
Issues in the Design and Implementation of User�Level DMA

Evangelos P� Markatos Manolis G�H� Katevenis
George Kalokerinos Gregory Maglis

George Milolidakis Thanos Oikonomou

Institute of Computer Science �ICS�
Foundation for Research � Technology � Hellas �FORTH�
P�O�Box ����	 Science and Technology Park of Crete	

Heraklion	 Crete	 GR
���
�� GREECE
markatosics�forth�gr

Technical Report ���	 ICS
FORTH
URL� http���www�ics�forth�gr�proj�arch
vlsi�telegraphos�html

� Introduction

The goal of several current supercomputing projects is to demonstrate supercomputer performance at
workstation cost� A supercomputer is being created by interconnecting a set of high�performance worksta�
tions via a high�speed SCI interconnect� Host workstations are connected to the network over Dolphin�s
PCI�SCI interface ��� that plugs in the PCI I�O bus of the workstation�

This interface has been carefully designed so as to achieve supercomputing�like communication perfor�
mance over a network of workstations �NOW�� To achieve very low message�passing latency	 the interface
implements a remote�write operation� The remote�write operation �also called direct�deposit� is initiated
by a store assembly instruction to a non�local memory location� Using the remote write primitive	 a
processor may write a message directly to its destination memory using regular store instructions to
non�local memory locations� For example	 suppose that a processor has a single�word message stored in
variable source	 and wants to send it to a remote processor that will store it in variable destination	
the sending processor can send the message by executing a single assignment instruction

destination �� source �

Most compilers will translate the above assignment statement into a two�instruction sequence

LOAD Register� FROM source address �
STORE Register� TO destination address � �� remote write

The LOAD instruction fetches the single�word message into a processor�s register	 and the STORE
instruction sends the message directly to its destination� This STORE instruction is also called a
remote�write operation� Although remote�write operations achieve very low latency for sending short
messages	 they are expensive when sending large messages as sequences of remote write operations� � To
overcome this problem	 the PCI�SCI interface �along with similar high�speed interfaces� provide a DMA
operation� The DMA transfers a large chunk of data from the host computer�s main memory into the
network interface	 and from there into the SCI network without keeping the host processor busy during
the transfer� The host processor is only needed to initialize the DMA transfer	 and to be notied of its
completion� During the DMA transfer	 the processor is free to execute other useful work� Besides freeing
the processor	 DMA transfers impose low memory bus tra�c	 since they transfer data directly from the

�To draw an analogy from real life� lets consider the fax� The fastest way to send a short document is probably to fax
it to the recipient� When faxing a document� the sender essentially deposits the information directly at the receiver�s o�ce
�much like a remote�write or direct�deposit operation�� However� sending long documents �e�g� several books� using fax� is
not a good idea as it results in slow and expensive data transfer�

�

main memory to the network interfaces� On the contrary	 each remote�write operation	 transfers the data
from the memory to a processor register �loading from the source address�	 and then from the register to
the remote memory �storing to the destination address�	 thereby transferring each word twice over the
memory bus	 and polluting the processor�s cache during these load and store operations�

For all the mentioned reasons	 large messages are transferred from main memory to the network
interface using DMA transfers� DMA management has been traditionally done by the Operating System
kernel� The Operating System is the only trusted entity that is allowed to access DMA registers� User
applications are not allowed to initiate DMA operations by themselves� There are two reasons for the
necessity of the Operating System involvement in starting a DMA operation in traditional systems

� Atomicity
 To start a DMA operation	 the software should pass several arguments to a DMA
engine� At least three arguments are needed
 the source address	 the destination address	 and the
size of the DMA transfer� All these arguments should be given to the DMA engine atomically	
otherwise	 two processes that want to initiate two DMA operations at about the same time may
overwrite each other�s arguments	 in their attempt to grab the DMA engine� To resolve such race
conditions	 in traditional systems	 processes invoke the operating system which runs uninterrupted	
starts the DMA operation of the rst process	 and when nished	 starts the DMA of the second
process�

� Protection from programming errors and malicious users� Most DMA engines accept only physical
�PCI or SCI� addresses as the source and destination address of a DMA operation� Ordinary users
should not be allowed to pass physical addresses to a DMA engine	 since they may pass physical
addresses	 that they are not allowed to access� Thus	 an ignorant or malicious user may start a
DMA operation from�to memory addresses that �s�he normally has no access to� As a result	 �s�he
may read private data	 destroy the operating system	 or crash the computer� The only trustworthy
entity to determine which user is allowed to access which physical addresses is the operating system�

In the previous decades	 since the overhead of the operating system involvement in the initiation
of a DMA was small compared to the DMA data transfer itself	 no attempt was made to allow user
applications to start DMA operations� However	 in contemporary fast local area networks	 starting
a DMA operation from inside the operating system kernel may take more than the network transfer
operation itself� For this reason	 several researchers have started to address the problem of letting
user applications initiate a DMA� Pioneering work in the SHRIMP ��� and FLASH ��� projects have
pinpointed the importance of user�level DMA operations and have proposed initial solutions to user�level
DMA� Unfortunately	 these approaches to user�level DMA require modications to the operating system
kernel� To function correctly	 both mentioned approaches modify the operating system context switch
handler	 in order to enforce atomicity of user�level DMA operations	 and avoid race conditions� The
SHRIMP approach requires that the context switch handler aborts all half�started DMA operations ���
�so that no race condition may happen�	 while the FLASH approach requires that the context switch
handler informs the DMA engine about the identity of the running process at context switch time	 �so
that the DMA engine has enough information to avoid race conditions�� Although a few lines of code
to the context switch handler seem a trivial change	 they may turn out to be a major obstacle to the
success of user�level DMA for the following reasons

� Modications of the operating system kernel may not be possible because the source code of the
operating system may be condential or sold under a license only� In either case	 ordinary users
may not be able	 or willing to acquire operating system sources� Even if the changes to the
context switch handler are distributed as an operating system patch	 they may generate even more
problems

� Distributing changes �for user�level DMA� to existing operating system	 as patches	 sets a
bad example� If all peripheral device vendors start distributing patches to existing operating
systems	 di�erent patches will eventually con�ict with each other	 leading to erroneous code�

� Patches are di�cult to maintain� They force the vendor of the DMA device to produce a
new patch for each new version of the operating system� Moreover	 end�users are required to
install these patches each time their operating system is being upgraded�

�

� The context switch handler is usually on the critical path of the performance of the operating
system� If each manufacturer of each device adds a few lines of code to the context switch handler	
the Operating System performance would be signicantly lower�

In this paper we propose several solutions to the user�level DMA problem that require no modications
to the operating system kernel� Two of them are novel	 and the other two are elaborations of our older
designs� Our methods allow user applications to securely and atomically start DMA operations from
user�level without needing to change the operating system kernel�

� User�Level DMA � Early Work

��� The Problem

A DMA operation has �at least� three arguments
 DMA �vsource� vdestination� size�� Its function
is to transfer size number of bytes from virtual address vsource	 to virtual address vdestination�
To simplify their operation	 DMA engines usually operate only on physical addresses� Sometimes they
are able to operate on virtual addresses	 but this functionality makes both hardware and software more
complicated
 the DMA hardware would need to include translation tables to translate virtual to physical
addresses	 while the operating system software would need to keep these tables up to date� Thus	
most DMA engines require physical addresses as arguments� Hence	 the problem with starting a DMA
operation from user�level is twofold

� Protection
 Users should not be allowed to pass physical addresses directly to the hardware
without any protection checking� Otherwise	 an erroneous or malicious application may start
DMA operations to physical addresses on which it has no access rights	 compromising security	 or
damaging memory contents�

� Atomicity� since two addresses are needed for each DMA operation	 these two addresses should
be passed atomically to the DMA engine� Otherwise	 a random interleaving of processes that want
to start DMA�s may result in a mix up of arguments and may start data transfers from �to� wrong
addresses�

��� Kernel�Level Initiation of DMA

The traditional solution to the above problem is that the user application wanting to make a data transfer
calls the operating system with the necessary arguments
 vsource	 vdestination and size� The
operating system runs �with interrupts disabled�	 checks size	 translates the virtual addresses vsource
and vdestination to their corresponding physical addresses psource and pdestination	 writes the
arguments psource	 pdestination	 and size to the DMA engine registers	 and starts a DMA transfer�
The pseudo�code necessary to start a DMA operation from inside the operating system is shown in gure
��

DMA�vsource	 vdestination	 size�
psource � virtual to physical�vsource� �� translate virtual address��
pdestination � virtual to physical�vdestination�
check size�� � �� check protection in whole transfer range ��
STORE psource TO DMA SOURCE �� set DMA registers��
STORE pdestination TO DMA DESTINATION
STORE size TO DMA SIZE �� start DMA ��
LOAD status FROM DMA STATUS �� succeeded� ��

Figure �
 Typical Initiation of kernel�level DMA

Note	 that all mentioned instructions are executed uninterrupted �in kernel mode�	 and thus the
atomicity of DMA initiation is guaranteed� Translation from virtual addresses to physical addresses

�

is being done inside the operating system in software	 by the virtual to physical function� During
address translation	 the access rights of the user are checked to make sure that the user process who
requested the DMA operation has read access to the page that contains address vsource	 and write
access to the page that contains address vdestination�

Although the overhead of the operating system involvement in starting a DMA operation has been
considered low �especially for DMA operations that transfer data between main memory and disk�	
this is not the case for network transfers anymore� It is well known that Operating Systems do not
get faster as fast as hardware does ��	 ��� Operating System overhead �measured in processor cycles�
continues to increase with time� Large sets of registers that need to be saved�restored	 lack of data
locality	 and slow I�O peripherals are some of the reasons why operating systems do not get faster as
fast as processors do� Recent performance results suggest that the overhead of an empty system call of
commercial UNIX�like operating systems ranges between �	��� and �	��� processor cycles ���� At the
same time	 we witness a impressive improvement in network throughput� For example	 the sustained data
transfer over the mentioned SCI network is more ��� Mbits�sec� Gigabit LANs have already started to
appear in the market� Thus	 the operating system overhead keeps getting an ever�increasing percentage
of the DMA transfer time	 while the time for the data transfer per se	 continues to decrease� Soon	 the
operating system overhead will dominate the DMA transfer	 making the necessity of user�level DMA
more important than ever�

��� Passing Physical Addresses

Before we describe the various user�level DMA mechanisms	 we will discuss the notion of shadow ad�
dressing	 that is common to all user�level DMA solutions	 and has been proposed �under various names�
in ��	 ��� The method of shadow addressing is used to securely translate virtual to physical addresses
and pass them to the DMA engine from user�level processes� For each virtual address vaddr that is
mapped in the physical address paddr	 there is also a shadow address shadow�vaddr�	 which is mapped
in the shadow physical address shadow�paddr��� The shadow function is simple and known to the DMA
engine� One simple shadow function is to concatenate each address with an extra shadow bit� When
the shadow bit is set	 then the address is a shadow one� For example	 �x�FFFFFFFF is a regular ���bit
address	 while �x�FFFFFFFF is its shadow address�

An access to a shadow address is always interpreted by the DMA engine as a special argument
passing operation� For example	 suppose that virtual address vaddr is mapped to physical address
paddr	 and that the virtual address shadow�vaddr� is mapped into shadow�paddr�� Normally	 a load
�store� operation to virtual address vaddr by a user application is translated by the TLB �page�table�
into a load �store� operation to physical address paddr and is performed by the appropriate memory
controller� � Similarly	 a load �store� operation to virtual address shadow�vaddr� is translated by the
TLB into a load �store� operation to physical address shadow�paddr�� When	 however	 this operation
reaches the DMA engine it will be treated as an argument passing operation	 and neither a load nor a
store operation will be performed to physical address shadow�paddr�� Thus	 when the user application
wants to pass to the DMA engine the physical address paddr	 it makes an access to virtual address
shadow�vaddr�� Eventually	 the access mode along with the physical address shadow�paddr� reach the
DMA engine� The DMA engine recognizes the shadow address and takes the physical address paddr by
applying function shadow�� to physical address shadow�paddr�� �

��� The �rst SHRIMP solution

Blumrich et al� described one of the rst user�level DMA solutions ���	 developed in conjunction with
the SHRIMP prototype� In SHRIMP	 each page that is used for communication	 is �mapped out� to
another page in a di�erent workstation� In this DMA mode of operation	 if a local page is used as
the source argument in a DMA operation	 the destination argument will always be its mapped�out

�The Operating System is responsible for creating both mappings at memory allocation �initialization� time�
�Dolphin�s PCI�SCI interface already provides an addressing mode that is reminiscent of shadow addressing� Speci�cally�

in the 	
�bit address mapping� the highest bit of each SCI address �called the lock bit� has a special meaning� if it is set�
a fetch and add atomic operation is performed on the supplied address� Thus� a load operation from this address will
trigger a fetch and add atomic operation� instead of a regular load operation�

�All shadow addresses should be within the physical address range of the DMA engine� and distinct from the normal
physical addresses used by that engine�

�

page� To start a DMA operation	 an access to a shadow address is performed� This access	 passes to
the DMA engine	 the source address	 the destination address �the �mapped out� page�	 the size of the
DMA	 and returns the success�failure of the DMA initiation� All this information is passed by using
a compare�and�exchange atomic instruction� The address argument of the instruction is the source

address	 the data argument of the instruction is the size of the transfer	 and the return value is used to
determine if the DMA operation has started correctly� �

This solution	 although correct	 is of limited functionality� A DMA operation can happen only between
a page and its mapped out counterpart	 which is very restrictive in practice� To achieve arbitrary user�
level DMA transfers	 the mapping between a page and its �mapped�out� page would have to change	
which would result in signicant operating system overhead�

��� The second SHRIMP solution

In their subsequent work	 Blumrich et al� ��� developed a more general user�level DMA method� Their
solution is based on the following idea
 the two physical addresses needed to start a DMA will be given
to the network interface by accessing the two shadow addresses� Their solution to user�level DMA is
shown in gure ��

DMA�vsource	 vdestination	 size�
�� pass physical address shadow�pdestination� to the
�� DMA engine� and the size of the transfer ��
STORE size TO shadow�vdestination�
�� pass physical address shadow�psource� to the
�� DMAengine and read if the operation was successful ��
LOAD return status FROM shadow�vsource�

Figure �
 SHRIMP solution to user�level DMA� This elegant solution to user�level DMA manages
to pass all the arguments needed for the DMA to the network interface with only few instructions� Kernel
modication is necessary to ensure atomic initiation of user�level DMA�

The STORE instruction is used to pass to the SHRIMP interface the physical address that corresponds
to virtual address vdestination	 and the size of the DMA transfer� The LOAD operation is used to
pass to the SHRIMP interface the physical address that corresponds to virtual address vsource	 and to
return the status of the DMA initiation�

This solution has the following limitation
 If the user process is interrupted after the STORE operation	
but before the LOAD operation	 then its arguments to the DMA operation may get mixed with arguments
of other processes that want to start a user�level DMA and eventually a wrong DMA operation may be
started� To alleviate this problem	 Blumrich et al� suggested that �the operating system must invalidate
any partial initiated user�level DMA transfer on every context switch�	 which implies that the context
switch code �and the operating system kernel� must be changed to provide the support for the mentioned
invalidations� Although	 context switch code may be modied for the purposes of a research prototype	
this severely limits the portability of user�level DMA in the market	 for the reasons described in the
introductory section�

��� The FLASH solution

Heinlein et al� ��� implemented user�level DMA within the context of the FLASH multiprocessor� A
user�level DMA is initiated using a sequence of uncached accesses to shadow addresses �much like the
SHRIMP approaches�� To provide atomicity in user�level DMA	 the context switch handler informs the
DMA engine about which process is currently running� Thus	 the DMA engine knows which process
runs	 and makes sure that DMA arguments belonging to di�erent processes do not get mixed� This
solution	 just like the previous one	 needs to modify the context switch handler	 to inform the DMA
engine of the identity of the running process at each context switch�

�Recall� no destination argument needs to be passed� because the destination for the DMA transfer� is the mapped�out
page of the source address�

�

��	 The PAL Code approach

We have seen so far that the mechanism of shadow addressing is a fast and reliable method to pass
physical addresses to a DMA engine from user�space� What is di�cult however	 is to achieve atomicity
of a user�level DMA operation	 that is	 to pass both physical addresses to hardware	 without any danger
of mixing physical addresses of di�erent processes	 and create race conditions� All previous approaches
solve the problem of atomicity	 by changing the context switch code to either abort semi�initiated DMA
operations �e�g� in SHRIMP�	 or explicitly tell the DMA engine that a context switch has happened
�e�g� in FLASH�� If only there were a way to execute two assembly instructions uninterrupted from
user�space	 then the atomicity problem would have been solved� Unfortunately	 traditional systems do
not allow user�level processes to execute uninterrupted code because malicious users may monopolize
the computing system� A recent processor	 however	 the DEC Alpha processor	 provides a special mode
of execution	 the PAL mode	 which allows uninterrupted execution ����� PAL code is organized in ���
instruction long PAL calls� A PAL call is executed uninterrupted� To ensure protection	 only super�users
are allowed to write and install PAL functions� However	 once a PAL function is installed	 any ordinary
user is allowed to invoke it�

User�level DMA atomicity can be achieved by turning the two instructions needed to start a DMA
operation into a PAL call� Thus	 the pseudo�code to start a DMA operation would look as follows

DMA�vsource� vdestination� size�

call�pal user�level�dma�vsource�

vdestination� size�

and the user level dma PAL call would be implemented as

DMA�vsource	 vdestination	 size�
STORE size TO shadow�vdestination�
LOAD return status FROM shadow�vsource�

This solution achieves user�level DMA without any changes to the operating system kernel code� We
believe that systems equipped with the Alpha processor should use this method of user�level DMA� The
PAL code solution to user�level DMA has been incorporated into the Telegraphos I network interface ����

� User�level DMA without Kernel Modi�cations

��� User�level DMA based on keys

�� the KEY allows the process to write arguments into CONTEXT ID ��
global KEY	 CONTEXT ID �
�� The reg� context CONTEXT ID is mapped into address REGISTER CONTEXT ��
global address REGISTER CONTEXT �
DMA�vsource	 vdestination	 size�

�� pass the destination argument ��
STORE KEY�CONTEXT ID TO shadow�vdestination�
STORE KEY�CONTEXT ID TO shadow�vsource� �� pass the source argument ��
STORE size TO REGISTER CONTEXT � �� pass the size argument ��
LOAD return status FROM REGISTER CONTEXT � �� did it succeed� ��

Figure �
 The key�based approach to user�level DMA

Although the PAL code approach to user�level DMA is simple	 it requires the host processor to be the
Alpha processor� In this section we will describe a method to provide atomic user�level DMA without
the need to execute uninterrupted code� The idea behind our approach is the following

The DMA engine is equipped with several �say � to �� register contexts� Each context has
a source register	 a destination register	 and a size register	 with the obvious meanings�

�

Each context is mapped into memory address space so that the processor can access it� Dis�
tinct contexts are mapped into distinct memory pages so that each process gets access rights
for only a single context� Each process that is allowed to start user�level DMA operations
is allowed to write into one such context �the operating system divides the sets fairly and
e�ciently among competing processes�� These registers are being used to keep arguments
to the DMA operations for each process� Thus	 if a process gets interrupted while starting
a DMA operation	 its arguments can not be mixed with another process�s arguments	 since
each process has its own set of context registers to write its arguments into�

The idea sounds simple
 each process has its own space in the DMA engine so that DMA arguments
from two di�erent processes do not get mixed as a result of context switch�

Unfortunately	 a user�level application can not use regular load and store operations to access these
registers and load them with the arguments of a DMA operation� Recall	 that in user�level DMA	
argument passing is done using shadow addressing � the address of the load�store operation is a shadow
address	 and is used as an argument to the DMA operation� Thus	 a process that would like to pass a
physical address to a register context	 will pass the context identication as data argument of the store
operation	 since the address argument of the store operation has already been reserved to pass the shadow
address� For example	 to write the physical address that corresponds to virtual address vaddress	 into
a register context	 a user�level process would execute the following instruction

STORE context�id TO shadow�vaddress�

The above instruction is interpreted by the DMA engine as follows
 Extract the paddress from the
shadow�paddress�	 and put it in register context context id� E�ectively	 to start a DMA	 a process
makes a sequence of uncached store operations like the above one� Unfortunately	 in this way	 any
user process will be allowed to write an address argument into any register context� To prohibit this
erroneous behavior	 along with the context identication	 a key is passed in the data argument of the
store operation� The key is given to the user process by the operating system� Possession of the key
implies that the user process is allowed to write to this register context� Thus	 a physical address is
passed to a DMA engine as follows

STORE key�context�id TO shadow�vaddress�

The above instruction is interpreted by the DMA engine as follows
 Use the physical address that
corresponds to shadow�paddress�	 and store it as an argument in the register context context id	 only
if the provided key matches the key stored by the operating system in the DMA engine	 in memory
locations un�readable by user processes�

Using the above instruction the address arguments of the DMA operations are securely passed to
the DMA engine� However	 one more argument needs to be passed
 The size of the DMA transfer�
This is passed using a regular store operation to the address that corresponds to the register context�
Any store operation to any register within a context is being performed to the size register only	 i�e�
the user can not read�write the source	 and destination registers of a register context using regular
load	store operations	 otherwise	 �s�he would be able to start DMA from�to illegal addresses� Thus	
although the register context is mapped in an process� address space	 the process can only modify the
size register of the context� A read operation from a register context returns the number of bytes that
need to be transferred yet ��� means failure	 � means completed DMA operation��

A user�level DMA operation is initiated as shown in gure ��
The rst two STORE operations pass the physical addresses that correspond to the arguments of the

DMA operation� The third operation	 stores the size of the DMA transfer to the register context of the
current user process� Finally the last operation initiates the DMA operation and reads the status result
back�

The reader will notice that both address arguments are passed using store instructions	 while in
previous solutions	 the source address argument was passed using a load instruction� This restriction
implies that only processes that have both read and write access to the source address will be able to
do user�level DMA operations from it� We believe that this is not a signicant limitation� Most parallel
and distributed applications that send data using DMA	 have both read and write access to these data�

Another limitation of this method seems to be its probabilistic nature
 a lucky user may �guess� a
key and may start illegal DMA transfers� We believe that this is highly unlikely
 In ���bit architectures	

�

there will be close to �� bits available for the key eld	 which makes the probability of guessing correctly
practically zero� It would be easier for a malicious process to crack the password of another user	 rather
than to guess a DMA key�

��� Extended Shadow Addressing

DMA�vsource	 vdestination	 size�
�� pass physical address shadow�pdestination� to the
�� DMA engine� and the size of the transfer ��
STORE size TO shadow�vdestination�
�� pass physical address shadow�psource� to the
�� DMAengine and read if the operation was successful ��
LOAD return status FROM shadow�vsource�

Figure �
 User�level DMA based on extended shadow addressing

Although the previous solution achieves user�level DMA without operating system kernel modica�
tions	 it can theoretically be broken by a lucky user who manages to guess another user�s key� To avoid
this problem	 we have developed a user�level DMA solution that makes the identication of the process
part of the shadow address� That is	 some bits �e�g� the highest ones� of the physical address that will be
passed as an argument to the DMA engine correspond to the process identication� � These bits are set
by the operating system when it creates the mappings from shadow virtual addresses to shadow physical
addresses� Part of the shadow physical address is now the CONTEXT ID� We envision the CONTEXT ID to
be ��� bits long� Thus	 ��� processes will be able to start user�level DMA operations from the same
processor� If more processes would like to start DMA operations	 the rest will have to go through the
kernel� We believe that allowing ��� bits of the physical address for the CONTEXT ID is enough for most
practical cases�

A typical shadow address looks like

shadow bit
� context id
� address
��

A user�level DMA operation will be initiated exactly as the in the second SHRIMP solution � only
the shadow addresses will be di�erent � see gure ��

By checking the CONTEXT ID	 the DMA engine knows which process the shadow address belongs to�
E�ectively	 this user�level DMA solution is similar	 in principle	 to the FLASH solution
 in both cases the
DMA engine knows which process issues which shadow access� The di�erence is that this information in
our solution is embedded in the shadow address	 while in the FLASH solution the operating system kernel
is modied to pass the information to the DMA engine� If the DMA engine has several register contexts	
it may save these addresses it receives in the appropriate contexts and start the DMA operations when
all arguments are available� If the DMA engine has no register contexts	 then when it receives pairs
of STORE	 and LOAD instructions	 it checks for the CONTEXT ID values of the two physical addresses� If
they are di�erent	 the DMA operation is not started and an error code is returned by the last LOAD

instruction�

��� Repeated passing of arguments

Our nal solution achieves user�level DMA without the need of extra bits in the physical address� It is
based on an idea proposed by Charek Dubnicki ���
 If a process passes at least one shadow address more
than once	 then the DMA engine may be able to determine if a user process was interrupted by checking
the two successive accesses to the same shadow address� Dubnicki�s solution uses a three�instruction
sequence as follows

�To be consistent with the previous description we will use the CONTEXT ID as the process identi�cation�

�

DMA�vsource	 vdestination	 size�
�
 LOAD status� FROM shadow�vsource�
�
 STORE size TO shadow�vdestination�
�
 LOAD status� FROM shadow�vsource�

The DMA engine initiates a DMA transfer only if it sees a sequence of the form LOAD	 STORE	 and
LOAD	 and the address arguments of the rst and third instruction in the sequence are the same� � If
a process is interrupted while trying to start a DMA	 then the DMA engine will probably receive a
non�valid sequence of shadow addresses	 and no DMA operation will be initiated�

LEGITIMATE PROCESS MALICIOUS PROCESS

�LOAD status
 from shadow�A�

�� STORE foo TO shadow�foo�

�� LOAD status� FROM shadow�foo� � DMA is not started

�� LOAD status
 FROM shadow �C�

��STORE size to shadow �B�

�� LOAD status� FROM shadow�C� � DMA is started

��LOAD ��� from shadow �A� � too late to do anything

Figure �
 Possible interleaving in the ��instruction Repeated passing of argument DMA approach� A
malicious user is able to start a DMA and transfer its own data �C�	 into another process�s address space
�B��

Although seemingly correct	 the above solution may lead to erroneous data transfers	 if abused by
malicious users� Assume	 for example	 that we have a legitimate process that wants to start a DMA	
and a malicious process that wants to interfere� A possible interleaving of shadow accesses is shown in
gure �� In this interleaving	 the instructions
� to �� reach the DMA engine	 but no DMA operation
is started� However	 then next three instructions ��� to ��� appear as a valid DMA sequence	 and thus
a DMA operation is started transferring data from address C to B	 while the legitimate process wanted
to transfer data from A to B�

Straightforward ��instruction sequence extensions to the above solution seem to remedy this situation�
For example	 assume the following obvious ��instruction extension

DMA�vsource	 vdestination	 size�
�
 STORE size TO shadow�vdestination�
�
 LOAD return status� FROM shadow�vsource�
�
 STORE size TO shadow�vdestination�
�
 LOAD return status� FROM shadow�vsource�

If a malicious does not have any access to addresses vsource	 and vdestination	 then the above sequence
seems to operate correctly� If however	 the data contained in vsource are such that they can be read by
any process in the system	 then a malicious user may achieve the interleaving shown in gure �� Suppose
that the legitimate process wants to transfer data from A to B	 and the malicious process has read�only
access to A� In the interleaving shown in gure �	 the malicious process initiates the DMA transfer �in
���	 but the DMA engine tells the legitimate process that the DMA transfer was not initiated �in ����
Such a behavior will probably lead several applications to erroneous behavior�

To remedy the above limitation	 we have developed a ��instruction sequence that achieves user�level
DMA� The shadow�vsource�address is passed twice to the DMA engine	 while the shadow�vdestination�
address is passed three times	 as shown in gure �� The DMA engine is prepared to receive ��instruction
sequences to shadow address space� The sequence should be of the form STORE� LOAD� STORE� LOAD�

LOAD� If it sees anything out of this order	 the DMA engine resets itself	 waiting for the ��instruction

�Some hardware devices �e�g� write bu�ers� may attempt to collapse successive read�write operations to the same
address� In these cases appropriate memory barrier commands should be used to ensure that all issued instructions will
reach the DMA engine�

�

LEGITIMATE PROCESS MALICIOUS PROCESS

� STORE size TO shadow�B�

�� LOAD rs FROM shadow�A�

�� STORE size TO shadow�B�

�� LOAD rs FROM shadow �A� � DMA is started

�� LOAD rs FROM shadow �A� � DMA is rejected

Figure �
 Possible interleaving in the ��instruction Repeated passing of argument DMA approach� The
malicious process starts the DMA �in ��� but misinforms the legitimate process that the DMA did not
start �in ����

DMA�vsource	 vdestination	 size�
�
 STORE size TO shadow�vdestination�
�
 LOAD return status FROM shadow�vsource�
If �return status �� DMA OK�� goto �

�
 STORE size TO shadow�vdestination�
�
 LOAD return status FROM shadow�vsource�
If �return status �� DMA OK�� goto �

�
 LOAD return status FROM shadow�vdestination�
If �return status �� DMA OK�� goto �

Figure �
 User�level DMA by repeated passing of arguments�

sequences� A DMA operation is started only if the DMA engine receives a sequence of the type STORE�
LOAD� STORE� LOAD� LOAD	 and the address arguments of instructions
�� and � are the same	 and the
address arguments of instructions � and � are the same as well� �

� Prototype

To verify the correctness and performance of our algorithms	 we implemented a prototype board for user�
level DMA according to the �repeated passing of arguments� method� The board was plugged in the
TurboChannel I�O bus of a DEC Alpha �������� workstation� All the required logic for the user�level
DMA was implemented within a single FPGA�

��� Finite State Machine and Datapath Description

The design utilizes a four�state synchronous FSM �S�	 S�	 S�	 S� and S�� shown in gure �� The FSM
jumps from one state to another when a Turbo Channel transaction takes place and remains in a state as
long as there are no new transactions� A new transaction is implied by sampling signal FIRSTSEL high�
There are two Turbo Channel instructions received	 load �signal RW ��� and store �signal RW ����

There are virtually three ���bit registers used in this construct	 named DEST	 SOURCE and
STATUS� DEST holds the destination address of the intended DMA	 SOURCE holds the source
address � of the intended DMA and STATUS holds the response of the DMA machine to Turbo Channel
load instructions� The values of STATUS are
 OK�����h	 OK�����h	 OK�����h and FAIL����h�

�A DMA operation is correctly initiated as long as processes that want to use user�level DMA do not share any data�
In the case where competing processes share data� they need to synchronize �e�g� using locks� before using the described
user�level DMA algorithm� otherwise they may mix up their arguments� if the DMA engine sees the same address twice� it
does not know if it is part of a legitimate user�level DMA sequence� or if it is part of two user�level DMA sequences started
by two di�erent processes that share the mentioned address�

�Although the Turbo Channel support ��bit addresses� our FPGA manipulates only the � highest bits of each address
in order to reduce the space requirements of our FPGA�

��

The FSM resets at S� and waits for a store instruction to go to S�� On receiving a load it
responds with FAIL	 while remaining in S�� When a store arrives the bus address is saved to DEST
and state alters to S��

If a load instruction comes now	 the bus address is stored to SOURCE	 OK� is returned and the
FSM goes to S�� Otherwise the FSM returns to S��

Once in S� to move to the next state �S�� a store instruction with address equal to DEST is
expected� Otherwise the FSM resets to S� and if the instruction is load	 FAIL is put to the bus as
response�

Now	 to jump to state S� the FSM is waiting for a load instruction with address equal to SOURCE�
In that case OK� is returned� If the address is not equal to SOURCE or the instruction is a store
the FSM returns to S� �responding with FAIL to load��

S� is the last state and always returns to S�� If the instruction is a load then if the bus address
is equal to DEST	 OK� is returned and the DMA starts	 else FAIL is returned� If the instruction is a
store then the FSM just resets and no DMA starts�

In conclusion	 the FSM goes through all ve states only if the sequence of the instructions received
is store�load�store�load�load� In addition	 virtual register STATUS contains the value OK�
�which indicates that the instruction sequence succeeded and the DMA will start� only if the addresses
of the �st	 �rd and �th instructions are equal as well as the addresses of the �nd and �th instructions�

The datapath of a Turbo�Channel slave FPGA	 implementing the repeated passing of arguments
algorithm is shown in gure �� The signal CLK is the global clock of the FPGA �actually the Turbo�
Channel�s clock�� RW is the Turbo�Channel operation signal� On a read �load� operation RW is � and
on a write �store� it is �� Signal SEL is driven low as soon as an address is put on the bus lines and
stays low during the whole transaction process� The signal RDY is driven low by the FPGA and stays
down for a clock cycle� RDY is used to inform about the end of a transaction and when it is driven high
the signal SEL follows� The FPGA uses only �� of the �� Turbo�Channel address�data lines	 named
Address in the diagram� On these lines the processor puts the load�store address and in the case of a
load the FPGA answers with the data�

The FSEL signal samples the rst time during a transaction the signal SEL is driven low� In other
words FSEL marks the beginning of a transaction �it stays asserted for only one clock cycle�� When
FSEL is asserted the bus address is stored in a register� If the signal SRC LD is asserted then the
address will be stored to the register SOURCE� If DST LD is asserted then the address is copied to
the DEST register� This will be the case on the rst two of the ve transactions of the DMA starting
sequence� On any other case the current address and the contents of the SOURCE or DEST registers
are compared and the result of this comparison �signal EQUAL� goes to the FSM� During this cycle
the signal FIRSTSEL is also generated and passed to the FSM�

On the next cycle the RDY signal is generated	 along with STAT SEL and STATUS� STATUS is
the value returned on a load and STAT SEL is asserted if the instruction received is a load	 to enable
the FPGA to drive the bus lines� The FSM also generates the signal SRC LD and DST LD to save the
current address to the SOURCE and DEST registers as mentioned before� The DS SEL signal that
decides upon the second operand of the comparison on the next transaction is also generated during this
cycle�

��� Assembly Code

In this section we present the assembly pseudo�code of the �repeated passing of arguments� algorithm	
in order to demonstrate some low level implementation details� The assembly pseudo�code can be found
in gure ��� Note that	 between any two accesses to the shadow address space �that resides within
the TurboChannel address range� we use the mb �memory barrier� instruction	 which makes sure that
all memory references prior to it complete before any further instructions are issued� Since the Alpha
processor ���� �like many other processors� allows out of order execution	 the sequence that shadow
accesses reach the DMA boards may not be the same as the sequence they were issued�

The interested reader will also note the use of the �set volatile compiler directive	 that is used to
bypass default compiler optimizations� The �repeated passing� DMA initiation method makes repeated
accesses to the same shadow addresses� To an optimizing compiler�assembler	 without knowledge that
the concerned addresses do not correspond to real memory	 this seems a waste of instructions	 and our
assembler substituted instruction � by a register to register transfer	 since it assumed that the value

��

FSM Operation

without Operating System Kernel Modification
Repeated passing of arguments

S0 S1 S2 S3 S4

User-Level DMA

,

load && addr==DST

DST = addr
load

store

SRC = addr;
return(OK1);

if (load) return(FAIL);

return(OK3);

= 12-bit internal registersDEST SOURCE

ADDR = Turbo Channel Address[22:11]

OK2 = 002

FAIL =000
OK1 = 001

OK3 = 003

return(FAIL);
load

store

load || (store && addr!=DST)

if (load) return(FAIL);

store || (load && addr!=SRC)

store && addr==DST

store || (load && addr!=DST)

if (load) return(FAIL);

load && addr==SRC

return(OK2);

Figure �
 Finite State Machine for User�level DMA Prototype

CLK

RW_

SEL_

RDY_

12

Address

STAT_SEL

STATUS

CLK

D Q
FSEL

CE
CLK

D Q

DST_LD

SRC_LD

CLK
CE
D Q

QD
CE

CLK

0

1

DEST

SOURCE

12

12
EQUAL

SEL_ FSEL FIRSTSEL

RW_ STAT_SEL

RDY_

CLK

CLKCLKCLKCLKCLK

D Q D Q QD D Q D Q

D Q

FIRSTSEL

EQUAL

RW_

CLK

DS_SEL

SRC_LD

DST_LD

STATUS

F S M

User-Level DMA
without Operating System Kernel Modification

Datapath diagram

Figure �
 Datapath for User�level DMA Prototype

��

assigned by instruction � would be the value stored by instruction �� We forced the assembler to keep
the memory access stated in instruction � by using the �set volatile directive� �	

DMA�vsource	 vdestination	 size�
MB � barrier

�
 STORE size TO shadow�vdestination�
MB � barrier

�
 LOAD return status FROM shadow�vsource�
If �return status �� DMA OK�� goto �

�
 STORE size TO shadow�vdestination�
MB � barrier

�
 LOAD return status FROM shadow�vsource�
If �return status �� DMA OK�� goto �

�set volatile

�
 LOAD return status FROM shadow�vdestination�
�set novolatile

If �return status �� DMA OK�� goto �

Figure ��
 Assembly pseudo�code for user�level DMA by repeated passing of arguments�

��� Performance Evaluation

Our DMA prototype plugs in the Turbo Channel I�O bus of a DEC Alpha �������� workstation	 and
runs at ���� MHz� We used our prototype to evaluate the performance benets of user�level DMA� For
each DMA method we perform a simple test of initiating �	��� DMA operations� �� Successive DMA
operations were done to�from� di�erent addresses	 so as to eliminate any caching e�ects that intervening
write bu�ers may induce� In the Repeated Passing of Arguments method	 a memory barrier was used
to make sure that repeated accesses to the same address were not collapsed in �or serviced by� the write
bu�er� Table � presents the �average� time it took for each algorithm to pass all arguments for starting
a DMA operation�

We see that kernel level DMA costs close to �� �s	 which is a little more than the cost of an empty
system call on this workstation� Fortunately	 we see that all user�level DMA methods perform about an
order of magnitude better than the kernel�based DMA� Best of all methods is the �Extended Shadow
Addressing�	 which takes a little more than one microsecond� This is as expected	 since this method
needs only two assembly instructions to pass all DMA arguments to the network interface� The other
user�level DMA methods take ������� microseconds	 which is also expected since they use twice as many
accesses to the network interface�

We should mention	 however	 that our implementation is pessimistic	 and user�level DMA can achieve
quite better performance in modern systems	 that use faster buses� The TurboChannel bus that we used
runs at ���� MHz	 while recent buses	 like the PCI bus run at frequencies as high as �� MHz� We believe
that faster buses will have a direct performance improvement on user�level DMA	 while they will only
marginally improve the performance of kernel�level DMA�

��� Veri�cation

To verify the correctness of our prototype	 we conducted the following experiment
 We started several
processes on the same processor� All processes initiate user�level DMA operations as fast as they can�
Each process runs for one quantum ��� ms�� After the quantum expiration	 the process is suspended	 put
at the end of the ready queue	 and the next process is scheduled for execution in a round�robin fashion�
At every context switch operation �every �� ms�	 we expect an error �unsuccessful DMA initiation� to

�	As an aside note� we must refer that the assembler implemented this optimization although the option �O� was used
at compile time� By using this option the assembler must not implement any optimization�

��No DMA data transfer was actually performed� Only the DMA arguments were passed to the network interface�

��

DMA algorithm DMA initiation ��s�
Kernel�level DMA ����

Ext� Shadow Addressing ���
Rep� Passing of Arguments ���

Key�based DMA ���

Table �
 Comparison of DMA initiation algorithms�

happen	 since the DMA of the previously running process will be half�started� We expect the error to
be reported to the currently running processes� Thus	 we expect the DMA engine to report around ���
errors per second� We run the system with various congurations	 consisting of two	 three and four
concurrently running processes� In all cases we measured the number of errors per second and found it
to be between ��� and ���� This means that when a process is scheduled to run it may experience two
unsuccessful DMAs instead of one� The reason is that the following interleaving may occur

PROCESS
 PROCESS �

� STORE size TO shadow�A�

�� LOAD rs FROM shadow�B�

�� STORE size TO shadow�A�

�� LOAD rs FROM shadow �B�

�� STORE size TO shadow�C�

�� LOAD rs FROM shadow�D� �DMA is rejected

�� lots of successful DMAs

�� STORE size TO shadow�C�

�� LOAD rs FROM shadow �B� �expects OK� but gets OK

��STORE size TO shadow�A� �start all over

�LOAD rs FROM shadow�B� �expects OK
 gets FAIL

�� STORE size TO shadow�A� �start all over

In instruction � the rst process wants to complete a DMA started in instruction
	 but the DMA engine
�thinks� that its is the second instruction of the DMA started in �	 and returns OK
	 while the process
expects OK�	 leading to an unsuccessful DMA initiation� Then	 the rst process starts the DMA from the
beginning in
�	 but gets a FAIL in

	 since the DMA engine �thinks� that the DMA operation asked
consists of instructions ��

	 which do not comprise a valid DMA initiation prex sequence� Thus	 the
process experiences a second unsuccessful DMA initiation� Finally	 the rst process starts a DMA from
the beginning in instruction
�	 and it will probably succeed from then on� Summarizing we	 see that
after some context switches	 a process may experience two unsuccessful DMA initiations instead of one�
To verify that this is the reason why we see more than ��� errors per second	 we re�run the experiment	
counting only the times the FPGA returns FAIL� In all our experiments	 this happened ����� times per
second	 which is pretty close to what we expected� Note that it is not probable to measure ��� errors per
second	 since sometimes	 a process may be suspended after it has completed a successful DMA initiation	
but before issuing the rst instruction of the next DMA operation�

Acknowledgments

This work is supported by the ESPRIT�OMI project �ARCHES� �ESPIRIT ������	 funded by the
European Union� The major focus of the project is to accelerate the uptake of the high�speed HIC
interconnect technology and IEEE ���� standards in the marketplace� The HIC technology addresses in
particular the marketplace for parallel systems interconnect and provides a major enabling technology
for the Open Microprocessor systems Initiative� We deeply appreciate this nancial support	 without
which this work would have not existed�

Czarek Dubnicki helped us shape some of the ideas described in the paper	 and provided useful
feedback for the rest of them� Bob Dobinson provided useful feedback during an early presentation of the

��

ideas described in the paper� Shubu Mukherjee and Mark Hill pointed out the need for synchronization
between cooperating processes that need to use user�level DMA� We thank all them�

References

��� M� Blumrich	 K� Li	 R� Alpert	 C� Dubnicki	 E� Felten	 and J� Sandberg� Virtual Memory Mapped
Network Interface for the SHRIMP Multicomputer� In Proc� 	
�th International Symposium on
Comp� Arch�	 pages �������	 Chicago	 IL	 April �����

��� M�A� Blumrich	 C�Dubnicki	 E�W� Felten	 and K� Li� Protected	 User�level DMA for the SHRIMP
Network Interface� In Proc� of the 	nd International Symposium on High Performance Computer
Architecture�	 pages �������	 San Jose	 CA	 February �����

��� Czarek Dubnicki� Personal Communication	 ����� Princeton University�

��� J� Heinlein	 K� Gharachorloo	 S� Dresser	 and A� Gupta� Integration of Message Passing and Shared
Memory in the Stanford FLASH Multiprocessor� In Proc� of the ��th International Conference on
Architectural Support for Programming Languages and Operating Systems	 pages �����	 �����

��� Dolphin ICS� PCI�SCI Cluster Adapter Specication� ARCHES project Working Paper No� ���

��� E� P� Markatos and M� G�H� Katevenis� Telegraphos
 High�Performance Networking for Paral�
lel Processing on Workstation Clusters� In Proc� of the 	nd International Symposium on High
Performance Computer Architecture�	 pages �������	 Feb ����� URL
 http
��www�csi�forth�gr�
proj�arch�vlsi�papers� �����HPCA���Telegraphos�ps�gz�

��� Larry McVoy and Carl Staelin� lmbench
 Portable Tools for Performance Analysis� In Proc� of the
USENIX
��� Technical Conference	 pages �������	 San Diego	 CA	 January �����

��� John Ousterhout� Why Aren�t Operating Systems Getting Faster as Fast as Hardware� In Proceed�
ings of the USENIX Summer �� Technical Conference	 pages �������	 June �����

��� M� Rosenblum	 E� Bugnion	 S�A� Herrod	 E� Witchel	 and A� Gupta� The Impact of Architec�
tural Trends on Operating System Performance� In Proc�
��th Symposium on Operating Systems
Principles	 December �����

���� R� Sites� Alpha AXP Architecture� Communications of the ACM	 �����
�����	 February �����

��

