several years now, and is not expected to improve at
a significant rate. Thus, operations dominated by disk latency (i.e. synchronous disk write operations)
will remain in the millisecond range. On the contrary, operations dominated by network latency (e.g.
synchronous remote memory write operations) may complete within microseconds.

Based on the current architecture trends, we believe that transaction-based systems should make use
of the remote main memory of a NOW, in order to avoid (synchronous) disk data transfers and substitute
them with (synchronous) network data transfers. To demonstrate our approach, we implemented our
approach within two existing transaction-based systems: The EXODUS storage manager [6], and the
RVM (Recoverable Virtual Memory) System [25]. Section 2 describes the design and the implementation
of our systems. We have run several benchmarks on top of the modified transaction systems and have
observed performance improvements up to two orders of magnitude. We report our performance results
in section 3. Section 4 places our work in context by surveying previous work and comparing it with our
approach. Finally section 5 concludes the paper.

2 Remote-Memory-based Transaction Systems

2.1 Reliable Main Memory

The performance of transaction-based systems is usually limited by slow disk accesses. During its lifetime,
a transaction makes a number of disk accesses to read its data (if the data have not been cached in main

I'We increase the reliability of remote main memory by using redundant power supplies (UPS) to survive power failures,
and mirroring of data to survive software failures.



memory), makes a few calculations on the data, writes its results back (via a Log file), and then, if all
goes well, it commits. Although disk read operations may be reduced with the help of large main memory
caches (or even network main memory caches [1, 15]), disk write operations at transaction commit time
are difficult to avoid, since the transaction’s modified data and meta-data have to reach stable storage
before the transaction is able to commit, otherwise a system crash would leave the data repository in a
non-consistent state. Several current transaction based systems use a magnetic disk as the stable storage,
and force all dirty data to it using the £sync(2) system call [6, 25]. 2 Magnetic disks can usually survive
power and software failures, thereby providing a stable medium to store data that must survive crashes.

We believe however, that in Networks of Workstations the collective main memory of all workstations
in the system can be made reliable in such a way as to survive power outages and software failures, and
thus become a viable alternative to disk storage for sensitive transaction data. We believe two are the
main sources of system crashes that may lead to data loss: (i) software failures, and (ii) power loss. We
deal with each of them in turn:

o Software failures are the result of software malfunctions, operating system crashes, etc. When the
operating system crashes and reboots, it may destroy the contents of its main memory, thereby
eliminating all data that have not been written to stable storage. Data that must survive software
failures are replicated to the main memories of (at least) two workstations that are connected in two
different power supplies (e.g. one is on a UPS, and the other is on the main power supply). Since
different workstations run different copies of the operating system, they will probably crash (due
to software errors) independent of each other. Thus, if the data that must survive software crashes
are replicated to two workstations, they will survive software failures with high probability. 3

e Power losses are the result of malfunctions in the power supply system. To cope with power losses
we assume the existence of two power supplies: one could be the main power supply, and the
second could be provided by an uninterrupted power supply (UPS). * A UPS for a workstation
can cost less than $100.00, making it a small percentage (< 5%) of the cost of a workstation. If
workstations are connected to UPSs, they will retain their main memory contents even after a
power loss. However, if a power loss is detected, the UPS gives plenty of time to workstations to
save their sensitive data to magnetic disks. °

Based on our description we advocate that using mirroring and UPSs, we can make the (remote)
main memory, a storage medium as reliable as the magnetic disk. Thus, sensitive data that need to be
synchronously written to disk, can be (synchronously) written to remote main memory with the same
level of reliability. Our described main memory system suffers from data loss once every several years,
which is the same level of reliability current magnetic disks provide.

2.2 EXODUS and RVM

To illustrate our approach we have modified a lightweight transaction-based system called RVM [25]
and the EXODUS storage manager [6] to use remote memory (instead of disks) for synchronous write
operations. After studying the performance of the systems, we concluded that they spend a significant
amount of their time, synchronously writing transaction data to their log file, which is used to implement
a two-phase commit protocol. When a transaction commits, all the data the transaction modified are
synchronously written to the log (stored as a UNIX file on a magnetic disk). After the mentioned data
are successfully written to the log, the system is allowed to proceed.

We have modified both EXODUS and RVM so as to to keep a copy of their log file in remote
main memory (as well as the disk). The unmodified systems force all their sensitive data to the disk at

2 Although optimizations like group transaction commit have been proposed, these may increase the complexity of the
transaction-based system, and thus have not been incorporated in the EXODUS and RVM systems.

3Simple math calculations suggest that if each workstation crashes once every few months, and stays crashed for several
minutes, two workstations will crash within the same time interval once every several years, which leads to higher reliability
than current disks provide. If, however, this level of reliability is not enough, data can be replicated to three main memories,
etc.

4 Alternatively, both power supplies may be provided by two different UPSs.

5Note, however, that the UPS itself may malfunction, leading to power loss. Such malfunctions however, happen once
every several years, making the UPS more reliable machine than the magnetic disk. If, however, a UPS malfunctions
more frequently, sensitive data can be replicated to different workstations connected to different UPSs that malfunction
independent of each other.



transaction commit time using synchronous disk write operations. In our modified systems, we substitute
each synchronous write operation with the following two operations:

1. A synchronous write to the log “file” in the main memory of one remote workstation.

2. An asynchronous write to the log file on the magnetic disk. This operation is being carried in
the background and is used to preserve a local copy of the data in case the remote main memory
crashes.

Essentially, we substitute a synchronous disk write operation with a synchronous network write oper-
ation plus an asynchronous disk write operation (which has no effect on completion time since it proceeds
in the background, as long as adequate data buffering is provided). At the same time, our systems do
not compromise data reliability. Let’s examine what are the steps in writing data in our systems:

1. At transaction commit time, the transaction’s sensitive data are synchronously written to the log
in remote main memory

2. At the same time, these data are asynchronously written to the local magnetic disk
3. Eventually, the data reach the magnetic disk. ¢

The transaction is committed afterstep 2 completes. It seems that there is a “window of vulnerability”
between steps 2. and 3., that is after the data have been safely written to remote memory (and scheduled
to be written on the disk), but before the data have been safely written to magnetic disk. If the local
system crashes during this interval, then the data that are still in the local main memory buffer cache
will be lost during the crash. Fortunately, our system can still recover the seemingly lost data, since the
same data reside in the remote memory as a result of step 1. Data loss may happen only if both local
and remote systems crash during this interval. However, we have argued that the probability of both
systems (which are equipped with UPSs) crashing during the interval of few minutes is comparable (or
even lower) than the probability of a magnetic disk malfunction. Thereby our system provides levels of
reliability comparable to a magnetic disk.

2.3 Recovery

In the event of a workstation/network crash, our system needs to recover data and continue its operation.
If the local workstation crashes, and reboots, it will read all its “seemingly lost” data from the remote
memory, store them safely on the disk, and continue its operation normally. If the remote workstation
crashes, the local transaction manager will realize it after a timeout period. After the timeout, the local
manager may either search for another remote memory server, or just stop using remote memory, and
commit transactions to disk as usual. If the network crashes, the local workstation will stop using remote
memory and will commit all transactions to disk. In all circumstances, the system can recover within a
few seconds, in the worst case. The reason is that at all times there exist two copies of the log data: if
one copy is lost due to a crash, the system can easily switch to the other copy quickly.

2.4 Implementation

We have made the described changes to RVM and EXODUS. We call the resulting systems RRVM
(Remote RVM) and REX (Remote EXODUS). 7

Our systems have been completely implemented in user space, without any operating system mod-
ifications. For each transaction manager, we start a user-level remote memory server on a remote
workstation. The purpose of this server is to accept synchronous write requests from the transaction
manager and acknowledge them. In the case of a transaction manager crash, the remote memory server
is responsible for providing the contents of the Log file it keeps in its main memory. At all times, data
written by committed transactions either reside safely on the disk, or are stored in the main memory of
at least two workstations (the local transaction manager, and the remote memory server).

8 UNIX-derivative systems force all their modified data to the disk every 30-60 seconds.
7Our modification were rather small. Out of about 30,000 lines of RVM code, we modified (or added) less than 600
lines (2%). Out of 200,000 lines of EXODUS code, we modified (or added) less than 700 lines (a 0.3% change).



3 Experimental Evaluation

In this section we report the performance advantages of our systems RRVM and REX compared to the
original RVM and EXODUS systems.

3.1 RVM performance

We have implemented our RRVM system on top of Digital UNIX on a network of workstations. In this
section we will describe some of our experiments to measure its usability and performance.

3.1.1 Experimental Environment

Our experimental environment consists of a network of eight DEC Alpha 2000 workstations running at
233 MHz, equipped with 128 MBytes of main memory each. The workstations are connected through an
Ethernet interconnection network, a 100 Mbps FDDI, and a Memory Channel Interconnection Network
[16]. These three interconnection networks represent three different generations of LANs: Ethernet is a
traditional low-bandwidth network that provides low-cost connectivity without ambitious performance
goals. FDDI is a high-bandwidth network that provides higher speed at a slightly increased cost. Memory
Channel is a very high-bandwidth network that was designed to make possible a wide range of high
performance applications in Networks of Workstations. Each workstation is equipped with a 6GB local
disk.

In our experiments we demonstrated the performance of RRVM and compared it with its predecessor
RVM [25].

We have experimented with four system configurations:

e RVM: This is the unmodified RVM system [25]. It makes no use of the interconnection network,
since all its data are stored in a local disk.

e RRVM-ETHERNET: This is RRVM running on top of an Ethernet interconnection network.
e RRVM-FDDI: This is our RRVM system running on top of an FDDI interconnection network.

e RRVM-MC: This is RRVM running on top of the Memory Channel Interconnection Network.

3.2 I/0 Block Size

In our first set of experiments we would like to find out how many transactions per second our RRVM
system is able to sustain, compared to the number of transactions per second the unmodified RVM
system is able to sustain. For this reason we constructed the following experiment:

We create a file 100 Mbytes long. Then, we start a sequence of 10000 transactions. Each
transaction writes a segment of the file and commits. Transactions modify the file in sequential
manner. The size of the file segment modified by each transaction (also called I/O block size)
is the parameter of our experiments.

Figure 1 plots the number of transactions per second, for the original version of RVM, and our RRVM-UC,
RRVM-FDDI, and RRVM-ETHERNET. We see that the unmodified RVM system is able to sustain up to at most
40 transactions per second for small transactions. As the size of the I/O block gets larger, the number of
transactions per second successfully executed gets even lower. Our results agree with previously reported
results, in which RVM is able to sustain at most 50 transactions per second ([25], figure 8(b)). However,
the performance of RRVM-ETHERNET and RRVM-FDDI is significantly better than that of RVM. For small
transactions both RRVM systems are able to sustain close to 500 transactions per second: an order of
magnitude improvement over unmodified RVM. Even better, RRVM-MC manages to sustain close to 3,000
transactions per second: almost two orders of magnitude improvement over unmodified RVM. By looking
closely at figure 1 we see that the performance of RVM is practically the same for I/O block sizes between 0
and 10 Kbytes, which implies that the transactions overhead (for the above I/O block sizes) is dominated
by disk seek and rotational latency and not by the data transfer itself.
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Figure 1: Performance of RVM as a function of the I/O block size. Data file = 100 Mbytes, Log File =
8 Mbytes.

3.3 The Size of the Log

In this section we set out to answer how the size of the log file kept by RRVM influences the performance
of the system. The log file is synchronously written by transactions during their commit phase. When
the log file fills above a threshold, RVM reads it, truncates it and updates the data file. Thus, the log
file is used as a buffer between synchronous transaction writes and asynchronous data file updates. The
larger the log file, the better the performance of the system is expected to be.

To measure the performance effect of the log file size, we constructed the same experiment as pre-
viously, but instead of varying the I/O block size, we vary the log size and we keep the I/O block size
constant.

The results of our experiment (number of transactions per second) as a function the log size for I/O
block sizes of 128 and 512 bytes are plotted in figures 2 and 3 respectively.

We see that all systems have poor performance for small log sizes (a few Kbytes long), especially
for the larger I/O block size. The reason is that very small logs force applications to suffer almost two
synchronous write operations per transaction: one to write the dirty data to the log (at transaction
commit time), and one to empty the log to the data file. Fortunately, the performance in all systems
gets better and almost constant for logs larger than 32 Kbytes. In all cases the performance of both
RRVM systems is significantly better than the performance of the unmodified RVM system: between one
and two orders of magnitude for small transactions.

3.4 Random Accesses

Next, we set out to explore the performance of our transaction-based system in a random accessed envi-
ronment. Thus, we repeated the previous experiment, but instead of accessing the data file sequentially,
the transactions access the data file completely randomly. The performance of our systems for log size
8 Mbytes is shown in figure 4.

We see that all RRVM-MC, RRVM-FDDI, and RRVM-ETHERNET perform much better than RVI, as expected.
However, the number of transactions per second sustained by RRVM-FDDI and RRVM-ETHERNET is a little
less than 200 (for small transactions), and around 2,500 for RRVM-MC: a reduction in the performance
observed so far. There are two reasons for this performance reduction: increased number of page faults,
and disk I/O operations. When a file is accessed by 10000 transactions, and each transaction accesses
32 bytes of data, a total of 320 Kbytes of data are accessed. If these transactions access sequential data,
they will access in total 320/8 = 40 pages. If, however, the transactions access data randomly, they will
access many more pages. Thus, both the number of page faults, and the number of disk I/O operations
are significantly lower in the case of sequential transaction accesses, as compared to random transaction
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accesses. Even though, the transactions per second sustained by RRVM is very good (around 2,500
transactions per second for small transactions, on top of Memory Channel).

3.5 Network Load

Our next set of experiments explores the network load that our RRVM system imposes. 2 Our previous
experiments suggest that on top of a lightly-loaded network, RRVM performs much better than tra-
ditional RVM. What is interesting to explore now, is what will be the performance of RRVM if several
instances of it run concurrently and put significant pressure on the interconnection network. Will the
network be able to handle the increased communication demands, or will it collapse? To answer this
question we constructed the following experiment:

We create several instances of RRVM clients. For each client, there is also an RRVM server.
All clients and all servers run on different workstations. All workstations are connected to the
same interconnection network (Ethernet or FDDI). We progressively increase the number of
client/server pairs participating in the experiment and measure the transactions per second
each RRVM system (client/server pair) is able to sustain. Each RRVM system executes the
experiment described in section 3.2.

In our experiments the log size was set to 8 Mbytes and the I/O block size to 32 Bytes. Figure 5
plots the number of transactions per second for each RRVM system (client-server pair) as a function of
the number of workstations participating in the experiment. First of all, we see that the performance
of the unmodified RVM system stays the same independent of how many workstations participate in the
experiment. This is as expected, since RVM makes all traffic to its local disk, and does not put any
network load. We also notice that the performance of RRVM-ETHERNET decreases with the number of
workstations. If there is only one pair of workstations in the network, RRVM-ETHERNET sustains close
to 500 transactions per second, while when four pairs of workstations participate in the experiment, it
sustains close to 150 transactions per second. ® Even so, its performance is three times better than
the performance of unmodified RVM which sustains less than 50 transactions per second. Finally, we see
that the performance of RRVM-FDDI is practically constant even when eight workstations participate in
the experiment. The reason is simple: FDDI has ten time more throughput than ETHERNET, and
can sustain several heavily-communicating workstations. Furthermore, under heavy load, Ethernet may
suffer from increased number of collisions that may lead to throughput collapse.

Figure 6 plots the results of the same experiment for transaction size equal to 2 Kbytes. Again, we
observe that the performance of RRVM-FDDI stays practically the same, independent of the communicating
workstations. Although the performance of RRVM-ETHERNET decreases with the number of participating
workstations, it is much better than the performance of unmodified RVM system.

3.6 Server Load

Although RRVM does not impose any significant network load on top of modern interconnection networks
(e.g. FDDI), we would like to investigate whether RRVM imposes any significant computation load on
the server workstation. For this reason, we repeated the previous experiments, with the difference that
all RRVM servers were running on a single workstation. This experiment puts pressure not only on the
network, but on the single server workstation as well. The performance of RRVM as a function of the
number of participating clients is shown in figures 7 and 8 for I/O block sizes 32 bytes and 2 Kbytes
respectively. Both figures suggest that there is some performance decrease as the number of participating
workstations increases, esp. for small block sizes. On the other hand, the fotal number of transactions
per second sustained stays particularly high in all cases ranging from 712 to 1076 transactions per second
for FDDI-based systems, and from 352 to 544 transactions per second or Ethernet-based systems.

The performance of RVM is much lower, reaching at most 128 total transactions per second for the
four RVM systems executing.

8Due to technical difficulties we were not able to run these experiments on top of Memory Channel.
9Since each client/server pair sustains 150 transactions per second, the total number of transactions per second sustained
in the Ethernet-based system is 4 X 150 = 600.
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Accounts (x1024) | Unmodified RVM | RRVM-ETHER | RRVM-FDDI
32 44.24 203 262
128 44.41 201 261
512 44.35 199 260
1024 31.08 193 250
Figure 9: TPCA-A: Sequential Accesses
Accounts (x1024) | Unmodified RVM | RRVM-ETHER | RRVM-FDDI
32 43.2 182 230
128 40.4 144 171
512 41.6 89 96
1024 21.6 53 67

Figure 10: TPCA-A: Random Accesses

3.7 TPC-A

To place our RRVM system in the right perspective with previously published performance results, we
run the widely used TPC-A database benchmark on top of it. The same benchmark was run on the
original RVM system and its performance was reported in [25]. In the original RVM system, the log
file and the data file were stored on different local disks, so as to eliminate any interference between the
accesses to the different files.

Figure 9 shows the performance of our RRVM systems, and the original (unmodified) RVM system
as a function of the number of accounts. In this experiment accesses to the database are sequential.
We see that although the original RVM system barely achieves more than 40 transactions per second,
RRVM-ETHERNET achieves 200 transactions per second, while RRVM-FDDI achieves more than 260 trans-
actlons per second - an order-of-magnitude improvement over the original RVM.

We make similar observations by looking at the experiments for random accesses and localized accesses
in figures 10 and 11 respectively. Both RRVM systems are significantly better than the unmodified RVM.
Their performance improvements range from a factor of 2.6 to 6.

3.8 EXODUS
3.8.1 Experimental Environment

Our experimental environment for EXODUS consists of a network of Supersparc-20 workstations. The
workstations are connected through a 100 Mbps FDDI, and a 10Mbps Ethernet interconnection network.
3.8.2 007

Oun top of EXODUS we run a common database benchmark called OO7 [5]. We used three versions of
EXODUS:

Accounts (x1024) | Unmodified RVM | RRVM-ETHER | RRVM-FDDI
32 43.4 186 239
128 41.8 159 197
512 41.9 127 154
1024 28.7 84 93

Figure 11: TPCA-A: Localized Accesses
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Figure 12: Performance of OO7 running on top of EXODUS.

e EXODUS: This is the unmodified EXODUS system [6].

e REX-FDDI: This is our modified EXODUS (REX) system running on top of an FDDI interconnec-
tion network.

e REX-ETHERNET: This is REX running on top of an Ethernet interconnection network.

Figure 12 plots the completion time of various parts of the OO7 benchmark on top of EXODUS.
We see that in all cases REX has superior performance compared to the unmodified EXODUS systems.
Actually, REX-FDDI is sometimes more than 3 times faster than EXODUS (see for example t5do, and
t6). Although we do not see the impressive performance difference we demonstrated in the previous
section (since OOT stresses all aspects of the system, not just transaction commit), our measurements
suggest that REX results in noticeable performance improvement over the unmodified EXODUS storage
manager.

4 Related Work

Using Remote Main Memory to improve the performance and reliability of I/O in a Network of Worksta-
tions (NOW) has been previously explored in the literature. For example, several file systems [1, 8, 18, 21]
use the collective main memory of several clients and servers as a large file system cache. Paging sys-
tems may also use remote main memory in a workstation cluster to improve application performance
[14, 19, 20, 22]. Even Distributed Shared Memory systems, can exploit the remote main memory in a
NOW [13, 9] for increased performance and reliability.

The closest of these systems to our research is the Harp file system [21]. Harp uses replicated file
servers to tolerate single server failure. Each file server is equipped with a UPS to tolerate power
failures, and speedup synchronous write operations. Although RRVM and REX use similar approaches
(redundant power supplies and information replication) to survive both hardware and software failures,
there are several differences between our work and Harp:
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e Data Granularity: Our work is concerned mostly with transaction-based systems that make lots of
small read and write operations. Being able to efficiently read and write a small amount of data
is particularly important for the performance of these systems. On the contrary, Harp (by being a
file system) can not address data at a granularity finer than a file block. Thus, to read/write even a
single byte of data, Harp will have to read/write an entire block of data, which leads to significant
performance degradation. Our performance results suggest that on top of a workstation cluster
connected via Ethernet, RRVM is able to sustain several hundred (short) transaction operations
per second (see figure 1). Published results for Harp [21], suggest that it is able to sustain several
tens of NFS operations per second. This implies, that if each transaction needs at least one NFS
operation, then the number of transactions per second that Harp will be able to sustain is an order
of magnitude lower than our RRVM system.

o Open User Level Implementation: RRVM is linked with user applications as a library, outside the
operating system kernel. Thus, it is portable and easily modifiable; any ordinary computer user
can link RRVM to their program and run it. In contrast, Harp runs inside the operating system
kernel, which makes it difficult to port and install. Users will be able to benefit from Harp, only
if the file system installed by the system administrators is Harp, or a Harp derivative. Currently
there are very few file systems (if at all) that provide functionality similar to Harp. Moreover, Harp
adds significant overhead to applications that do not want/need the reliability Harp offers, but are
forced to use it and pay for it. On the contrary, in our systems, data replication (for reliability) is
only done for database applications, that need it and are willing to suffer its overhead. All other
applications run without any intervention from our systems.

Summarizing, Harp is a kernel-level file system that sustains hardware and software failures, while
our approach leads to open, portable, flexible, and lightweight user-level transaction-based systems.

The Rio file system changes the operating system to avoid destroying its main memory contents
in case of a crash [7]. Thus, if a workstation is equipped with a UPS and the Rio file system, it can
survive all failures: power failures do not happen (due to the UPS), and software failures do not destroy
the contents of the main memory. Systems like Rio may simplify the implementation of our approach
significantly. Unfortunately, few file systems (if any at all) follow Rio’s approach (although they should).
However, even Rio may lead to data loss in case of UPS malfunction. In these cases, our approach that
keeps two copies of sensitive data in two workstations connected to two different power supplies, will be
able to avoid data loss.

Network file systems like Sprite [23] and xfs [1, 11], can also be used to store replicated data and build
a reliable network main memory. However, our approach, would still result in better performance due
to the minimum (block) size transfers that all file systems are forced to have. Moreover, our approach
would result in wider portability since, being user-level, it can run on top of any operating system, while
several file systems, are implemented inside the operating system kernel.

Franklin, Carey and Livny have proposed the use of remote main memory in a NOW as a large
database cache [15]. They validate their approach using simulation, and report very encouraging re-
sults. Griffioen ef. al proposed that DERBY storage manager, that exploits remote memory and UPSs
to reliably store a transaction’s data [17]. They simulate the performance of their system and provide
encouraging results. Although our approach is related to the DERBY system, there are significant differ-
ences: (i) we provide a full-fledged implementation of our approach on two independent transaction-based
systems, (ii) we demonstrate the performance improvements of our system using the same benchmarks
that demonstrated the performance of the original RVM and EXODUS systems, (iii) DERBY places the
burden of data reliability to the clients of the database, while we place it to the transaction managers
who have better knowledge of how to manage the various resources (memory, disks) in the system.

Feeley et. al. proposed a generalized memory management system, where the collective main
memory of all workstations in a cluster is handled by the operating system [12]. Their experiments
suggest that generalized memory management results in performance improvements. For example, OO7
on top of their system runs up to 2.5 times faster, than it used to run on top of a standard UNIX system.
We believe that our approach complements this work in the sense that both [15] and [12] improve the
performance of read accesses (by providing large caches), while our approach improves the performance
of synchronous write accesses. Thus, if used both, they improve the performance of database applications
even further.
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To speed up database and file system write performance, several researchers have proposed to use
special hardware. For example, Wu and Zwaenepoel have designed and simulated eNVy [27], a large
non-volatile main memory storage system built primarily with FLASH memory. Their simulation results
suggest that a 2 Gbyte eNVy system can support I/O rates corresponding to 30,000 transactions per
second. To avoid frequent writes to FLASH memory, eNVy uses about 24 Mbytes of battery-backed
SRAM per Gbyte of FLASH memory. Although the cost of eNVy is comparable to the cost of a DRAM
system of the same size, eNVy realizes its cost effectiveness only for very large configurations: for
hundreds of Mbytes. Furthermore, although the chip cost of eNVy may be low, its market price will
probably be much higher, unless it is massively produced and sold. Thus, eNVy would be used only
for expensive and high-performance database servers, and not for ordinary workstations. As another
example, Baker et al. have proposed the use of battery-backed SRAM to improve file system performance
[3]. Through trace-driven simulation they have shown that even a small amount of SRAM reduces disk
accesses between 20% and 90% even for write-optimized file systems, like log-based file systems.

5 Conclusions

In this paper we described how to use several workstations in a NOW to provide fast and reliable access
to stable storage. Our approach consists of using network main memory to avoid synchronous disk I/0
as much as possible. By using data replication and redundant power supplies we increase the reliability
of remote main memory, and use it as a short-term non-volatile storage medium.

We have implemented our approach within the EXODUS storage manager and the RVM recoverable
virtual memory system. We have experimented with both systems running on top of a Network of
Workstations connected with a variety of interconnection networks ranging from the traditional Ethernet,
to the high-speed Memory Channel. Based on our implementation experience and performance results
we conclude:

o Qur approach can be easily incorporated in existing database systems. We have implemented our
approach on top of two different transaction based systems. Each implementation took only a few
weeks of programming, and consists completely of user-level software.

o RRVM provides significant performance improvements over RVM, even on top of Ethernet inter-
connection networks. Our results suggest that for small transactions, RRVM on top of Ethernet is
able to sustain 70-500 transactions per second, depending on the transaction access patterns. At
the same time, unmodified RVM sustains 30-50 transactions per second - an order of magnitude
less. Most of the benefits of our approach are realized on top of the high-speed Memory Chan-
nel interconnection network, where RRVM manages to sustain a little more than 2,500 (short)
transactions per second.

o RRVM s able to sustain several clients on top of the same interconnection network. Our results
suggest that even when four RRVM systems operate on top of the same Ethernet network, their
performance is 3-4 times better than the performance of RVM (for small transaction size). The
performance of the same clients on top of FDDI is 5-7 times better than the performance of RVI.

o The performance benefits of our approach will increase with time. The performance of our approach
is highly dependent on the latency and the bandwidth of the interconnection network on top of
which it runs. Since the latency and the bandwidth of interconnection networks quickly improve
with time, we expect the performance benefits of RRVM to improve at similar rates, at least in
the foreseeable future.

Based on our experiments, we believe that remote memory (as demonstrated through RRVM and
REX) is a viable alternative to synchronous disk I/O and should be considered seriously for implemen-
tation in databases and transaction-based systems in general.
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