User-Level DMA
without Operating System Kernel Modification

Evangelos P. Markatos and Manolis G.H. Katevenis*
Institute of Computer Science (ICS)
Foundation for Research & Technology — Hellas (FORTH)

P.O.Box 1385, Science and Technology Park of Crete,

Heraklion, Crete, GR-711-10 GREECE markatos@ics.forth.gr

In Third International Symposium on High Performance Computer Architecture (HPCA-3)
San Antonio, TX, Feb. 1997
URL: http://www.ics.forth.gr/proj/arch-vlsi/telegraphos.html

Abstract

Direct Memory Access (DMA) is frequently used
to transfer data between the main memory of a host
computer and the interconnection network, in order
to free the host processor from the burden of the trans-
fer. DMA operations are traditionally initiated by the
operating system kernel, mainly to prevent one appli-
cation from tampering with another applications’ data.
Recent architecture trends suggest that interconnection
networks get faster, while operating systems get slower
(compared to processor speeds). These trends imply
that the initiation of a DMA operation becomes slower
(due to operating system involvement), while the DMA
data transfer itself becomes faster with time. Soon, the
operating system overhead assoctated with starting a
DMA will be larger than the data transfer itself, esp.
for small data transfers.

This paper proposes several algorithms that allow
user-level applications to start DMA operating with-
out the involvement of the operating system. Qur al-
gorithms allow user applications to have direct (but
controlled) access to the DMA engine registers. Low
overhead user-level DMA s achieved without compro-
mising protection, and without requiring changes to
the underlying operating system kernel. Using our pro-
posed algorithms, a DMA operation can be initiated in
2 to & assembly instructions. By comparison, operat-
g system-based initiation of DMA requires thousands
of assembly instructions.

*The authors are also with the University of Crete.

tCopyright 1997 IEEE. Published in the Proceedings of the
THird International Symposium on High Performance Com-
puter Architecture, February 1-5, 1997 in San Antonio, Texas,
USA. Personal use of this material is permitted. However, per-
mission to reprint /republish this material for advertising or pro-
motional purposes or for creating new collective works for resale
or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works, must be obtained from
the ITEEE. Contact: Manager, Copyrights and Permissions /
IEEE Service Center / 445 Hoes Lane / P.O. Box 1331 / Piscat-
away, NJ 08855-1331, USA. Telephone: + Intl. 908-562-3966.

1 Introduction

Popular contemporary computing environments are
comprised of powerful workstations connected via a
network which, in many cases, has a high throughput,
resulting in systems called workstation clusters, or
Networks of Workstations (NOWSs) [1]. The availabil-
ity of such computing and communication power gives
rise to new applications like multimedia, high perfor-
mance scientific computing, real-time applications, en-
gineering design and simulation, and so on. Up to re-
cently, only high performance parallel processors and
supercomputers were able to satisfy the computing
requirements of these applications. Fortunately, the
development of superscalar RISC processors increases
the computing ability of modern workstations and mi-
crocomputers significantly. At the same time, recent
improvement in high speed link technology has lead
to the development of communication networks that
sustain bandwidth in the order of Gigabits per sec-
ond (Gbps). To allow fast processors to make efficient
use of all the available bandwidth, several user-level
memory-mapped network interfaces have been devel-
oped [2, 5, 9] and manufactured [7, 4, 14]. Most of
these interfaces use Direct Memory Access (DMA) op-
erations to transfer data from one workstation to an-
other. DMA has been heavily used to transfer data be-
tween (fast) main memory and (slow) magnetic disks
to free the host processor from the burden of transfer-
ring the data itself.

DMA management has been traditionally done by
the Operating System kernel. The Operating System
is the only trusted entity that is allowed to access
DMA registers. User applications are not allowed to
initiate DM A operations by themselves. There are two
reasons for the necessity of the Operating System in-
volvement in starting a DMA operation in traditional
systems:

o Atomicity: To start a DMA operation, the soft-
ware should pass several arguments to a DMA
engine. At least three arguments are needed:
the source address, the destination address, and

the size of the DMA transfer. All these argu-
ments should be given to the DMA engine atomi-
cally, otherwise, two processes that want to initi-
ate two DMA operations at about the same time
may overwrite each other’s arguments, in their at-
tempt to grab the DMA engine. To resolve such
race conditions, the processes invoke the operat-
ing system which runs uninterrupted, starts the
DMA operation of the first process, and when fin-
ished, starts the DMA of the second process.

e Protection from programming errors and mali-
ctous users: Most DMA engines accept only phys-
ical addresses as the source and destination ad-
dress of a DMA operation. Ordinary users should
not be allowed to pass physical addresses to a
DMA engine, since they may pass physical ad-
dresses, that they are not allowed to access. Thus,
an ignorant or malicious user may start a DMA
operation from/to memory addresses that (s)he
normally has no access to. As a result, (s)he may
read private data, destroy the operating system,
or crash the computer. The only trustworthy en-
tity to determine which user is allowed to access
which physical addresses is the operating system.

In the previous decades, since the overhead of the
operating system involvement in the initiation of a
DMA was small compared to the DMA data transfer
itself, no attempt was made to allow user applications
to start DMA operations. However, in contemporary
fast local area networks, starting a DMA operation
from inside the operating system kernel may take more
than the network transfer operation itself! For this
reason, several researchers have started to address the
problem of letting user applications initiate a DMA.
Pioneering work in the SHRIMP [2] and FLASH [§]
projects have pinpointed the importance of user-level
DMA operations and have proposed initial solutions
to user-level DMA. Unfortunately, these approaches
to user-level DMA require modifications to the op-
erating system kernel. To function correctly, both
mentioned approaches modify the operating system
context switch handler, in order to enforce atomicity
of user-level DMA operations, and avoid race condi-
tions. The SHRIMP approach requires that the con-
text switch handler aborts all half-started DMA op-
erations [3] (so that no race condition may happen),
while the FLASH approach requires that the context
switch handler informs the DMA engine about the
identity of the running process at context switch time,
(so that the DMA engine has enough information to
avoid race conditions). Although a few lines of code to
the context switch handler seem a trivial change, they
may turn out to be a major obstacle to the success of
user-level DMA for the following reasons:

e Modifications of the operating system kernel may
not be possible because the source code of the
operating system may be confidential or sold un-
der a license only. In either case, ordinary users
may not be able, or willing to acquire operating
system sources. Even if the changes to the con-
text switch handler are distributed as an operat-

ing system patch, they may generate even more
problems:

— Distributing changes (for user-level DMA) to
existing operating system, as patches, sets a
bad example. If all peripheral device vendors
start distributing patches to existing operat-
ing systems, different patches will eventually
conflict with each other, leading to erroneous
code.

— Patches are difficult to maintain. They force
the vendor of the DMA device to produce a
new patch for each new version of the oper-
ating system.

e The context switch handler is usually on the crit-
ical path of the performance of the operating sys-
tem. If each manufacturer of each device adds a
few lines of code to the context switch handler,
the Operating System performance would be sig-
nificantly lower.

In this paper we propose several solutions to the
user-level DM A problem that require no modifications
to the operating system kernel. Two of them are novel,
and the other two are elaborations of our older designs.
Our methods allow user applications to securely and
atomically start DM A operations from user-level with-
out needing to change the operating system kernel. !

2 User-Level DMA - Early Work

2.1 The Problem

A DMA operation has (at least) three arguments:
DMA (vsource, vdestination, size). Its function
is to transfer size number of bytes from virtual ad-
dress vsource, to virtual address vdestination. To
simplify their operation, DMA engines usually operate
only on physical addresses. Sometimes they are able
to operate on virtual addresses, but this functionality
makes both hardware and software more complicated:
the DMA hardware would need to include translation
tables to translate virtual to physical addresses, while
the operating system software would need to keep
these tables up to date. Thus, most DMA engines
require physical addresses as arguments. Hence, the
problem with starting a DMA operation from user-
level is twofold:

e Protection: Users should not be allowed to pass
physical addresses directly to the hardware with-
out any protection checking. Otherwise, an er-
roneous or malicious application may start DMA
operations to physical addresses on which it has
no access rights, compromising security, or dam-
aging memory contents.

e Atomicity: since two addresses are needed for
each DMA operation, these two addresses should
be passed atomically to the DMA engine. Oth-
erwise, a random interleaving of processes that

ITo our knowledge these are the first publicly available so-
lutions to user-level DMA that do not require modifications of
the underlying operating system kernel.

want to start DMA’s may result in a mix up of
arguments and may start data transfers from (to)
wrong addresses.

2.2 Kernel-Level Initiation of DMA

The traditional solution to the above problem is
that the user application wanting to make a data
transfer calls the operating system with the neces-
sary arguments: vsource, vdestination and size.
The operating system runs (with interrupts disabled),
checks size, translates the virtual addresses vsource
and vdestination to their corresponding physical ad-
dresses psource and pdestination, writes the argu-
ments psource, pdestination, and size to the DMA
engine registers, and starts a DMA transfer. The
pseudo-code necessary to start a DMA operation from
inside the operating system is shown in figure 1.

Note, that all mentioned instructions are executed
uninterrupted (in kernel mode), and thus the atom-
icity of DMA initiation is guaranteed. Translation
from virtual addresses to physical addresses is be-
ing done inside the operating system in software, by
the virtual to_physical function. During address
translation, the access rights of the user are checked
to make sure that the user process who requested the
DMA operation has read access to the page that con-
tains address vsource, and write access to the page
that contains address vdestination.

Although the overhead of the operating system in-
volvement in starting a DMA operation has been con-
sidered low (especially for DM A operations that trans-
fer data between main memory and disk), this is not
the case for network transfers anymore. It is well
known that Operating Systems do not get faster as
fast as hardware does [11, 12]. Operating System over-
head (measured in processor cycles) continues to in-
crease with time. Large sets of registers that need
to be saved/restored, lack of data locality, and slow
I/O buses are some of the reasons why operating sys-
tems do not get faster as fast as processors do. Re-
cent performance results suggest that the overhead of
an empty system call of commercial UNIX-like operat-
ing systems ranges between 1,000 and 5,000 processor
cycles [10]. At the same time, we witness a impres-
sive improvement in network throughput. ATM net-
works that provide 155 Mbps are common today, and
will soon be upgraded to 622 Mbps. Gigabit LANs
have already started to appear in the market. Thus,
the operating system overhead keeps getting an ever-
increasing percentage of the DMA transfer time, while
the time for the data transfer per se, continues to
decrease. Soon, the operating system overhead will
dominate the DMA transfer, making the necessity of
user-level DM A more important than ever.

2.3 Passing Physical Addresses

Before we describe the various user-level DMA
mechanisms, we will discuss the notion of shadow ad-
dressing, that is common to all user-level DMA solu-
tions, and has been proposed (under various names) in
[3, 8]. The method of shadow addressing is used to se-
curely translate virtual to physical addresses and pass
them to the DMA engine from user-level processes.

For each virtual address vaddr that is mapped in the
physical address paddr, there is also a shadow address
shadow(vaddr), which is mapped in the shadow phys-
ical address shadow(paddr).? The shadow function
is simple and known to the DMA engine. One sim-
ple shadow function is to concatenate each address
with an extra shadow bit. When the shadow bit is
set, then the address is a shadow one. For exam-
ple, 0xOFFFFFFFF is a regular 33-bit address, while
O0x1FFFFFFFF is its shadow address.

An access to a shadow address is always interpreted
by the DMA engine as a special argument passing op-
eration. For example, suppose that virtual address
vaddr is mapped to physical address paddr, and that
the virtual address shadow(vaddr) is mapped into
shadow(paddr). Normally, a load (store) operation to
virtual address vaddr by a user application is trans-
lated by the TLB (page-table) into a load (store) op-
eration to physical address paddr and is performed by
the appropriate memory controller. Similarly, a load
(store) operation to virtual address shadow(vaddr)
is translated by the TLB into a load (store) opera-
tion to physical address shadow(paddr). When, how-
ever, this operation reaches the DMA engine it will
be treated as an argument passing operation, and nei-
ther a load nor a store operation will be performed
to physical address shadow(paddr). Thus, when the
user application wants to pass to the DMA engine the
physical address paddr, it makes an access to virtual
address shadow(vaddr). Eventually, the access mode
along with the physical address shadow(paddr) reach
the DMA engine. The DMA engine recognizes the
shadow address and takes the physical address paddr
by applying function shadow™! to physical address
shadow(paddr). 3

2.4 The first SHRIMP solution

Blumrich et al. described one of the first user-level
DMA solutions [2], developed in conjunction with the
SHRIMP prototype. In SHRIMP, each page that is
used for communication, is “mapped out” to another
page in a different workstation. In this DMA mode
of operation, if a local page is used as the source ar-
gument in a DMA operation, the destination argu-
ment will always be its mapped-out page. To start a
DMA operation, an access to a shadow address is per-
formed. This access, passes to the DMA engine, the
source address, the destination address (the “mapped
out” page), the size of the DMA, and returns the
success/failure of the DMA initiation. All this infor-
mation is passed by using a compare-and-exchange
atomic instruction. The address argument of the in-
struction 1s the source address, the data argument of
the instruction is the size of the transfer, and the re-
turn value is used to determine if the DMA operation
has started correctly. 4

2The Operating System is responsible for creating both map-
pings at memory allocation (initialization) time.

3 All shadow addresses should be within the physical address
range of the DMA engine, and distinct from the normal physical
addresses used by that engine.

“Recall, no destination argument needs to be passed, be-
cause the destination for the DMA transfer, is the mapped-out

DMA (vsource, vdestination, size)

psource = virtual_to_physical(vsource) /* translate virtual address*/

pdestination = virtual_to_physical(vdestination)

check_size() ; /* check protection in whole transfer range */
STORE psource TO DMA_SOURCE /* sel DMA registers*/

STORE pdestination TO DMA_DESTINATION
STORE size TO DMA SIZE /* start DMA */

LOAD status FROM DMA_STATUS /* succeeded? */

Figure 1: Typical Initiation of kernel-level DMA

This solution, although correct, is of limited func-
tionality. A DMA operation can happen only be-
tween a page and its mapped out counterpart, which is
very restrictive in practice. To achieve arbitrary user-
level DMA transfers, the mapping between a page and
its “mapped-out” page would have to change, which
would result in significant operating system overhead.

2.5 The second SHRIMP solution

In their subsequent work, Blumrich et al. [3] devel-
oped a more general user-level DMA method. Their
solution is based on the following idea: the two phys-
ical addresses needed to start a DMA will be given
to the network interface by accessing the two shadow
addresses. Their solution to user-level DMA is shown
in figure 2.

The STORE instruction is used to pass to the
SHRIMP interface the physical address that corre-
sponds to virtual address vdestination, and the size
of the DMA transfer. The LOAD operation is used to
pass to the SHRIMP interface the physical address
that corresponds to virtual address vsource, and to
return the status of the DMA initiation.

This solution has the following limitation: If the
user process is interrupted after the STORE operation,
but before the LOAD operation, then its arguments
to the DMA operation may get mixed with argu-
ments of other processes that want to start a user-level
DMA and eventually a wrong DMA operation may be
started. To alleviate this problem, Blumrich et al
suggested that “the operating system must invalidate
any partial initiated user-level DMA transfer on ev-
ery context switch”, which implies that the context
switch code (and the operating system kernel) must
be changed to provide the support for the mentioned
invalidations. Although, context switch code may be
modified for the purposes of a research prototype, this
severely limits the portability of user-level DMA in the
market, for the reasons described in the introductory
section.

2.6 The FLASH solution

Heinlein et al. [8] implemented user-level DMA
within the context of the FLASH multiprocessor. A
user-level DMA 1is initiated using a sequence of un-
cached accesses to shadow addresses (much like the

page of the source address.

SHRIMP approaches). To provide atomicity in user-
level DMA, the context switch handler informs the
DMA engine about which process is currently running.
Thus, the DMA engine knows which process runs, and
makes sure that DM A arguments belonging to differ-
ent processes do not get mixed. This solution, just like
the previous one, needs to modify the context switch
handler, to inform the DMA engine of the identity of
the running process at each context switch.

2.7 The PAL Code approach

We have seen so far that the mechanism of shadow
addressing is a fast and reliable method to pass physi-
cal addresses to a DMA engine from user-space. What
is difficult however, is to achieve atomicity of a user-
level DMA operation, that is, to pass both physical
addresses to hardware, without any danger of mix-
ing physical addresses of different processes, and cre-
ate race conditions. All previous approaches solve the
problem of atomicity, by changing the context switch
code to either abort semi-initiated DMA operations
(e.g. in SHRIMP), or explicitly tell the DMA engine
that a context switch has happened (e.g. in FLASH).
If only there were a way to execute two assembly in-
structions wuninterrupted from user-space, then the
atomicity problem would have been solved. Unfor-
tunately, traditional systems do not allow user-level
processes to execute uninterrupted code because ma-
licious users many monopolize the computing system.
A recent processor, however, the DEC Alpha proces-
sor, provides a special mode of execution, the PAL
mode, which allows uninterrupted execution [13]. PAL
code is organized in 16-instruction long PAL calls. A
PAL call is executed uninterrupted. To ensure protec-
tion, only super-users are allowed to write and install
PAL functions. However, once a PAL function is in-
stalled, any ordinary user is allowed to invoke it.

User-level DMA atomicity can be achieved by turn-
ing the two instructions needed to start a DMA oper-
ation into a PAL call. Thus, the pseudo-code to start
a DMA operation would look as follows:

DMA(vsource, vdestination, size)
call_pal user_level_dma(vsource,
vdestination, size)

and the user level dma PAL call would be imple-
mented as:

DMA (vsource, vdestination, size)

/¥ pass physical address shadow(pdestination) to the

** DMA engine, and the size of the transfer */
STORE size TO shadow(vdestination)
/¥ pass physical address shadow(psource) to the

** DMAengine and read if the operation was successful */

LOAD return_status FROM shadow(vsource)

Figure 2: SHRIMP solution to user-level DM A. This elegant solution to user-level DMA manages to pass
all the arguments needed for the DMA to the network interface with only few instructions. Kernel modification

is necessary to ensure atomic initiation of user-level DMA.

DMA (vsource, vdestination, size)
STORE size TO shadow(vdestination)
LOAD return_status FROM shadow(vsource)

This solution achieves user-level DM A without any
changes to the operating system kernel code. We be-
lieve that systems equipped with the Alpha proces-
sor should use this method of user-level DMA. The
PAL code solution to user-level DMA has been incor-
porated into the Telegraphos I network interface [9].

3 User-level DMA without Kernel
Modifications

3.1 User-level DM A based on keys

Although the PAL code approach to user-level
DMA is simple, it requires the host processor to be
the Alpha processor. In this section we will describe a
method to provide atomic user-level DMA without the
need to execute uninterrupted code. The idea behind
our approach is the following:

The DMA engine is equipped with several
(say 4 to 8) register contexts. Each con-
text has a source register, a destination
register, and a size register, with the ob-
vious meanings. FEach context is mapped
into memory address space so that the pro-
cessor can access it. Distinct contexts are
mapped into distinct memory pages so that
each process gets access rights for only a sin-
gle context. Each process that is allowed to
start user-level DMA operations is allowed
to write into one such context (the operat-
ing system divides the sets fairly and effi-
ciently among competing processes). These
registers are being used to keep arguments to
the DMA operations for each process. Thus,
if a process gets interrupted while starting
a DMA operation, its arguments can not
be mixed with another process’s arguments,
since each process has its own set of context
registers to write its arguments into.

The idea sounds simple: each process has its own
space in the DMA engine so that DMA arguments
from two different processes do not get mixed as a
result of context switch.

Unfortunately, a user-level application can not use
regular load and store operations to access these reg-
isters and load them with the arguments of a DMA
operation. Recall, that in user-level DMA, argument
passing is done using shadow addressing - the address
of the load/store operation is a shadow address, and
is used as an argument to the DMA operation. Thus,
a process that would like to pass a physical address
to a register context, will pass the context identifica-
tion as data argument of the store operation, since the
address argument of the store operation has already
been reserved to pass the shadow address. For exam-
ple, to write the physical address that corresponds to
virtual address vaddr, into a register context, a user-
level process would execute the following instruction:

STORE context_id TO shadow(vaddress)

The above instruction is interpreted by the DMA
engine as follows: Extract the paddress from the
shadow(paddress), and put it in register context
context_id. Effectively, to start a DMA, a process
makes a sequence of uncached store operations like
the above one. Unfortunately, in this way, any user
process will be allowed to write an address argument
into any register context. To prohibit this erroneous
behavior, along with the context identification, a key
is passed in the data argument of the store operation.
The key is given to the user process by the operating
system. Possession of the key implies that the user
process 1s allowed to write to this register context.
Thus, a physical address is passed to a DMA engine
as follows:

STORE key#context_id TO shadow(vaddress)

The above instruction is interpreted by the DMA en-
gine as follows: Use the physical address that corre-
sponds to shadow(paddress), and store it as an argu-
ment in the register context context_id, only if the
provided key matches the key stored by the operat-
ing system in the DMA engine, in memory locations
un-readable by user processes.

Using the above instruction the address arguments
of the DMA operations are securely passed to the
DMA engine. However, one more argument needs to
be passed: The size of the DMA transfer. This is
passed using a regular store operation to the address
that corresponds to the register context. Any store

/¥ the KEY allows the process to write arguments into CONTEXT_ID */

global KEY, CONTEXT_ID ;

/* The reg. context CONTEXT_ID is mapped into address REGISTER_-CONTEXT */

global address REGISTER_CONTEXT ;
DMA (vsource, vdestination, size)
/% pass the destination argument */

STORE KEY#CONTEXT._ID TO shadow(vdestination)

STORE KEY#CONTEXT._ID TO shadow(vsource) /* pass the source argument */
STORE size TO REGISTER_CONTEXT ; /* pass the size argument */

LOAD return_status FROM REGISTER_CONTEXT ; /* did il succeed? */

Figure 3: The key-based approach to user-level DM A

operation to any register within a context is being
performed to the size register only, i.e. the user can
not read/write the source, and destination registers
of a register context using regular load/store oper-
ations, otherwise, (s)he would be able to start DMA
from/to illegal addresses. Thus, although the register
context is mapped in an process’ address space, the
process can only modify the size register of the con-
text. A read operation from a register context returns
the number of bytes that need to be transferred yet (-1
means failure, 0 means completed DMA operation).

A user-level DMA operation is initiated as shown
in figure 3.

The first two STORE operations pass the physical ad-
dresses that correspond to the arguments of the DMA
operation. The third operation, stores the size of the
DMA transfer to the register context of the current
user process. Finally the last operation initiates the
DMA operation and reads the status result back.

The reader will notice that both address arguments
are passed using store instructions, while in previous
solutions, the source address argument was passed us-
ing a load instruction. This restriction implies that
only processes that have both read and write access
to the source address will be able to do user-level
DMA operations from it. We believe that this is not
a significant limitation. Most parallel and distributed
applications that send data using DMA, have both
read and write access to these data.

Another limitation of this method seems to be its
probabilistic nature: a lucky user may “guess” a key
and may start illegal DMA transfers. We believe that
this is highly unlikely: In 64-bit architectures, there
will be close to 60 bits available for the key field, which
makes the probability of guessing correctly practically
zero. It would be easier for a malicious process to
guess the UNIX password of another user, rather than
to guess a DMA key!

3.2 Extended Shadow Addressing

Although the previous solution achieves user-level
DMA without operating system kernel modifications,
it can theoretically be broken by a lucky user who
manages to guess another user’s key. To avoid this
problem, we have developed a user-level DM A solution
that makes the identification of the process part of the
shadow address. That is, some bits (e.g. the highest
ones) of the physical address that will be passed as an

argument to the DMA engine correspond to the pro-
cess identification. ® These bits are set by the operat-
ing system when it creates the mappings from shadow
virtual addresses to shadow physical addresses. Part
of the shadow physical address is now the CONTEXT_ID.
We envision the CONTEXT_ID to be 1-2 bits long. Thus,
2-4 processes will be able to start user-level DMA op-
erations from the same processor. If more processes
would like to start DMA operations, the rest will have
to go through the kernel. We believe that allowing
1-2 bits of the physical address for the CONTEXT_ID is
enough for most practical cases.
A typical shadow address looks like:

shadow bit:1 context id:1 address:62

A user-level DMA operation will be initiated ex-
actly as the in the second SHRIMP solution - only the
shadow addresses will be different - see figure 4

By checking the CONTEXT_ID, the DMA engine
knows which process the shadow address belongs to.
Effectively, this user-level DMA solution is similar, in
principle, to the FLASH solution: in both cases the
DMA engine knows which process issues which shadow
access. The difference is that this information in our
solution is embedded in the shadow address, while in
the FLASH solution the operating system kernel is
modified to pass the information to the DMA engine.
If the DMA engine has several register contexts, it
may save these addresses it receives in the appropri-
ate contexts and start the DMA operations when all
arguments are available. If the DMA engine has no
register contexts, then when it receives pairs of STORE,
and LOAD instructions, it checks for the CONTEXT_ID
values of the two physical addresses. If they are dif-
ferent, the DM A operation is not started and an error
code is returned by the last LOAD instruction.

3.3 Repeated passing of arguments

Our final solution achieves user-level DMA without
the need of extra bits in the physical address. It is
based on an idea proposed by Charek Dubnicki [6]:
If a process passes at least one shadow address more
than once, then the DMA engine may be able to deter-
mine if a user process was interrupted by checking the

5To be consistent with the previous description we will use
the CONTEXT_ID as the process identification.

DMA (vsource, vdestination, size)

/¥ pass physical address shadow(pdestination) to the

** DMA engine, and the size of the transfer */
STORE size TO shadow(vdestination)
/¥ pass physical address shadow(psource) to the

** DMAengine and read if the operation was successful */

LOAD return_status FROM shadow(vsource)

Figure 4: User-level DMA based on extended shadow addressing

two successive accesses to the same shadow address.
Dubnicki’s solution uses a three-instruction sequence
as follows:

DMA (vsource, vdestination, size)
1: LOAD status] FROM shadow(vsource)
2: STORE size TO shadow(vdestination)
3: LOAD status2 FROM shadow(vsource)

The DMA engine initiates a DMA transfer only if
it sees a sequence of the form LOAD, STORE, and LOAD,
and the address arguments of the first and third in-
struction in the sequence are the same. ® If a pro-
cess is interrupted while trying to start a DMA, then
the DMA engine will probably receive a non-valid se-
quence of shadow addresses, and no DMA operation
will be initiated.

Although seemingly correct, the above solution may
lead to erroneous data transfers, if abused by malicious
users. Assume, for example, that we have a legitimate
process that wants to start a DMA, and a malicious
process that wants to interfere. A possible interleaving
of shadow accesses is shown in figure 5. In this inter-
leaving, the instructions 1: to 3: reach the DMA
engine, but no DMA operation is started. However,
then next three instructions (4: to 6:) appear as a
valid DMA sequence, and thus a DMA operation is
started transferring data from address C to B, while
the legitimate process wanted to transfer data from 4
to B.

Straightforward 4-instruction sequence extensions
to the above solution remedy this situation. For ex-
ample, assume the following obvious 4-instruction ex-
tension:

DMA (vsource, vdestination, size)
1: STORE size TO shadow(vdestination)
2: LOAD return_statusl FROM shadow(vsource)
3: STORE size TO shadow(vdestination)
4: LOAD return_status2 FROM shadow(vsource)

If a malicious does not have any access to addresses
vsource, and vdestination, then the above sequence

8Some hardware devices (e.g. write buffers) may attempt to
collapse successive read/write operations to the same address.
In these cases appropriate memory barrier commands should be
used to ensure that all issued instructions will reach the DMA
engine.

seems to operate correctly. If however, the data con-
tained in vsource are such that they can be read by
any process in the system, then a malicious user may
achieve the interleaving shown in figure 6. Suppose
that the legitimate process wants to transfer data from
A to B, and the malicious process has read-only access
to A. In the interleaving shown in figure 6, the mali-
cious process initiates the DMA transfer (in 4:), but
the DMA engine tells the legitimate process that the
DMA transfer was not initiated (in 5:). Such a behav-
ior will probably lead several applications to erroneous
behavior.

To remedy the above limitation, we have devel-
oped a 5-instruction sequence that achieves user-level
DMA. The shadow(vsource) address is passed twice
to the DMA engine, while the shadow(vdestination)
address is passed three times, as shown in figure 7.
The DMA engine is prepared to receive 5-instruction
sequences to shadow address space. The sequence
should be of the form STORE, LOAD, STORE, LOAD,
LOAD. If it sees anything out of this order, the DMA
engine resets itself, waiting for the 5-instruction se-
quences. A DMA operation is started only if the DM A
engine receives a sequence of the type STORE, LOAD,
STORE, LOAD, LOAD, and the address arguments of in-
structions 1,3 and 5 are the same, and the address ar-
guments of instructions 2 and 4 are the same as well.

3.3.1 Proof of Correctness

In this section we will (intuitively) show that the
“Repeated Passing of Arguments” method initiates a
DMA operation correctly. A DMA operation would
be initiated incorrectly, only if the user-level processes
that attempt to start a DMA are interrupted and in-
terleave their arguments. Suppose that process P1
wants to start a DM A operation from memory location
A1 to memory location A2. Suppose also that several
other processes interleave their instructions with P1’s.
Although malicious processes may have read-only ac-
cess to (possibly public) data A1, they do not have
any access to private data A2. Assume, in the worst
case, that all five instructions are issued by different
processes as shown in figure 8(a). This interleaving
implies that processes P1, P3, and P5 at about the
same time want to make DMA operations with the
same destination (source). That is different processes
want at the same time to write to (or read from) the
same physical address. If processes P1, P3, and P5
belong to different applications, then they should not
be able to write-share the same physical memory lo-

LEGITIMATE PROCESS

1:L0OAD statusl from shadow(4)
2:

3:

4:

5:STORE size to shadow (B)

6:

7:LOAD ... from shadow (&)

MALICIOUS PROCESS

LOAD status2 FROM shadow(C)

STORE foo TO shadow(foo)
LOAD status2 FROM shadow(foo) <- DMA is not started
LOAD statusl FROM shadow (C)

<- DMA is started
<- too late to do anything

Figure 5: Possible interleaving in the 3-instruction Repeated passing of argument DMA approach. A malicious
user is able to start a DMA and transfer its own data (C), into another process’s address space (B).

LEGITIMATE PROCESS

: STORE size TO shadow(B)
: LOAD rs FROM shadow(A4)

: STORE size TO shadow(B)

T WwN =

: LOAD rs FROM shadow (4)

MALICIOUS PROCESS

LOAD rs FROM shadow (4) <- DMA is started

<- DMA is rejected

Figure 6: Possible interleaving in the 4-instruction Repeated passing of argument DMA approach. The malicious
process starts the DMA (in 4:) but misinforms the legitimate process that the DMA did not start (in 5:).

cation, since different applications do not write-share
physical memory - thus, such an interleaving can’t
happen. If P1, P3, and P5 belong to the same applica-
tion, then there should be some synchronization oper-
ation before they all attempt to write(read) the same
memory location. We assume that applications that
want to use user-level DMA are well written, which
implies that there is a synchronization operation be-
tween any conflicting accesses to the same memory lo-
cation by different processes of the same application.
This synchronization operation should serialize DM A
transfers. Thus, in any successfully started user-level
DMA, instructions 1:, 3:, and 5: must come from
the same process, resulting in the interleaving shown
in figure 8(b).

If all accesses to A1 were issued by process P1, that
process has also issued two intervening LOAD instruc-
tions to address A2, as well. Thus, if all accesses to
address A1 have reached the DMA engine, the accesses
to address A2 issued by process P1, must have reached
the DMA as well. Thus, if a DMA is started all five in-
structions must have been issued by the same process
(see figure 8(c)).

Thus, in any successfully started DMA, all instruc-
tions come from the same process, and there is no way
for a malicious user to tamper with the mechanism of
starting a DMA.

3.4 Performance Evaluation

We have designed and implemented a prototype
board to evaluate the performance of various DMA
initiation algorithms. The board is plugged on the
TurboChannel I/O bus of a DEC Alpha 3000 model
300 workstation. All the logic is contained in a single
FPGA that is directly accessible from user applica-
tions via shadow addressing. The board runs at 12.5

MHz. For each DMA method we perform a simple
test of initiating 1,000 DMA operations. 7 Succes-
sive DMA operations were done to(from) different ad-
dresses, so as to eliminate any caching effects that in-
tervening write buffers may induce. In the Repeated
Passing of Arguments method, a memory barrier was
used to make sure that repeated accesses to the same
address were not collapsed in (or serviced by) the write
buffer. Table 1 presents the (average) time 1t took for
each algorithm to start a DMA operation.

We see that kernel level DMA costs close to 19 pus,
which is a little more than the cost of an empty sys-
tem call on this workstation. Fortunately, we see that
all user-level DMA methods perform about an order
of magnitude better than the kernel-based DMA. Best
of all methods is the “Extended Shadow Addressing”,
which takes a little more than one microsecond. This
is as expected, since this method needs only two as-
sembly instructions to pass all DMA arguments to the
network interface. The other user-level DMA methods
take 2.3-2.6 microseconds, which is also expected since
they use twice as many accesses to the network inter-
face.

We should mention, however, that our implemen-
tation is pessimistic, and user-level DMA can achieve
quite better performance in modern systems, that use
faster buses. The TurboChannel bus that we used runs
at 12.5 MHz, while recent buses, like the PCI bus run
at frequencies as high as 66 MHz.

3.5 User-Level Atomic Operations
Recently, several network interfaces that provide a

shared-memory abstraction on a Network of Work-
stations have been developed [9, 14]. To facili-

"No DMA data transfer was actually performed. Only the
DMA arguments were passed to the network interface.

DMA (vsource, vdestination, size)
1: STORE size TO shadow(vdestination)

2: LOAD return_status FROM shadow(vsource)

If (return_status == DMA_FAILURE) goto 1:
3: STORE size TO shadow(vdestination)

4: LOAD return_status FROM shadow(vsource)

If (return_status == DMA_FAILURE) goto 1:

5: LOAD return_status FROM shadow(vdestination)

If (return_status == DMA_FAILURE) goto 1:

Figure 7: User-level DMA by repeated passing of arguments.

DMA algorithm DMA initiation (us)
Kernel-level DMA 18.6
Ext. Shadow Addressing 1.1
Rep. Passing of Arguments 2.6
Key-based DMA 2.3

Table 1: Comparison of DMA initiation algorithms.

tate shared-memory programming, these interfaces
also provide atomic operations that allow differ-
ent processes to protect their accesses to shared
data. Such atomic operations include atomic_add,
fetch_and store, compare_and swap, etc. All these
operations need to pass one physical address to the
network interface, one or more data arguments, and
return back the result of the atomic operation. In most
processors, at least two instructions are needed to pass
all these arguments to the network interface securely.
These instructions also need to execute atomically,
otherwise a malicious user may disrupt the atomic op-
erations done by legitimate users.

Initiating atomic operations from inside the operat-
ing system kernel (in order to achieve protection and
atomicity) would result in significant overhead, since
the operating system overhead would be much higher
than the time it takes to do the atomic operation it-
self. Thus, atomic operations will benefit significantly
if initiated from user-space. Fortunately, the user-level
DMA methods that we described in the previous sec-
tion can be easily adapted to initiate atomic opera-
tions from user-level. User-level initiation of atomic
operations is a similar problem to user-level DMA, al-
beit somewhat simpler, since only one physical address
is needed for each atomic operation.

4 Summary

In this paper we addressed the problem of user-level
DMA, that is, starting a DMA operation from user-
level without the help of the operating system ker-
nel. Previous approaches to user-level DMA (although
managing to launch DMA operations from user-level)
require that the operating system kernel be modified
to avoid race conditions from multiple users trying to

start DMA operations at the same time. We believe
that modifying the operating system kernel is a major
obstacle in the widespread use of DMA, since most
users are unwilling or unable to modify their underly-
ing operating system kernel in any way.

In this paper we proposed several methods that
achieve user-level DMA without any modifications to
the operating system kernel. These methods vary in
their simplicity and in their requirements of the host
computer. Our “PAL Code” method is the simplest of
all, but requires the existence of the DEC Alpha pro-
cessor as the host processor. The “Extended Shadow
Addressing” is simple as well, but it requires a large
physical address space. The other two methods (“Key-
based DMA”, and “Repeated Passing of Arguments”)
although a bit more elaborate, function correctly in
the general case, without any assumptions about the
host computer. Using our proposed algorithms, a
DMA operation can be initiated in only 2-5 assembly
instructions all issued from user level.

We believe that our user-level DMA methods
should be seriously considered for inclusion in high-
speed network interfaces. Research prototypes have
shown that the hardware cost of user-level DMA is
low [3, 8, 9], while in this paper we show that the soft-
ware cost of user-level DMA is also low, since it can
be achieved without operating system kernel modifi-
catlons.

Acknowledgments

This work is supported by the ESPRIT/OMI
project “ARCHES” (ESPIRIT 20693), funded by the
European Union. The major focus of the project is
to accelerate the uptake of the high-speed HIC inter-
connect technology and IEEE 1355 standards in the
marketplace. The HIC technology addresses in par-
ticular the marketplace for parallel systems intercon-
nect and provides a major enabling technology for the
Open Microprocessor systems Initiative. We deeply
appreciate this financial support, without which this
work would have not existed. Czarek Dubnicki helped
us shape some of the ideas described in the paper, and
provided useful feedback for the rest of them. George
Kalokerinos, Thanos Oikonomou, and Gregory Maglis
designed and implemented the prototype board de-
scribed in the paper. George Milolidakis helped with
the performance evaluation of the various DMA al-

Process P1

Process P2 Process P3

STORE TO A1

Process P1

LOAD FROM A2
STORE TO A1

Process P2 Process P3

STORE TO A1

LOAD FROM A2

STORE TO A1

LOAD FROM A1

Process P1

Process P2 Process P3

STORE TO A1
LOAD FROM A2
STORE TO A1
LOAD FROM A2
LOAD FROM A1

ternatives.

Process P4

Processb

LOAD FROM A2

(a)

Process P4

LOAD FROM A1

Process P5

LOAD FROM A2

(b)

()

Process P4

Process P5

Figure 8: Possible interleaving of instructions in the Repeated passing of argument DMA approach.

Bob Dobinson provided useful feedback

during the development of the ideas described in the
paper. We thank all them.

References

[1]

[2]

T.E. Anderson, D.E. Culler, and D.A. Patterson.
A Case for NOW (Networks of Workstations).
IEEFE Micro, February 1995.

M. Blumrich, K. Li, R. Alpert, C. Dubnicki,
E. Felten, and J. Sandberg. Virtual Memory
Mapped Network Interface for the SHRIMP Mul-
ticomputer. In Proc. 21-th International Sympo-
stum on Comp. Arch., pages 142-153, Chicago,
IL, April 1994.

M.A. Blumrich, C.Dubnicki, E.W. Felten, and
K. Li. Protected, User-level DMA for the
SHRIMP Network Interface. In Proc. of the 2nd
International Symposium on High Performance
Computer Architecture., pages 154-165, San Jose,
CA, February 1996.

N.J. Boden, D. Cohen, and W.-K. Su. Myrinet:
A Gigabit-per-Second Local Area Network. IFFE
Micro, 15(1):29, February 1995.

G. Buzzard, D. Jacobson, S. Marovich, and
J. Wilkes. Hamlyn: a High-performance Network
Interface, with Sender-Based Memory Manage-
ment. In Proceedings of the Hot Interconnects I11
Symposium, August 1995.

[6]
[7]
(8]

Cgzarek Dubnicki. Personal Communication,
1996. Princeton University.

R. Gillett. Memory Channel Network for PCI.
IEEE Micro, 16(1):12, February 1996.

J. Heinlein, K. Gharachorloo, S. Dresser, and
A. Gupta. Integration of Message Passing and
Shared Memory in the Stanford FLASH Multi-
processor. In Proc. of the 6-th International Con-
ference on Architectural Support for Program-
ming Languages and Operating Systems, pages
38-50, 1994.

E. P. Markatos and M. G.H. Katevenis. Tele-
graphos: High-Performance Networking for
Parallel Processing on Workstation Clusters.
In Proc. of the 2nd International Sympo-
stum on High Performance Computer Archi-
tecture., pages 144-153, Feb 1996. URL:
http://www.csi.forth.gr/ proj/arch-vlsi/papers/
1996. HPCA96.Telegraphos.ps.gz.

Larry McVoy and Carl Staelin. lmbench:
Portable Tools for Performance Analysis. In Proc.
of the USENIX 1996 Technical Conference, pages
279-294, San Diego, CA, January 1996.

John Ousterhout. Why Aren’t Operating Sys-
tems Getting Faster as Fast as Hardware? In
Proceedings of the USENIX Summer 90 Techni-
cal Conference, pages 247-256, June 1990.

[12]

M. Rosenblum, E. Bugnion, S.A. Herrod,
E. Witchel, and A. Gupta. The Impact of Ar-
chitectural Trends on Operating System Perfor-
mance. In Proc. 15-th Symposium on Operating
Systems Principles, December 1995.

R. Sites. Alpha AXP Architecture. Communica-
tions of the ACM, 36(2):33-44, February 1993.

Dolphin Interconnect Solutions. Dolphin Breaks
Cluster Latency Barrier with SCI Adapter, 1995.
Press Announcement, http://www.dolphinics.no.

