
On using Network Memory to Improve the Performance of

Transaction�Based Systems

Sotiris Ioannidis� Evangelos P� Markatosy Julia Sevaslidouy

Computer Architecture and VLSI Systems Group
Institute of Computer Science �ICS�

Foundation for Research � Technology � Hellas �FORTH�� Crete
P�O�Box ���	

Heraklio� Crete� GR
���
�� GREECE
markatosics�forth�gr

tel� ����� �� ����		 fax� ����� �� ������

Technical Report ���� ICS�FORTH
htpp���www�ics�forth�gr�proj�avg�paging�html

Abstract

Transactions have been valued for their atomicity and recoverability properties that are useful
to several systems� ranging from CAD environment to large�scale databases� Unfortunately� adding
transaction support to an existing data repository was traditionally thought to be expensive� mostly
due to the fact that the performance of transaction�based systems is usually limited by the perfor�
mance of the magnetic disks that are used to hold the data repository� In this paper we describe how
to use the collective main memory in a Network of Workstations �NOW� to improve the performance
of transaction�based systems� We describe the design of our system and its implementation in two in�
dependent transaction�based systems� namely EXODUS� and RVM� We evaluate the performance of
our prototype using several database benchmarks �like OO� and TPC�A�� Our experimental results
indicate that our system delivers up to two orders of magnitude performance improvement compared
to its predecessors�

� Introduction

Transactions have been valued for their atomicity and recoverability properties that are useful to several
systems� ranging from CAD environment to large�scale databases� Unfortunately� adding transaction
support to an existing data repository was traditionally thought to be expensive� mostly due to the fast
that the performance of transaction�based systems is usually limited by the performance of the magnetic
disks that are used to hold the data repository� A major challenge in transaction�based systems is to
decouple the performance of transaction management from the performance of the disks�

In this paper we describe a novel way to improve the performance of transaction management by
using the collective mainmemory �hereafter called remote memory� in a Network of Workstations �NOW�
��� �� �	
� The main idea behind our approach is to reduce the number of disk accesses by substituting
them with �remote� main memory accesses� There are two main areas where remote memory can be
used to improve performance of a transaction�based system�

� Speeding up Read Accesses� The collective main memory in a NOW can be used as a large cache
of the transaction�based system� This cache is larger than any single workstation can provide�
and thus can be used to hold large amounts of data� Reading data from remote main memory
�over a high speed interconnection network�� was shown to be signi�cantly faster than reading data

�Current a�liation� Computer Science Department� University of Rochester� Rochester� NY�����
yEvangelos Markatos and Julia Sevaslidou are also with the University of Crete� Department of Computer Science

�

from a �local� magnetic disk ��
� This is due to the fact that current high�speed networks provide
higher throughput and lower latency than current high�speed disks� Architecture trends suggest
that this disparity between magnetic disks and interconnection networks will continue to increase
with time ��
� Thereby� the use of remote memory instead of magnetic disks �whenever possible�
will continue to result in everincreasing performance improvements�

� Speeding up Synchronous Write Operations to Reliable Storage� Transaction�based systems fre�
quently use synchronous write operations to force all modi�ed data to disk at transaction commit
time� This is done so that the system will be able to recover in a consistent state after a hardware
or a software failure� We advocate �and show in this paper� that the set of remote main memories
in a NOW has comparable reliability to a magnetic disk� and thus can be used to hold sensitive
data that must survive a system crash� � Synchronous write operations are dominated by the la�
tency of the medium where the write is performed� Remote memory latency is dictated by network
latency and is usually signi�cantly lower than disk latency� Moreover� remote memory latency is
mostly induced by communication protocol processing �e�g� TCP�IP�� which improves with pro�
cessor speed� On the other hand� disk latency is mostly induced by mechanical arm movements�
which does not improve at as fast� Thus� data can be synchronously written to remote memories
much faster than they can be written to a magnetic disk� This performance disparity will continue
to increase� according to current architecture trends�

The �rst of the above issues �reading from remote memory� has been somewhat explored in the areas
of �le systems ��� ��� ��
� paging ���
 and global memory databases for workstation clusters ���� ��
�
All previous work suggests that the use of remote main memory as a large �le �database� cache results
in signi�cant performance improvements� The thrust of this paper is on exploring the second issue�
using remote memory to speed up synchronous disk write operations� We believe that transaction�based
systems make lots of small synchronous write operations to stable storage� and thus they are going to
bene�t signi�cantly from any improvements to synchronous disk write operations�

Recent architecture trends in the area of interconnection networks� and Networks of Workstations
�NOWs� make it more attractive than ever to use the main memory of remote workstations �within the
same workstation cluster� to speedup synchronous disk I�O operations� because the latency of Local
Area Networks has signi�cantly decreased over the last few years� Traditional interconnection networks
�like Ethernet and FDDI� have latency in the range of several hundred microseconds� ATM networks
have latency in the range of a few hundred microseconds ��	
� while more recent networks �like SCI ���

and Memory Channel ��	
� have latency in the range of few microseconds� At the same time� disk latency
has remained in the order of a few milliseconds for several years now� and is not expected to improve at
a signi�cant rate� Thus� operations dominated by disk latency �i�e� synchronous disk write operations�
will remain in the millisecond range� On the contrary� operations dominated by network latency �e�g�
synchronous remote memory write operations� may complete within microseconds�

Based on the current architecture trends� we believe that transaction�based systems should make use
of the remote main memory of a NOW� in order to avoid �synchronous� disk data transfers and substitute
them with �synchronous� network data transfers� To demonstrate our approach� we implemented our
approach within two existing transaction�based systems� The EXODUS storage manager �	
� and the
RVM �Recoverable Virtual Memory� System ���
� Section � describes the design and the implementation
of our systems� We have run several benchmarks on top of the modi�ed transaction systems and have
observed performance improvements up to two orders of magnitude� We report our performance results
in section �� Section � places our work in context by surveying previous work and comparing it with our
approach� Finally section � concludes the paper�

� Remote�Memory�based Transaction Systems

��� Reliable Main Memory

The performance of transaction�based systems is usually limited by slow disk accesses� During its lifetime�
a transaction makes a number of disk accesses to read its data �if the data have not been cached in main

�We increase the reliability of remote main memory by using redundant power supplies �UPS	 to survive power failures�
and mirroring of data to survive software failures

�

memory�� makes a few calculations on the data� writes its results back �via a Log �le�� and then� if all
goes well� it commits� Although disk read operations may be reduced with the help of large main memory
caches �or even network main memory caches ��� ��
�� disk write operations at transaction commit time
are di�cult to avoid� since the transaction�s modi�ed data and meta�data have to reach stable storage
before the transaction is able to commit� otherwise a system crash would leave the data repository in a
non�consistent state� Several current transaction based systems use a magnetic disk as the stable storage�
and force all dirty data to it using the fsync��� system call �	� ��
� � Magnetic disks can usually survive
power and software failures� thereby providing a stable medium to store data that must survive crashes�

We believe however� that in Networks of Workstations the collective main memory of all workstations
in the system can be made reliable in such a way as to survive power outages and software failures� and
thus become a viable alternative to disk storage for sensitive transaction data� We believe two are the
main sources of system crashes that may lead to data loss� �i� software failures� and �ii� power loss� We
deal with each of them in turn�

� Software failures are the result of software malfunctions� operating system crashes� etc� When the
operating system crashes and reboots� it may destroy the contents of its main memory� thereby
eliminating all data that have not been written to stable storage� Data that must survive software
failures are replicated to the main memories of �at least� two workstations that are connected in two
di�erent power supplies �e�g� one is on a UPS� and the other is on the main power supply�� Since
di�erent workstations run di�erent copies of the operating system� they will probably crash �due
to software errors� independent of each other� Thus� if the data that must survive software crashes
are replicated to two workstations� they will survive software failures with high probability� �

� Power losses are the result of malfunctions in the power supply system� To cope with power losses
we assume the existence of two power supplies� one could be the main power supply� and the
second could be provided by an uninterrupted power supply �UPS�� � A UPS for a workstation
can cost less than ���� making it a small percentage �� ��� of the cost of a workstation� If
workstations are connected to UPSs� they will retain their main memory contents even after a
power loss� However� if a power loss is detected� the UPS gives plenty of time to workstations to
save their sensitive data to magnetic disks� �

Based on our description we advocate that using mirroring and UPSs� we can make the �remote�
main memory� a storage medium as reliable as the magnetic disk� Thus� sensitive data that need to be
synchronously written to disk� can be �synchronously� written to remote main memory with the same
level of reliability� Our described main memory system su�ers from data loss once every several years�
which is the same level of reliability current magnetic disks provide�

��� EXODUS and RVM

To illustrate our approach we have modi�ed a lightweight transaction�based system called RVM ���

and the EXODUS storage manager �	
 to use remote memory �instead of disks� for synchronous write
operations� After studying the performance of the systems� we concluded that they spend a signi�cant
amount of their time� synchronously writing transaction data to their log �le� which is used to implement
a two�phase commit protocol� When a transaction commits� all the data the transaction modi�ed are
synchronously written to the log �stored as a UNIX �le on a magnetic disk�� After the mentioned data
are successfully written to the log� the system is allowed to proceed�

We have modi�ed both EXODUS and RVM so as to to keep a copy of their log �le in remote
main memory �as well as the disk�� The unmodi�ed systems force all their sensitive data to the disk at

�Although optimizations like group transaction commit have been proposed� these may increase the complexity of the
transaction�based system� and thus have not been incorporated in the EXODUS and RVM systems

�Simple math calculations suggest that if each workstation crashes once every few months� and stays crashed for several
minutes� two workstations will crash within the same time interval once every several years� which leads to higher reliability
than current disks provide
 If� however� this level of reliability is not enough� data can be replicated to three mainmemories�
etc

�Alternatively� both power supplies may be provided by two di�erent UPSs

�Note� however� that the UPS itself may malfunction� leading to power loss
 Such malfunctions however� happen once

every several years� making the UPS more reliable machine than the magnetic disk
 If� however� a UPS malfunctions
more frequently� sensitive data can be replicated to di�erent workstations connected to di�erent UPSs that malfunction
independent of each other

�

transaction commit time using synchronous disk write operations� In our modi�ed systems� we substitute
each synchronous write operation with the following two operations�

�� A synchronous write to the log ��le� in the main memory of one remote workstation�

�� An asynchronous write to the log �le on the magnetic disk� This operation is being carried in
the background and is used to preserve a local copy of the data in case the remote main memory
crashes�

Essentially� we substitute a synchronous disk write operation with a synchronous network write oper�
ation plus an asynchronous disk write operation �which has no e�ect on completion time since it proceeds
in the background� as long as adequate data bu�ering is provided�� At the same time� our systems do
not compromise data reliability� Let�s examine what are the steps in writing data in our systems�

�� At transaction commit time� the transaction�s sensitive data are synchronously written to the log
in remote main memory

�� At the same time� these data are asynchronously written to the local magnetic disk

�� Eventually� the data reach the magnetic disk� �

The transaction is committed after step � completes� It seems that there is a �window of vulnerability�
between steps �� and ��� that is after the data have been safely written to remote memory �and scheduled
to be written on the disk�� but before the data have been safely written to magnetic disk� If the local
system crashes during this interval� then the data that are still in the local main memory bu�er cache
will be lost during the crash� Fortunately� our system can still recover the seemingly lost data� since the
same data reside in the remote memory as a result of step �� Data loss may happen only if both local
and remote systems crash during this interval� However� we have argued that the probability of both
systems �which are equipped with UPSs� crashing during the interval of few minutes is comparable �or
even lower� than the probability of a magnetic disk malfunction� Thereby our system provides levels of
reliability comparable to a magnetic disk�

��� Recovery

In the event of a workstation�network crash� our system needs to recover data and continue its operation�
If the local workstation crashes� and reboots� it will read all its �seemingly lost� data from the remote
memory� store them safely on the disk� and continue its operation normally� If the remote workstation
crashes� the local transaction manager will realize it after a timeout period� After the timeout� the local
manager may either search for another remote memory server� or just stop using remote memory� and
commit transactions to disk as usual� If the network crashes� the local workstation will stop using remote
memory and will commit all transactions to disk� In all circumstances� the system can recover within a
few seconds� in the worst case� The reason is that at all times there exist two copies of the log data� if
one copy is lost due to a crash� the system can easily switch to the other copy quickly�

��� Implementation

We have made the described changes to RVM and EXODUS� We call the resulting systems RRVM
�Remote RVM� and REX �Remote EXODUS�� �

Our systems have been completely implemented in user space� without any operating system mod�
i�cations� For each transaction manager� we start a user�level remote memory server on a remote
workstation� The purpose of this server is to accept synchronous write requests from the transaction
manager and acknowledge them� In the case of a transaction manager crash� the remote memory server
is responsible for providing the contents of the Log �le it keeps in its main memory� At all times� data
written by committed transactions either reside safely on the disk� or are stored in the main memory of
at least two workstations �the local transaction manager� and the remote memory server��

�UNIX�derivative systems force all their modied data to the disk every ����� seconds

�Our modication were rather small
 Out of about ������ lines of RVM code� we modied �or added	 less than ���

lines ���	
 Out of ������� lines of EXODUS code� we modied �or added	 less than ��� lines �a �
�� change	

�

� Experimental Evaluation

In this section we report the performance advantages of our systems RRVM and REX compared to the
original RVM and EXODUS systems�

��� RVM performance

We have implemented our RRVM system on top of Digital UNIX on a network of workstations� In this
section we will describe some of our experiments to measure its usability and performance�

����� Experimental Environment

Our experimental environment consists of a network of eight DEC Alpha � workstations running at
��� MHz� equipped with ��� MBytes of main memory each� The workstations are connected through an
Ethernet interconnection network� a � Mbps FDDI� and a Memory Channel Interconnection Network
��	
� These three interconnection networks represent three di�erent generations of LANs� Ethernet is a
traditional low�bandwidth network that provides low�cost connectivity without ambitious performance
goals� FDDI is a high�bandwidth network that provides higher speed at a slightly increased cost� Memory
Channel is a very high�bandwidth network that was designed to make possible a wide range of high
performance applications in Networks of Workstations� Each workstation is equipped with a 	GB local
disk�

In our experiments we demonstrated the performance of RRVM and compared it with its predecessor
RVM ���
�

We have experimented with four system con�gurations�

� RVM� This is the unmodi�ed RVM system ���
� It makes no use of the interconnection network�
since all its data are stored in a local disk�

� RRVM�ETHERNET� This is RRVM running on top of an Ethernet interconnection network�

� RRVM�FDDI� This is our RRVM system running on top of an FDDI interconnection network�

� RRVM�MC� This is RRVM running on top of the Memory Channel Interconnection Network�

��� I�O Block Size

In our �rst set of experiments we would like to �nd out how many transactions per second our RRVM
system is able to sustain� compared to the number of transactions per second the unmodi�ed RVM
system is able to sustain� For this reason we constructed the following experiment�

We create a �le � Mbytes long� Then� we start a sequence of � transactions� Each
transaction writes a segment of the �le and commits� Transactions modify the �le in sequential
manner� The size of the �le segment modi�ed by each transaction �also called I�O block size�
is the parameter of our experiments�

Figure � plots the number of transactions per second� for the original version of RVM� and our RRVM�MC�
RRVM�FDDI� and RRVM�ETHERNET� We see that the unmodi�ed RVM system is able to sustain up to at most
� transactions per second for small transactions� As the size of the I�O block gets larger� the number of
transactions per second successfully executed gets even lower� Our results agree with previously reported
results� in which RVM is able to sustain at most � transactions per second ����
� �gure ��b��� However�
the performance of RRVM�ETHERNET and RRVM�FDDI is signi�cantly better than that of RVM� For small
transactions both RRVM systems are able to sustain close to � transactions per second� an order of
magnitude improvement over unmodi�ed RVM� Even better� RRVM�MC manages to sustain close to ��
transactions per second� almost two orders of magnitude improvement over unmodi�ed RVM� By looking
closely at �gure � we see that the performance of RVM is practically the same for I�O block sizes between
and � Kbytes� which implies that the transactions overhead �for the above I�O block sizes� is dominated
by disk seek and rotational latency and not by the data transfer itself�

�

1

10

100

1000

10000

10 100 1000 10000 100000 1e+06

T
ra

ns
ac

tio
ns

pe

r
se

co
nd

I/O Block Size (in bytes)

LOG SIZE = 8 Mbytes

RRVM-MC
RRVM-FDDI

RRVM-ETHERNET
RVM

Figure �� Performance of RVM as a function of the I�O block size� Data �le � � Mbytes� Log File �
� Mbytes�

��� The Size of the Log

In this section we set out to answer how the size of the log �le kept by RRVM in�uences the performance
of the system� The log �le is synchronously written by transactions during their commit phase� When
the log �le �lls above a threshold� RVM reads it� truncates it and updates the data �le� Thus� the log
�le is used as a bu�er between synchronous transaction writes and asynchronous data �le updates� The
larger the log �le� the better the performance of the system is expected to be�

To measure the performance e�ect of the log �le size� we constructed the same experiment as pre�
viously� but instead of varying the I�O block size� we vary the log size and we keep the I�O block size
constant�

The results of our experiment �number of transactions per second� as a function the log size for I�O
block sizes of ��� and ��� bytes are plotted in �gures � and � respectively�

We see that all systems have poor performance for small log sizes �a few Kbytes long�� especially
for the larger I�O block size� The reason is that very small logs force applications to su�er almost two
synchronous write operations per transaction� one to write the dirty data to the log �at transaction
commit time�� and one to empty the log to the data �le� Fortunately� the performance in all systems
gets better and almost constant for logs larger than �� Kbytes� In all cases the performance of both
RRVM systems is signi�cantly better than the performance of the unmodi�ed RVM system� between one
and two orders of magnitude for small transactions�

��� Random Accesses

Next� we set out to explore the performance of our transaction�based system in a random accessed envi�
ronment� Thus� we repeated the previous experiment� but instead of accessing the data �le sequentially�
the transactions access the data �le completely randomly� The performance of our systems for log size
� Mbytes is shown in �gure ��

We see that all RRVM�MC� RRVM�FDDI� and RRVM�ETHERNET performmuch better than RVM� as expected�
However� the number of transactions per second sustained by RRVM�FDDI and RRVM�ETHERNET is a little
less than � �for small transactions�� and around ��� for RRVM�MC� a reduction in the performance
observed so far� There are two reasons for this performance reduction� increased number of page faults�
and disk I�O operations� When a �le is accessed by � transactions� and each transaction accesses
�� bytes of data� a total of �� Kbytes of data are accessed� If these transactions access sequential data�
they will access in total ���� � � pages� If� however� the transactions access data randomly� they will
access many more pages� Thus� both the number of page faults� and the number of disk I�O operations
are signi�cantly lower in the case of sequential transaction accesses� as compared to random transaction

	

1

10

100

1000

10000

1 10 100 1000 10000

T
ra

ns
ac

tio
ns

 p
er

 s
ec

on
d

Log Size (in Kbytes)

I/O Block Size = 128 Bytes

RRVM-MC
RRVM-FDDI

RRVM-ETHERNET
RVM

Figure �� Performance of RVM as a function of the size of the log� Data File � � Mbytes�

1

10

100

1000

10000

1 10 100 1000 10000

T
ra

ns
ac

tio
ns

 p
er

 s
ec

on
d

Log Size (in Kbytes)

I/O Block Size = 512 Bytes

RRVM-MC
RRVM-FDDI

RRVM-ETHERNET
RVM

Figure �� Performance of RVM as a function of the size of the log� Data File � � Mbytes�

1

10

100

1000

10000

10 100 1000 10000 100000 1e+06

T
ra

ns
ac

tio
ns

pe

r
se

co
nd

I/O Block Size (in bytes)

LOG SIZE = 8 Mbytes

RVM
RRVM-FDDI

RRVM-ETHERNET
RRVM-MC

Figure �� Performance of RVM as a function of the I�O block size � random accesses� Data File � �
Mbytes� Log File � � Mbytes�

�

accesses� Even though� the transactions per second sustained by RRVM is very good �around ���
transactions per second for small transactions� on top of Memory Channel��

��� Network Load

Our next set of experiments explores the network load that our RRVM system imposes� � Our previous
experiments suggest that on top of a lightly�loaded network� RRVM performs much better than tra�
ditional RVM� What is interesting to explore now� is what will be the performance of RRVM if several
instances of it run concurrently and put signi�cant pressure on the interconnection network� Will the
network be able to handle the increased communication demands� or will it collapse� To answer this
question we constructed the following experiment�

We create several instances of RRVM clients� For each client� there is also an RRVM server�
All clients and all servers run on di�erent workstations� All workstations are connected to the
same interconnection network �Ethernet or FDDI�� We progressively increase the number of
client�server pairs participating in the experiment and measure the transactions per second
each RRVM system �client�server pair� is able to sustain� Each RRVM system executes the
experiment described in section ����

In our experiments the log size was set to � Mbytes and the I�O block size to �� Bytes� Figure �
plots the number of transactions per second for each RRVM system �client�server pair� as a function of
the number of workstations participating in the experiment� First of all� we see that the performance
of the unmodi�ed RVM system stays the same independent of how many workstations participate in the
experiment� This is as expected� since RVM makes all tra�c to its local disk� and does not put any
network load� We also notice that the performance of RRVM�ETHERNET decreases with the number of
workstations� If there is only one pair of workstations in the network� RRVM�ETHERNET sustains close
to � transactions per second� while when four pairs of workstations participate in the experiment� it
sustains close to �� transactions per second� � Even so� its performance is three times better than
the performance of unmodi�ed RVM which sustains less than � transactions per second� Finally� we see
that the performance of RRVM�FDDI is practically constant even when eight workstations participate in
the experiment� The reason is simple� FDDI has ten time more throughput than ETHERNET� and
can sustain several heavily�communicating workstations� Furthermore� under heavy load� Ethernet may
su�er from increased number of collisions that may lead to throughput collapse�

Figure 	 plots the results of the same experiment for transaction size equal to � Kbytes� Again� we
observe that the performance of RRVM�FDDI stays practically the same� independent of the communicating
workstations� Although the performance of RRVM�ETHERNET decreases with the number of participating
workstations� it is much better than the performance of unmodi�ed RVM system�

��� Server Load

Although RRVM does not impose any signi�cant network load on top of modern interconnection networks
�e�g� FDDI�� we would like to investigate whether RRVM imposes any signi�cant computation load on
the server workstation� For this reason� we repeated the previous experiments� with the di�erence that
all RRVM servers were running on a single workstation� This experiment puts pressure not only on the
network� but on the single server workstation as well� The performance of RRVM as a function of the
number of participating clients is shown in �gures � and � for I�O block sizes �� bytes and � Kbytes
respectively� Both �gures suggest that there is some performance decrease as the number of participating
workstations increases� esp� for small block sizes� On the other hand� the total number of transactions
per second sustained stays particularly high in all cases ranging from ��� to ��	 transactions per second
for FDDI�based systems� and from ��� to ��� transactions per second or Ethernet�based systems�

The performance of RVM is much lower� reaching at most ��� total transactions per second for the
four RVM systems executing�

�Due to technical di�culties we were not able to run these experiments on top of Memory Channel

�Since each client�server pair sustains ��� transactions per second� the total number of transactions per second sustained

in the Ethernet�based system is �� ��� � ���

�

1 2 3 4
Number of client/server pairs

0

100

200

300

400

500

600

700

T
ra

ns
ac

tio
ns

 P
er

 S
ec

on
d

RRVM-FDDI

RRVM-ETHERNET

RVM

Figure �� Network Load� Performance of RVM as a function of the network load � sequential accesses �
all servers and all clients run on di�erent workstations � I�O block size � �� bytes�

1 2 3 4
Number of client/server pairs

0

100

200

T
ra

ns
ac

tio
ns

 P
er

 S
ec

on
d

RRVM-FDDI

RRVM-ETHERNET

RVM

Figure 	� Network Load� Performance of RVM as a function of the network load � sequential accesses �
all servers and all clients run on di�erent workstations � I�O block size � � Kbytes�

�

1 2 3 4
Number of Clients

0

100

200

300

400

500

600

T
ra

ns
ac

tio
ns

 P
er

 S
ec

on
d

RRVM-FDDI

RRVM-ETHER

RVM

Figure �� Server Load� Performance of RVM as a function of the number of the participating clients �
sequential accesses � all servers run on a single workstation � I�O block size � �� bytes�

1 2 3 4
Number of Clients

0

100

200

300

T
ra

ns
ac

tio
ns

 P
er

 S
ec

on
d

RRVM-FDDI

RRVM-ETHERNET

RVM

Figure �� Server Load� performance of RVM as a function of the number of the participating clients �
sequential accesses � all servers run on a single workstation � I�O block size � � Kbytes�

�

Accounts ������ Unmodi�ed RVM RRVM�ETHER RRVM�FDDI
�� ����� �� �	�
��� ����� �� �	�
��� ����� ��� �	
��� ���� ��� ��

Figure �� TPCA�A� Sequential Accesses

Accounts ������ Unmodi�ed RVM RRVM�ETHER RRVM�FDDI
�� ���� ��� ��
��� ��� ��� ���
��� ���	 �� �	
��� ���	 �� 	�

Figure �� TPCA�A� Random Accesses

��� TPC	A

To place our RRVM system in the right perspective with previously published performance results� we
run the widely used TPC�A database benchmark on top of it� The same benchmark was run on the
original RVM system and its performance was reported in ���
� In the original RVM system� the log
�le and the data �le were stored on di�erent local disks� so as to eliminate any interference between the
accesses to the di�erent �les�

Figure � shows the performance of our RRVM systems� and the original �unmodi�ed� RVM system
as a function of the number of accounts� In this experiment accesses to the database are sequential�
We see that although the original RVM system barely achieves more than � transactions per second�
RRVM�ETHERNET achieves � transactions per second� while RRVM�FDDI achieves more than �	 trans�
actions per second � an order�of�magnitude improvement over the original RVM�

Wemake similar observations by looking at the experiments for random accesses and localized accesses
in �gures � and �� respectively� Both RRVM systems are signi�cantly better than the unmodi�ed RVM�
Their performance improvements range from a factor of ��	 to 	�

��
 EXODUS

����� Experimental Environment

Our experimental environment for EXODUS consists of a network of Supersparc�� workstations� The
workstations are connected through a � Mbps FDDI� and a �Mbps Ethernet interconnection network�

����� OO�

On top of EXODUS we run a common database benchmark called OO� ��
� We used three versions of
EXODUS�

Accounts ������ Unmodi�ed RVM RRVM�ETHER RRVM�FDDI
�� ���� ��	 ���
��� ���� ��� ���
��� ���� ��� ���
��� ���� �� ��

Figure ��� TPCA�A� Localized Accesses

��

t1 t2a t2b t3a t3b t3c t5do t6 t7 q1
OO7 bechmark

0

10

20

30

40

50

C
om

pl
et

io
n

T
im

e
(s

ec
on

ds
)

EXODUS

REX-ETHER

REX-FDDI

Figure ��� Performance of OO� running on top of EXODUS�

� EXODUS� This is the unmodi�ed EXODUS system �	
�

� REX�FDDI� This is our modi�ed EXODUS �REX� system running on top of an FDDI interconnec�
tion network�

� REX�ETHERNET� This is REX running on top of an Ethernet interconnection network�

Figure �� plots the completion time of various parts of the OO� benchmark on top of EXODUS�
We see that in all cases REX has superior performance compared to the unmodi�ed EXODUS systems�
Actually� REX�FDDI is sometimes more than � times faster than EXODUS �see for example t�do� and
t	�� Although we do not see the impressive performance di�erence we demonstrated in the previous
section �since OO� stresses all aspects of the system� not just transaction commit�� our measurements
suggest that REX results in noticeable performance improvement over the unmodi�ed EXODUS storage
manager�

� Related Work

Using Remote Main Memory to improve the performance and reliability of I�O in a Network of Worksta�
tions �NOW� has been previously explored in the literature� For example� several �le systems ��� �� ��� ��

use the collective main memory of several clients and servers as a large �le system cache� Paging sys�
tems may also use remote main memory in a workstation cluster to improve application performance
���� ��� �� ��
� Even Distributed Shared Memory systems� can exploit the remote main memory in a
NOW ���� �
 for increased performance and reliability�

The closest of these systems to our research is the Harp �le system ���
� Harp uses replicated �le
servers to tolerate single server failure� Each �le server is equipped with a UPS to tolerate power
failures� and speedup synchronous write operations� Although RRVM and REX use similar approaches
�redundant power supplies and information replication� to survive both hardware and software failures�
there are several di�erences between our work and Harp�

��

� Data Granularity� Our work is concerned mostly with transaction�based systems that make lots of
small read and write operations� Being able to e�ciently read and write a small amount of data
is particularly important for the performance of these systems� On the contrary� Harp �by being a
�le system� can not address data at a granularity �ner than a �le block� Thus� to read�write even a
single byte of data� Harp will have to read�write an entire block of data� which leads to signi�cant
performance degradation� Our performance results suggest that on top of a workstation cluster
connected via Ethernet� RRVM is able to sustain several hundred �short� transaction operations
per second �see �gure ��� Published results for Harp ���
� suggest that it is able to sustain several
tens of NFS operations per second� This implies� that if each transaction needs at least one NFS
operation� then the number of transactions per second that Harp will be able to sustain is an order
of magnitude lower than our RRVM system�

� Open User Level Implementation� RRVM is linked with user applications as a library� outside the
operating system kernel� Thus� it is portable and easily modi�able� any ordinary computer user
can link RRVM to their program and run it� In contrast� Harp runs inside the operating system
kernel� which makes it di�cult to port and install� Users will be able to bene�t from Harp� only
if the �le system installed by the system administrators is Harp� or a Harp derivative� Currently
there are very few �le systems �if at all� that provide functionality similar to Harp� Moreover� Harp
adds signi�cant overhead to applications that do not want�need the reliability Harp o�ers� but are
forced to use it and pay for it� On the contrary� in our systems� data replication �for reliability� is
only done for database applications� that need it and are willing to su�er its overhead� All other
applications run without any intervention from our systems�

Summarizing� Harp is a kernel�level �le system that sustains hardware and software failures� while
our approach leads to open� portable� �exible� and lightweight user�level transaction�based systems�

The Rio �le system changes the operating system to avoid destroying its main memory contents
in case of a crash ��
� Thus� if a workstation is equipped with a UPS and the Rio �le system� it can
survive all failures� power failures do not happen �due to the UPS�� and software failures do not destroy
the contents of the main memory� Systems like Rio may simplify the implementation of our approach
signi�cantly� Unfortunately� few �le systems �if any at all� follow Rio�s approach �although they should��
However� even Rio may lead to data loss in case of UPS malfunction� In these cases� our approach that
keeps two copies of sensitive data in two workstations connected to two di�erent power supplies� will be
able to avoid data loss�

Network �le systems like Sprite ���
 and xfs ��� ��
� can also be used to store replicated data and build
a reliable network main memory� However� our approach� would still result in better performance due
to the minimum �block� size transfers that all �le systems are forced to have� Moreover� our approach
would result in wider portability since� being user�level� it can run on top of any operating system� while
several �le systems� are implemented inside the operating system kernel�

Franklin� Carey and Livny have proposed the use of remote main memory in a NOW as a large
database cache ���
� They validate their approach using simulation� and report very encouraging re�
sults� Gri�oen et� al proposed that DERBY storage manager� that exploits remote memory and UPSs
to reliably store a transaction�s data ���
� They simulate the performance of their system and provide
encouraging results� Although our approach is related to the DERBY system� there are signi�cant di�er�
ences� �i� we provide a full��edged implementation of our approach on two independent transaction�based
systems� �ii� we demonstrate the performance improvements of our system using the same benchmarks
that demonstrated the performance of the original RVM and EXODUS systems� �iii� DERBY places the
burden of data reliability to the clients of the database� while we place it to the transaction managers
who have better knowledge of how to manage the various resources �memory� disks� in the system�

Feeley et� al� proposed a generalized memory management system� where the collective main
memory of all workstations in a cluster is handled by the operating system ���
� Their experiments
suggest that generalized memory management results in performance improvements� For example� OO�
on top of their system runs up to ��� times faster� than it used to run on top of a standard UNIX system�
We believe that our approach complements this work in the sense that both ���
 and ���
 improve the
performance of read accesses �by providing large caches�� while our approach improves the performance
of synchronous write accesses� Thus� if used both� they improve the performance of database applications
even further�

��

To speed up database and �le system write performance� several researchers have proposed to use
special hardware� For example� Wu and Zwaenepoel have designed and simulated eNVy ���
� a large
non�volatile main memory storage system built primarily with FLASH memory� Their simulation results
suggest that a � Gbyte eNVy system can support I�O rates corresponding to �� transactions per
second� To avoid frequent writes to FLASH memory� eNVy uses about �� Mbytes of battery�backed
SRAM per Gbyte of FLASH memory� Although the cost of eNVy is comparable to the cost of a DRAM
system of the same size� eNVy realizes its cost e�ectiveness only for very large con�gurations� for
hundreds of Mbytes� Furthermore� although the chip cost of eNVy may be low� its market price will
probably be much higher� unless it is massively produced and sold� Thus� eNVy would be used only
for expensive and high�performance database servers� and not for ordinary workstations� As another
example� Baker et al� have proposed the use of battery�backed SRAM to improve �le system performance
��
� Through trace�driven simulation they have shown that even a small amount of SRAM reduces disk
accesses between �� and �� even for write�optimized �le systems� like log�based �le systems�

� Conclusions

In this paper we described how to use several workstations in a NOW to provide fast and reliable access
to stable storage� Our approach consists of using network main memory to avoid synchronous disk I�O
as much as possible� By using data replication and redundant power supplies we increase the reliability
of remote main memory� and use it as a short�term non�volatile storage medium�

We have implemented our approach within the EXODUS storage manager and the RVM recoverable
virtual memory system� We have experimented with both systems running on top of a Network of
Workstations connected with a variety of interconnection networks ranging from the traditional Ethernet�
to the high�speed Memory Channel� Based on our implementation experience and performance results
we conclude�

� Our approach can be easily incorporated in existing database systems� We have implemented our
approach on top of two di�erent transaction based systems� Each implementation took only a few
weeks of programming� and consists completely of user�level software�

� RRVM provides signi�cant performance improvements over RVM� even on top of Ethernet inter�
connection networks� Our results suggest that for small transactions� RRVM on top of Ethernet is
able to sustain ��� transactions per second� depending on the transaction access patterns� At
the same time� unmodi�ed RVM sustains ��� transactions per second � an order of magnitude
less� Most of the bene�ts of our approach are realized on top of the high�speed Memory Chan�
nel interconnection network� where RRVM manages to sustain a little more than ��� �short�
transactions per second�

� RRVM is able to sustain several clients on top of the same interconnection network� Our results
suggest that even when four RRVM systems operate on top of the same Ethernet network� their
performance is ��� times better than the performance of RVM �for small transaction size�� The
performance of the same clients on top of FDDI is ��� times better than the performance of RVM�

� The performance bene�ts of our approach will increase with time� The performance of our approach
is highly dependent on the latency and the bandwidth of the interconnection network on top of
which it runs� Since the latency and the bandwidth of interconnection networks quickly improve
with time� we expect the performance bene�ts of RRVM to improve at similar rates� at least in
the foreseeable future�

Based on our experiments� we believe that remote memory �as demonstrated through RRVM and
REX� is a viable alternative to synchronous disk I�O and should be considered seriously for implemen�
tation in databases and transaction�based systems in general�

Acknowledgments

This work was supported in part by PENED project �Exploitation of idle memory in a workstation
cluster� ���� ������������ in part by the USENIX Association through project �Network RAMDISK��

��

and in part by the ESPRIT�OMI project �ARCHES� �ESPIRIT �	���� funded by the European Union�
We deeply appreciate this �nancial support�

We also thank the Computer Science Department of the University of Rochester� and the Parallab
Supercomputing Center� for giving us access to their equipment where several of the described exper�
iments were run� Finally� we thank Manolis Katevenis and Catherine Chronaki who provided useful
feedback in earlier versions of this document�

References

��
 T� E� Anderson� M� D� Dahlin� J� M� Neefe� D� A� Patterson� D� S� Roselli� and R� Y� Wang�
Serverless Network File Systems� ACM Transactions on Computer Systems� ������������ February
���	�

��
 T�E� Anderson� D�E� Culler� and D�A� Patterson� A Case for NOW �Networks of Workstations��
IEEE Micro� ���������	�� February �����

��
 M� Baker� S� Asami� E� Deprit� J� Ousterhout� and M� Seltzer� Non�volatile Memory for Fast�
Reliable File Systems� In Proc� of the ��th International Conference on Architectural Support for
Programming Languages and Operating Systems� pages ����� Boston� MA� October �����

��
 G� Buzzard� D� Jacobson� M� Mackey� S� Marovich� and J� Wilkes� An Implementation of the Hamlyn
Sender�Managed Interface Architecture� In Second USENIX Symposium on Operating System Design
and Implementation� October ���	�

��
 M� Carey� D� DeWitt� and J� Naughton� Ther OO� Bechmark� In Proceedings of the 	

� ACM
SIGMOD Conference� pages ������ �����

�	
 M� Carey and D� DeWitt et� al� The EXODUS Extensible DBMS Project� An Overview� In S�Zdonik
and D�Maie� editors� Readings in Object�Oriented Database Systems� Morgan Kaufman� ����

��
 Peter M� Chen� Wee Teck Ng� Subhachandra Chandra� Christopher Aycock� Gurushankar Rajamani�
and David Lowell� The Rio File Cache� Surviving Operating System Crashes� In Proc� of the ��
th International Conference on Architectural Support for Programming Languages and Operating
Systems� pages ������ ���	�

��
 T� Cortes� S� Girona� and J� Labarta� PACA� A Distributed File System Cache for Parallel Ma�
chines� Performance under Unix�like workload� Technical Report UPC�DAC�������� Departament
d�Arquitectura de computadors� Universitat Politecnica de Catalunya �UPC�� June �� �����

��
 M� Costa� P� Guedes� M� Sequeira� N� Neves� and M� Castro� Lightweight Logging for Lazy Release
Consistent Distributed Shared Memory� In Second USENIX Symposium on Operating System Design
and Implementation� pages ������ October ���	�

��
 M� Dahlin� Serverless Network File Systems� PhD thesis� UC Berkeley� December �����

���
 M�D� Dahlin� R�Y� Wang� T�E� Anderson� and D�A� Patterson� Cooperative Cahing� Using Remote
Client Memory to Improve File System Performance� In First USENIX Symposium on Operating
System Design and Implementation� pages �	����� �����

���
 M� J� Feeley� W� E� Morgan� F� H� Pighin� A� R� Karlin� H� M� Levy� and C� A� Thekkath� Im�
plementing Global Memory Management in a Workstation Cluster� In Proc� 	��th Symposium on
Operating Systems Principles� pages ������� December �����

���
 Michael J� Feeley� Je�rey S� Chase� Vivek R� Narasayya� and Henry M� Levy� Integrating Coherency
and Recovery in Distributed Systems� First USENIX Symposium on Operating System Design and
Implementation� pages �������� November �����

���
 E� W� Felten and J� Zahorjan� Issues in the Implementation of a Remote Memory Paging System�
Technical Report ������� Computer Science Department� University of Washington� November
�����

��

���
 M� Franklin� M� Carey� and M� Livny� Global Memory Management in Client�Server DBMS Archi�
tectures� In Proceedings of the 	th VLDB Conference� pages ��	�	�� August �����

��	
 R� Gillett� Memory Channel Network for PCI� IEEE Micro� �	���������� February ���	�

���
 J� Gri�oen� R� Vingralek� T� Anderson� and Y� Breitbart� Derby� A Memory Management System
for Distributed Main Memory Databases� In Proceedings of the �th Internations Workshop on
Research Issues in Data Engineering �RIDE �
��� pages ������� February ���	�

���
 J� Hartman and J� Ousterhout� The Zebra Striped Network File System� Proc� 	��th Symposium
on Operating Systems Principles� pages ������ December �����

���
 L� Iftode� K� Li� and K� Petersen� Memory Servers for Multicomputers� In Proceedings of COMPCON

�� pages �������� �����

��
 K� Li and K� Petersen� Evaluation of Memory System Extensions� In Proc� 	�th International
Symposium on Comp� Arch�� pages ������ �����

���
 B� Liskov� S� Ghemawat� R� Gruber� P� Johnson� L� Shrira� and M� Williams� Replication in the
Harp File System� Proc� 	��th Symposium on Operating Systems Principles� pages ��	����� October
�����

���
 E�P� Markatos and G� Dramitinos� Implementation of a Reliable Remote Memory Pager� In Pro�
ceedings of the 	

� Usenix Technical Conference� pages ������� January ���	�

���
 M� Nelson� B� Welch� and J� Ousterhout� Caching in the Sprite Network File System� ACM
Transactions on Computer Systems� 	������������ February �����

���
 Dolphin Interconnect Solutions� DIS�� SBus�to�SCI Adapter User�s Guide�

���
 M� Stayanarayanan� Henry H Mashburn� Puneet Kumar� David C� Steere� and James J� Kistler�
Lightweight Recoverable Virtual Memory� ACM Transactions on Computer Systems� ������������
�����

��	
 Alec Wolman� Geo� Voelker� and Chandramohan A� Thekkath� Latency Analysis of TCP on an
ATM Network� In Proceedings of the USENIX Winter �
� Technical Conference� pages �	������
San Francisco� CA� January �����

���
 Michael Wu and Willy Zwaenepoel� eNVy� a Non�Volatile Main Memory Storage System� In
Proc� of the ��th International Conference on Architectural Support for Programming Languages
and Operating Systems� pages �	���� �����

�	

