A Top-10 Approach to Prefetching on the Web

Evangelos P. Markatos and Catherine E. Chronaki
Institute of Computer Science (ICS)
Foundation for Research & Technology — Hellas (FORTH)
P.O.Box 1385
Heraklio, Crete, GR-711-10 GREECE
tel: 4+30 81 391 655, fax: +30 81 391 661
markatos@csi.forth.gr

August 1996

Technical Report 173, ICS-FORTH. Available from http://www.ics.forth.gr/proj/arch-vlsi/www.html

Abstract

In the World Wide Web bottlenecks close to popular servers are very common. These bottlenecks
can be attributed to the servers’ lack of computing power and the network traffic induced by the
increased number of access requests. One way to eliminate these bottlenecks is through the use
of caching. However, several recent studies suggest that the maximum hit rate achievable by any
caching algorithm is just 40% to 50%. Prefetching techniques may be employed to further increase
the cache hit rate, by anticipating and prefetching future client requests.

This paper proposes a Top-10 approach to prefetching, which combines the servers’ active knowl-
edge of their most popular documents (their Top-10) with client access profiles. Based on these
profiles, clients request and servers forward to them, regularly, their most popular documents. The
scalability of the approach lays in that a web server’s clients may be proxy servers, which in turn
forward their Top-10 to their frequent clients which may be proxies as well, resulting in a dynamic
hierarchical scheme, responsive to users access patterns as they evolve over time. We use trace driven
simulation based on access logs from various servers to evaluate Top-10 prefetching. Performance
results suggest that the proposed policy can anticipate more than 40% of a client’s requests while
increasing network traffic by no more than 10% in most cases.

1 Introduction

Recent results suggest that the World Wide Web traffic continues to increase at exponential rates [9]. One
way to reduce web traffic and speed up web accesses is through the use of caching. Caching documents
close to clients that need them, reduces the number of server requests and the traffic associated with
them. Unfortunately, recent results suggest that the maximum cache hit rate that can be achieved by
any caching algorithm is usually no more than 40% to 50% - that is, regardless of the caching scheme
in use, one out of two documents can not be found in the cache [1]. The reason is simple: Most people
browse and explore the web, trying to find new information. Thus, caching old documents is of limited
use in an environment where users want to explore new information.

One way to further increase the caching hit ratio is to anticipate future document requests and preload
or prefetch these documents in a local cache. When the client requests these documents, the documents
will be available in the local cache, and it won’t be necessary to fetch them from the remote web server.
Thus, successful prefetching reduces the web latency observed by clients, and lowers both server and
network load. In addition, off-line prefetching activated after-hours when there is plenty of bandwidth at
low rates, may reduce overall cost and improve performance. At the same time, prefetching facilitates off-
line browsing, since new documents that the user will most probably be interested in, are automatically
prefetched.

Unfortunately, it is difficult, if not impossible, to guess future user needs, since no program can predict
the future. In this paper we propose Top-10, an approach to prefetching that addresses successfully the

above concerns through the use of server knowledge to locate the most popular documents, prozies to
aggregate requests to a server and amortize the costs of prefetching over a large number of clients, and
adaptation to each client’s evolving access patterns and needs.

Server Knowledge: In the web, it is well known, that “popular documents are very popular” [9].
Thus, for each server, a small set of its files amounts for the largest percentage of web requests to
that server. We call this set of documents Top-10, for the most popular documents of a server. Only
documents that are members of the Top-10 are considered for prefetching by the clients. The actual
number of documents in the Top-10 is fine-tuned based on client profiles which reflect the volume of
requests initiated in the recent past by the client and the amount of disk space allocated for prefetched
documents.

This idea of prefetching only popular items is not new: it has been followed for several years now by
music shops. A significant percentage of a music store’s stock contains the most popular LPs of each
week. Both music store owners (proxies) and music store customers (users) make their purchases based
on the Top-10. The actual purchases themselves determine next week’s Top-10, which will determine
future purchases and so on. The whole process of creating a Top-10 chart, distributing it to popular
music magazines and channels, and making purchases based on the Top-10 of the current week, is being
successtully used by millions of people each week all over the world.

Proxying: The average client makes a small number of requests to each server. Arlitt and Williamson [2]
report that at least 30% of a server’s clients make only one request and never request anything from the
same server again. If a client is going to request only one document from a server, prefetching makes no
sense. If, however, clients go though a proxy, prefetching documents at the proxy may improve perfor-
mance significantly, since documents prefetched on behalf of one client may also be used by other clients
as well.

Adaptation: The volume of requests generated by various web clients differs. Some of them (esp. prox-
ies) generate large numbers of requests, while others request only a few documents. Top-10 prefetching
has been designed to adapt to these cases, and allow frequent users to prefetch lots of documents, while
occasional users are allowed to prefetch few documents if any at all. Prefetching is controlled by the
access profile of the client. This profile contains the number of documents the client has requested from
each server in the recent past, in order to determine how many documents should be prefetched from
each server in the future. This way, if the access patterns of the client change, Top-10 prefetching will
follow the trend and start prefetching from the currently popular servers.

In the rest of the paper we will describe Top-10 prefetching in more detail and present performance
results based on trace-driven simulation. In section 2 we outline client-proxy-server framework on which
Top-10 prefetching can be applied. In section 3 we use trace-driven simulation based on server traces
from five different universities, research institutes, and Internet providers to quantify the performance
of prefetching documents using Top-10. The performance results are very encouraging suggesting that
when using Top-10, web proxies are able to successfully prefetch up to 60% of their future requests, with
a corresponding increase in network traffic only in the order of 20%. To put it simply, more than half of
the future requests can be predicted and prefetched. Section 4 surveys related work, and places Top-10
in the appropriate context. Section 5 discusses various aspects of Top-10. Finally, section 6 summarizes
and concludes the paper.

2 Top-10 Prefetching

The Top-10 approach to prefetching is based on the cooperation of clients and servers to make successful
prefetch operations. The server side is responsible for periodically calculating a list with its most popular
documents (the Top-10) and serving it to its clients. Actually, quite a few servers today calculate their 10
most popular documents among other statistics regularly (e.g. see http://www.csd.uch.gr/usage/).
Calculating beyond the 10 most popular documents is an obvious extension to the existing functionality.

To make sure that documents are prefetched only to clients that can potentially use them, Top-10
does not treat all clients equally. Time is divided in intervals and prefetching from any server is activated

Popubrbﬁﬁu Senver

\‘ o 55|
B server |

e
e

ey
R server |

Fopular filp Server

e Prefetching
ey !
\\Q\x\\k }§; Agent

Figure 1: Top-10 prefetching operates in a client-proxy-server framework.

only after the client has made sufficient number of requests to that server (>ACCESS_THRESHOLD). Thus,
no documents are prefetched to occasional clients, while frequent clients are identified and considered for
prefetching.

Some clients, i.e. proxies, make much more requests than others, and a correctly designed algorithm
should prefetch different number of documents to different clients. For example, it makes no sense to
prefetch the 500 most popular documents to a client that made 10 requests during the previous time
interval. Taking the recent past as an indication of the near future, that client will make around 10
requests in the next time interval and at most 10/500 = 2% of the prefetched documents will be used.
On the other hand, a client that made 20,000 requests during the previous interval will benefit from
prefetching the 500 most popular documents, and even more than those. Top-10 prefetching adjusts
the amount of prefetching to various clients based on the amount of requests made in the recent past.
Along those lines, a client may not prefetch more than the number of documents it accessed during the
previous time interval.

Finally, to make sure that Top-10 policy can be more or less aggressive when needed, the TOP-10
parameter defines the maximum number of documents that can be prefetched during any time interval
from any server. Thus, at any point, a client can not prefetch more than TOP-10 documents even if it
accessed lots of documents during the previous interval. By choosing a large value for TOP-10, prefetching
can be very aggressive. On the other hand, small values of TOP-10 limit the extend of prefetching.

Summarizing, the Top-10 approach to prefetching has two safeguards against letting prefetching
getting out of control: (i) ACCESS_THRESHOLD which identifies occasional clients and does not prefetch
documents to them, and (i) TOP-10 which can practically deny prefetching even to very frequent clients.
We believe these safeguards are enough to control the extent of prefetching.

2.1 Client-Proxy-Server Prefetching Framework

We envision the operation of Top-10 prefetching in a client-proxy-server framework (see fig. 1). Prefetch-
ing occurs both at the client and the proxy level. User-level clients prefetch from first-level proxies to
cater the needs of particular users. The benefits and costs of prefetching on user-level clients are dis-
cussed in section 3.2. First and second-level proxies play both the client and the server role. First-level
proxies are clients to second-level proxies and prefetch and cache documents for user-level clients (ie.
browsers). Second-level proxies are clients to various popular servers from which they prefetch and cache
documents to be served to their own clients. The performance results of Top-10 prefetching at first and
second level proxies are discussed in sections 3.3 and 3.4 respectively.

We picture first-level proxies at the department level of companies or institutions and second-level
proxies at the level of organizations or universities. Eventhough this framework implies a structure,
this structure is dynamic and may support dynamic proxy configuration schemes. In any case, Top-10

Fopuiar hitlp Server

mnm\; Top-10 daemon]

Docurents | Prefetching Agent

+ http protocol
/ i ToP-D requests
ccessLo L: TOP-10 requests
g http server Browser

http requests

Figure 2: Top-10 prefetching depends on the cooperation of the various http servers and a client-side
prefetching agent

prefetching may be transparent to the user and cooperate with the caching mechanisms of the browser
or the proxy.

The implementation of Top-10 prefetching is based on the cooperation of server and client-side entities
(see fig. 2). On the server-side, the Top-10 daemon processes the access logs of the server, and compiles
the Top-10, the list of the most popular documents on that server. Then, it updates a web page presenting
this information and the Top-10 is served as yet another document by the http server. The frequency of
evaluating the Top-10 depends on how frequently the content on the server changes. In section 3.5 we
investigate this issue further.

On the client side, the prefetching agent logs all http requests of the client and adapts its prefetch-
ing activity based on them. The prefetching agent co-operates with a proxy that filters all http requests
initiated by the client. If an http request can be served from the local cache of prefetched documents, the
proxy serves the document from the cache. Otherwise, it forwards the request to the web server or the
next level proxy. Daily or weekly, depending on the configuration, the prefetching agent goes through
the client access logs which contain all http requests made by the client and creates the prefetching
profile of the client, that is, the list of servers from which prefetching should be activated. The num-
ber of documents requested from any of those servers during the previous time interval exceeds the
ACCESS_THRESHOLD. Finally, based on the prefetching profile of the client, the prefetching agent requests
the most popular documents from the servers which have been activated for prefetching. The number of
documents prefetched from each server is equal to the number of requests to that server during the last
time interval, or the TOP_10 whichever is less.

Although the details of prefetching Top-10 documents can be fine-tuned to suit each client, the
underlying principle of prefetching only popular documents is powerful enough to lead in successful
prefetching. An advanced prefetching agent may request and take into account additional parameters
like document size, percentile document popularity, and client resources, to make a more informed
decision on what should be prefetched.

3 Experiments

3.1 Experimental Environment

Server Traces: To evaluate the performance benefits of prefetching we use trace-driven simulation.
We have gathered server traces from several Web servers from a variety of environments that include
universities, research institutions, and Internet providers both from Europe and the States. All traces
total more than four million of requests. Specifically the traces are from:

e Parallab (www.ii.uib.no): A Supercomputing Center associated with the University of Bergen,
Norway. These traces represent heavy traffic, especially from all over Norway.

e FORTH (www.ics.forth.gr): Traces from the the Institute of Computer Science, FORTH, one
of the largest Research Organization in Greece.

e Rochester (www.cs.rochester.edu): Traces from the Computer Science Department of the
University of Rochester, NY, USA.

e NASA: Traces from the Web Server at NASA’s Kennedy Space Center.

e FORTHnet (www.forthnet.gr): Traces from the Web server of the first and largest internet
provider in Greece.

We believe that it is very important to use traces from a variety of sources, since different server
traces display access patterns from different client bases.
The characteristics of the traces from our servers are summarized in the following table:

Name Duration Total Requests
FORTH 3 Nov 95 - 28 Dec 95, 6 Jun 96 - 17 Jul 96 328,070
Rochester 18 Nov 95 - 23 Dec 95 499,073
Parallab 24 Feb 96 - 22 Apr 96 843,442
NASA 1 Jul 95 - 31 Jul 95 1,697,7364
FORTHnet 26 May 96 - 28 Jul 96 1,330,413

We preprocessed the original traces and removed requests to “cgi” scripts. We have also removed
requests from local (within the same domain) clients, since local users tend to reload their pages frequently
(e.g. while changing them), thereby creating an artificial popularity for some pages.

Performance Metrics: The performance metrics we use in our experimental evaluation are the Hit
Ratio, and Traffic Increase. The Hit Ratio is the ratio of the requests that are serviced from prefetched
documents, to the total number of requests. It represents the “guessing ability” of our algorithm. The
higher this ratio is, the lower the client latency and the server load.

The Traffic Increase is the increase in traffic due to unsuccessfully prefetched documents. Since no
program can predict the future, some of the prefetched documents will not be actually requested, and
thus, they should not have been prefetched in the first place.

The design of a prefetching policy, is the art of balancing the conflicting factors of Hit Ratio and Traffic
Increase, while trying to guess future requests. At one extreme, if an algorithm never prefetches any
documents, it will not suffer any traffic increase, but it will also have zero hit ratio. At the other extreme,
a very aggressive prefetching algorithm may prefetch the entire Web (assuming enough resources), but
this would saturate the network with prefetched documents that will never be requested.

In all our experiments we assume that a prefetch document stays in the cache for the entire duration
of a time interval, so that a small cache will not distort our results. This assumption is not unrealistic,
however, since the cost of magnetic disks is low, usually lower than network bandwidth cost.

3.2 The benefits of Prefetching

In this first set of experiments we investigate the costs and benefits of our Top-10 prefetching approach.
Figures 3 and 4 plot the hit ratio and the traffic increase as a function of the TOP-10: the maximum
number of documents that any client, no matter what its access history is, can prefetch within a time
interval. The time intervals in these experiments are chosen to be 50,000 client accesses long. You may
observe that for all servers, as the size of the TOP-10 increases, the hit ratio increases as well; which is
as expected, since the more documents a client is allowed to prefetch, the better its hit ratio will be.

FORTHnet has the best hit ratio of all servers. Therefore, prefetching from FORTHnet results in high
performance. To understand this performance advantage we need to grasp the dimensions that influence
prefetching in general, and the hit ratio in particular. The hit ratio is high when (i) lots of prefetching
is being done, and (ii) this prefetching is successful. Top-10 prefetches documents to repeated clients
which are those that visit a server during successive time intervals. Additionally, Top-10 prefetches large
volumes of documents to heavy clients which are clients that access lots of documents during a time
interval. Thus, the more repeated and heavy clients a Web server has, the higher the hit ratio is going
to be.

It turns out that FORTHnet has the largest percentage of repeated clients (23.5%) as figure 5 suggests.
Effectively, one out of four FORTHnet clients visit for at least two successive time intervals. Since

30 35

FORTH —— 30+ FORTH —— 1
25 - Rochester & A Rochester =
NASA 25 | NASA
20 4 20 L 1
il g e KT
ol &
E 15 | 1 g 15 + o o . . E:
I o E
x x E 10 + i
10 M. 4 1 [=8
5 DD/,/“”/ 94
%f 0 &
L L -5 L L
TOP-100 TOP-1000 TOP-100 TOP-1000

Figure 3: Successfully Prefetched documents as a Figure 4: Traffic Increase as a function of the size

function of the size of the TOP-10. of the TOP-10.
Server Repeated Clients
FORTH 5.4%
Rochester 16%
Parallab 15.6%
NASA 22.6%
FORTHnet 23.5%

Figure 5: Percentage of repeated clients of each server. Observe that 23.5% of FORTHnet’s clients (vs.
5.4% of FORTH’s) are repeated i.e. visit during two successive time intervals.

FORTHnet has more repeated clients than any other server, it has the potential for prefetching to more
clients. Moreover, FORTHnet (almost) has the most heavy clients as well as figure 6 suggests. Actually,
the 10 best FORTHnet clients amount for 12% of FORTHnet’s requests, the largest percentage in any of
the servers we studied. As FORTHnet has both heavy and repeated clients, its clients benefit by Top-10
prefetching.

Going back to the hit ratio in figure 3, we see that the performance of the NASA server and the
FORTH server follow that of FORTHnet. This is as expected, since, NASA has lots of repeated clients,
but few heavy clients, and FORTH has lots heavy clients, but few repeated clients. Finally, Rochester
and Parallab follow with lower hit rates, since neither of them has particularly large numbers of repeated
or heavy clients. It is interesting to note however, that although Parallab has more heavy clients than
Rochester, and comparable number of repeated clients to Rochester, Rochester’s hit ratio is better.
This can be explained by looking at the documents each server serves to its clients. Figure 7 shows the
cumulative percentage of requests for a server’s documents. We see that Rochester has significantly more
popular documents than Parallab. For example, the 10 most popular Rochester’s documents amount
for 30% of the total Rochester’s requests, while the 10 most popular Parallab’s documents amount only
for 10% of Parallab’s requests. Thus, prefetching the 10 most popular Rochester’s document is going to
result in higher hit ratio than prefetching the 10 most popular Parallab’s documents.

From the above discussion it is clear that the performance of prefetching depends on several factors.
The most important ones seem to be the client base of a server, and the popularity of the documents
a server provides. Frequent clients that access lots of documents form a very good basis for successful
prefetching.

Although prefetching reduces the number of requests made to a web server, it may also increase
traffic, since the prefetched documents may not be needed by the client that prefetched them. Figure
4 plots the traffic increase as a function of the TOP-10 for all servers simulated. We see that the traffic
increase is small for almost all servers for low (< 500) value of TOP-10. For example, prefetching up to
500 documents results in less than 12%, traffic increase for any server. Actually, the traffic increase for
Parallab is only 5%.

100
o0 | | 140 1
80 1 120
8 PARALLAB — 8
g 70 - 1 g 100 | i
E) 60 | E’
5 50 f : 5 8 |
(] (]
g 40 t . g 60 f .
o - 4 o
E 30 E 20 L]
20 1
10 — - 7 2070 |
(o] . . . 0
1 10 100 1000 10000 100000 1 10 100 1000 10000 100000
Number of Clients Number of HTML documents

Figure 6: Cumulative percentage of requests as a Figure 7: Cumulative percentage of requests as a

function of the number of clients that make these function of the documents requested. Top-10 doc-

requests. uments are very popular on each server, but the
degree of their popularity depends on the server.

h Proxies
45 ‘) ‘
40 r FORTH —+—- B | ——
Rochester --e-- Rochester e
35+ “ x NAGA 5 i
< 40t ?
30 x | i
A% 25 | o -~ g ol W
m — o
| | / : ”// o
j_: : - | L 20 | 7 |
154, | @ y
| . 10} |
10 ; | | f
o] [
0~ | ; ‘ ‘
TOP-100 TOP-1000 - .

Figure 8: Successfully Prefetched documents as Figure 9: Traffic Increase as a function of the size
a function of the size of the TOP-10. of the TOP-10.

3.3 The effect of Proxies

In figure 3 we notice that, with the exception of FORTHnet, the hit ratio of Top-10 prefetching is between
3% and 12% which is rather low. Although it could be increased by making a more aggressive prefetching
(e.g. by increasing ACCESS_THRESHOLD), aggressiveness will significantly increase the traffic. Recall, that
the essence of prefetching is in keeping a good balance between high hit ratio and low network traffic
increase. Thus, we should find other ways to improve the performance of prefetching.

One way to improve the performance of prefetching is through the use of proxies. Proxies are being
extensively used for caching and firewall purposes by intervening all requests from a domain [15]. We
advocate that prefetching can benefit from the use of proxies. In the current traces, several clients even
from the same domain make distinct requests to a specific server. Thus, each server ends up with lots
of clients, few of which qualify for prefetching. If, however, all these clients access the server through a
proxy, the proxy would aggregate all the client’s requests and qualify for prefetching as a repeated and
heavy client. Thus, the proxy would prefetch documents that could be used to reduce the latency of
any of its clients, and thus improve performance. For example, if a document is prefetched on behalf of
one client in a proxy’s cache, the document may be served locally to all other clients that use the same
proxy. Thus a client will be able to make use of a document that was prefetched on behalf of another
client.

To show the benefits of proxying in prefetching, we use trace-driven simulation, and introduce artificial
proxies that gather client requests, and distribute the benefits of prefetching onto a larger number of

Second Level Proxies Second Level Proxies

. 60 .
100 1
FORTH —— 50 | FORTH —— 1
Rochester = Rochester =
80 r NASA - | a0 | NASA - 3
30 [1
= 60 . i §
2 . @ ‘_g 20 + u 1
I et 2
40 P 1 g 10 1
= g
T’/ O b _
20 & S T
-10 + 4
‘ L L -20 L L
TOP-100 TOP-1000 TOP-100 TOP-1000

Figure 10: Successfully Prefetched documents as Figure 11: Traffic Increase as a function of the
a function of the size of the TOP-10. size of the TOP-10.

clients. Artificial proxies are generated by grouping clients into larger groups, and considering the whole
group as a proxy for all the group’s clients. Although several grouping algorithms can be designed, we
use a straightforward one, which is very close to the proxying schemes used in practice. The grouping
algorithm is as follows:

A request coming from a client will be considered as coming from a proxy that has the same
name as the client, with the first part of the client’s name striped off.

For example, all requests coming from clients saronis.ics.forth.gr, mykonos.ics.forth.gr, and
pandora.ics.forth.gr, will be considered as requests all coming from proxy ics.forth.gr. As an-
other example, all requests coming from vein.cs.rochester.edu, and athena.cs.rochester.edu are
grouped into requests coming from proxy cs.rochester.edu. That is, all requests that originate from
any computer of the computer science department of the University of Rochester appears as coming from
a single computer from that department, which is what most reasonable proxying schemes do.

Figure 8 plots the hit ratio (for proxies) due to prefetching as a function of the TOP-10. We see that
the hit ratio of prefetching using proxy servers has doubled or even tripled compared to figure 3. For
example, the hit ratio of prefetched documents from FORTHnet is close to 45%, for Parallab 18%, and
for the other server’s in between. Fortunately, this increase in hit rate comes at almost no increase in
network traffic as figure 9 suggests. For low (< 500) TOP-10 values, the traffic increase is less than 20%,
and sometimes there is even a traffic decrease! The reason for the observed traffic decrease is simple: A
prefetched document that will be used by two clients of the same proxy, results in traffic decrease, since
the document is fetched into the proxy only once, thus saving the second request that the second client
would make if there were no proxy.

We should note however, that for aggressive prefetching the network traffic increases as high as 60%,
which starts to get significant. Fortunately, when TOP-10 is less than 500, the hit ratio is almost the
same with the cases for higher values of TOP-10, and the traffic increase is down to at most 20%, which
seems reasonable. Interestingly enough, this observation holds for figures 3 and 4 where no proxies are
used: increasing TOP-10 more than 500 does not noticeably increase hit rate.

3.4 Second-level Proxies

To carry the idea of proxying one step further in this section we study two-level proxies: First-level proxies
aggregate requests from user-level clients, while second-level proxies aggregate requests of first-level
proxies. The algorithm we use to group the first-level proxies into second-level proxies is as previously:

Second level proxies are found by stripping off the first two parts of a client’s name.

For example, all requests coming from clients saronis.ics.forth.gr, and athos.iesl.forth.gr, will
appear as coming from second-level proxy forth.gr. Similarly requests from vein.cs.rochester.edu,
and uhura.cc.rochester.edu will appear as coming from second-level proxy rochester.edu. Effec-
tively, first-level proxies aggregate requests from within a department while second-level proxies aggregate

How often should we calculate the Top-107

70 : 80 —
FORTH —— FORTH ——
6o | ROCHESTER -+ | 70t ROCHESTER -+
PARALLAB -o-- PARALLAB -o--
FORTHNET - 60 FORTHNET - |
50 | NASA - 1 = " UNASA o
* S/ a -
) 50 t A
« JUIPEE— g Iy R
ks 30+ T : o
- S 30 1
L = ; o
20 20
10 - 1 10 -
1 1 1 O 1 1 1 1 1 1 1
1 2 3 4 0 05 1 15 2 25 3 35 4
Time Interval (in Weeks) Time Interval (in Weeks)
Figure 12: Hit Ratio. Figure 13: Traffic Increase.

requests from within an institution. In the specific example of the University of Rochester, our method
assigns a first-level proxy at each department, and a second-level proxy for the whole University.

Figure 10 plots the hit ratio (for second-level proxies) as a function of the TOP-10. We see an even
higher performance improvement, compared to figure 8. FORTHnet reaches a hit ratio of more than
60%, while even the server with the worst performance (Parallab) reaches a hit ratio close to 45%. Even
better, this performance improvement is usually accompanied by a noticeable traffic decrease, as figure
10 suggests, since a document prefetched on behalf of one client will be used by lots of other clients as
well. Although for very aggressive prefetching, traffic increase may go as high as 60%, prefetching up to
500 documents results in good performance and unoticeable traffic increase.

3.5 Frequency of Top-10 Release

In this section, we investigate how often a new Top-10 should be released. The Top-10 music charts
have been released every week for several decades now, without any significant problems. It would be
interesting to see if the same one-week time interval should apply to the calculation of the Top-10 of
each Web server as well.

Intuitively we believe that the time interval for the Top-10 calculation should neither be too large,
nor too small. For example, if a new Top-10 is released every several months, then it may be out of date,
and all clients that prefetch it, may not use it. If, on the other hand, a new Top-10 is released every few
minutes, then it will probably not be credible, and would imply a significant overhead for clients that
would prefetch probably the same Top-10 every few minutes.

To find what values of the time interval would be appropriate, we conducted a trace-driven simulation,
where we vary the time interval from half a week up to a month, and plotted the performance results in
figures 12 and 13 (TOP-10 is fixed at 500, with the exception of NASA where it as fixed at 100). We see
that for most servers, Hit Ratio improves slowly with the time interval and then declines. ! Interestingly
enough, we see that for all servers the best interval seems to be between one and two weeks. Thus, every
one to two weeks, a new Top-10 should be released.

Figure 13 shows the traffic increase as a function of the time interval. We see that traffic increases
slowly with the time interval, and sometimes it fluctuates around a value. For Parallab and Rochester,
traffic increases sharply after two and three weeks, respectively. The reason is that after that time
interval, lots of clients start to qualify for prefetching, and lots of prefetching operations start to clients
that do not really need the prefetched data. Fortunately, for time intervals less or equal to 2 weeks, all
servers’ traffic increase is lower then 20%. Summarizing, the best balance between hit ratio and traffic

L The interested reader will notice that the NASA and Rochester curves stop in 2 and 3 weeks respectively. The reason
is that in order to conduct a meaningful prefetching experiment, we need at least two time intervals: one interval to find
the Top-10, and a second interval, to give the Top-10 to clients and measure their hit ratio. Since we had only one month’s
traces for NASA, the highest time interval we could simulate was 2 weeks.

50 120
Interval=50,000 —— Interval=50,000 ——
ol Interval=100,000 -+ Interval=100,000 -+
Interval=150,000 & 100 Interval=150,000..~=" -
40 Interval=200,000 - Interval=200,000 -
35 r 80 | |
o 30 ¢
o]
x 25 60 -]
=

20

10 -
5t

TOP-100

TOP-1000

FORTH

Traffic Increase (%)

0
TOP-100

TOP-1000

Figure 14: Hit Ratio as a function of the size of Figure 15: Traffic Increase as a function of the size

the TOP-10. of the TOP-10.
Rochester
60 300
Interval=100,000 —— Interval=100,000 ——
Interval=150,000 -+ Interval=150,000 -—+-=-
50 - Interval=200,000 = 250 Interval=200,000 &
Interval=300,000 -x __Interval=300,000 -x
Interval=350,000 -4--- — __--*"" Interval=350,000 -+---
40 . & 200t :
3 ; a
x g 10| |
T o &
i i
S x
10 f 1
L 0
TOP-100 TOP-1000 TOP-100 TOP-1000

Figure 16: Hit Ratio as a function of the size of Figure 17: Traffic Increase as a function of the size
the TOP-10. of the TOP-10.

increase seems to be achieved when a new Top-10 is released every couple of weeks.

3.6 Changing the Time Interval

In this set of experiments we investigate further the effect that the size of the time interval will have on
the performance of Top-10 prefetching. Recall that a client has to make a certain number of references
within the time interval before it is enabled to start prefetching from a server. Intuitively, we believe
that a very small time interval will result in low hit ratio, since few clients will make enough references
to qualify for prefetching. On the other hand, a very long interval will imply that more clients would
make enough references to qualify for prefetching, thus increasing hit ratio and traffic as well. However,
a very long time interval may result in dis-proportionate increase in traffic, since the documents that are
popular at the beginning of the interval may not be popular at the end of it.

To investigate the influence of interval size, we run the simulations again for intervals ranging from
50,000 accesses to 350,000 accesses, and plotted the results for each server in figure 14 to 23. For each
server we plot both the hit ratio and the traffic increase. We see that different servers achieve the
best hit rates for different time intervals. For example, FORTH achieves best hit rate for time interval
of 50,000 references, while FORTHnet achieves best hit rate for 350,000 references. The other servers
achieve their best performance for time intervals of 200,000 references and larger. However, we should

10

Parallab

60 70
Interval=100,000 —— Interval=100,000 ——
Interval=150,000 -+ 60 I __Interval=150,000 -+ |
50 r Interval=200,000 = " Interval=200,000 =
Interval=250,000 > Interval=250,000 >
Interval=350,000 ---- = 50 /. —Interval=350,000 -+--- 1
40 j S
o
g g
: 2
I L
<
=
‘ 0 ‘
TOP-100 TOP-1000 TOP-100 TOP-1000

Figure 18: Hit Ratio as a function of the size of Figure 19: Traffic Increase as a function of the size

the TOP-10. of the TOP-10.
FORTHnet
70 70
Interval=100,000 —— Interval=100,000 ——"]
60 | Interval=200,000 -+ | 60 Interval=200,000.:
Interval=250,000 = Interval=250,000 -
Interval=350,000 - 50 | | nterva! =350 |

50

40t o 1

g
o
5§ op 8
x g 0t , |
ER] 2)
5 200]
[2
20] 0l]
10] 0¥
. .10 .
TOP-100 TOP-1000 TOP-100 TOP-1000

Figure 20: Hit Ratio as a function of the size of Figure 21: Traffic Increase as a function of the size

the TOP-10. of the TOP-10.
NASA
80 70
Interval=100,000 —— Interval=100,000 —o—-
70 Interval=200,000 -+ 60 | Interval=200;000 - |
Interval=300,000 -=-- _a——1riterval=300,000 o
60 | Interval=350,000 = | Interval=350,000 -
= 07 | 2]
g TR S 4)
E 40 r e e g
T S S i
30 | £
': 4
20 |]
10 |]
‘ 0 ‘
TOP-100 TOP-1000 TOP-100 TOP-1000

Figure 22: Hit Ratio as a function of the size of Figure 23: Traffic Increase as a function of the size
the TOP-10. of the TOP-10.

11

25000 .

FORTH —

ROCHESTER -
] PARALLAB - |

20000 FORTHnet -

NASA -7
15000 |]

g

10000]
5000 |]

0 50 100 150 200 250 300 350 400 450 500
T

Figure 24: Size of the most popular documents.

closely observe the large hit ratio may imply significant traffic increase as well. In all figures we see
that for large values of the time interval and the TOP-10, the traffic increase may be unacceptably high.
Fortunately, when TOP-10 is less than 500, the traffic increase is always low, while the hit ratio is close
to the hit ratio achieved for much higher values of TOP-10. Thus, a value of TOP-10 equal to 500 seems a
reasonable choice in all cases. The only exception to the rule seems to be NASA, that seems to achieve
a good balance between hit ratio and traffic increase for values of TOP-10 around 100. The reason
for this traffic increase lies in the size of the documents NASA provides to its clients: popular NASA
documents are much bigger than popular documents of other servers. Figure 24 plots the size of the
most popular files of all servers. We can easily see that NASA serves the largest files. For example, the
500 most popular documents of NASA are 22 MBytes long, while the 500 most popular documents of
FORTHnet are only 2.2 Mbytes long. The reason is that NASA provides lots of large images that are
very popular among many people. Thus, prefetching lots of documents from NASA may result in high
traffic increase. Moreover unsuccessfully prefetched documents from NASA result in much higher traffic
than unsuccessfully prefetched documents from any other server.

4 Previous Work

The area of web prefetching is rather new and is currently being actively explored. Padmanabhan
[13] suggested a server-initiated prefetching algorithm. He observed that web document requests have
interdependencies, that is, if a document D; is requested from a web server by some client, then probably
document D; will also be requested within a small time interval 7, by the same client. Each web server
keeps this dependency information in the form of a graph. The nodes of the graph are documents; an
edge between documents [J; and D;, represents how probable is to access document D; after document
D; has been accessed. When a client requests document 1);, the server along with document D;, sends
all the documents D;, that are likely to be accessed next. Alternatively, the server along with document
D; sends only the names of the documents D; that are likely to be accessed, leaving the initiative for
prefetching to the client. Padmanabhan validated his approach using trace-driven simulations that gave
very encouraging results: e.g. a 36% reduction in network latency can be achieved at the cost of 40%
increase in network traffic.

Bestavros has also proposed a similar approach for server-initiated prefetching [4, 3]. For all pairs
of documents D; and D;, Bestavros calculates the probability p[7, j] with which document D; will be
requested within time interval T, after document D; is requested. Based on those probabilities, a server
can advice clients on which documents to prefetch. Bestavros conducted trace-driven simulations which
provided very encouraging results. For example, his approach using 10% extra bandwidth only, can
result in 23% reduction in document miss rate.

Contrary to the previously proposed sophisticated prefetching algorithms, our Top-10 approach uses a
simple and easy-to-calculate metric. Most web servers routinely calculate their most popular documents,
among other statistics. Thus, no extra work is needed on behalf of the server in order to calculate which

12

documents should be prefetched. Interestingly enough, Top-10 achieves similar (and sometimes better)
results than other prefetching heuristics. For example, Top-10 has shown to achieve close to 60% hit
rate, at only 10% traffic increase (see figure 10), because TOP-10 capitalizes on two web invariants:

e Popular documents are very popular,
e The use of proxies increases the hit ratio and reduces network traffic.

Gwertzman [10, 9] proposed a geographical push-cashing approach to reduce a web server’s load:
when the load of a web server exceeds some limit, the server replicates (pushes) the most popular of its
documents to other cooperating servers that have reduced load, so that clients will be able to make future
requests for these documents from the other servers. Push-cashing replicates only popular documents
(much like Top-10) in some server, while Top-10 replicates them in some proxy close to the client. In
push-cashing, the client still needs to request the replicated documents from some, usually non-local
server, while in Top-10 the clients request the documents from a local proxy. To make matters worse, in
push-cashing clients need to know which server to ask the documents from, that may involve a request to
the original server, which adds even more to the client’s latency. Thus, although push-cashing may off-
load a busy server, by replicating its most popular documents, it still requires the client to make one or
more requests to non-local servers in order to find the replicated data. On the contrary, Top-10 replicates
popular documents only to local proxies, so that clients always make local accesses to replicated data.

Wachsberg et al.[17] propose the use of prefetching as a way to improve performance of web browsing
over low-bandwidth links. They propose a client-based approach where each proxy will keep a list of
documents needed by its clients, and it will decide which of them to prefetch. However, they have
reported no performance results yet.

The benefits of prefetching are going to be investigated within the LowLat [16] project. In the
LowLat approach, a preloader will be responsible for communicating with the web servers and prefetching
documents from them. The prefetching process will take into account several factors including bandwidth,
cache load and space, server load, etc. Unfortunately, the prefetching policies and their associated benefits
have not been reported as of the time of this writing (summer 1996).

Recently, there has been considerable work on web Caching, that is, caching of popular documents
close to clients [1, 5, 7, 6, 8, 11, 12, 14]. All this work aims at reducing both network traffic and server
load by keeping data close to clients that re-use them. Most web servers and proxies today support some
form of caching. Our work complements the research in caching, since all benefits of prefetching are in
addition to those of caching. While caching attempts to provide fast access to a document the second
time it of accessed, prefetching provides fast access to a document, the first time it is accessed. Moreover,
the already existing infrastructure for caching (proxies, etc.) can also be exploited for prefetching.

Summarizing, we believe that out Top-10 approach is an easy to calculate algorithm that achieves
effective prefetching of documents in the web.

5 Discussion

In this paper we present a systematic approach towards the reduction of the web latency experienced by
web clients, by prefetching documents, before they are actually requested by the users.

Prefetching has not been employed in the Web so far mainly for several reasons: (i) a prefetching
robot can easily get out of control and start prefetching everything that it is out there, (ii) prefetching
may be ineffective, since nobody knows what a client will want to access, (iii) proxies may delay clients,
and finally (iv) prefetching over high-speed interconnection networks may result in minor performance
improvements.

We believe our prefetching approach addresses all previous concerns about prefetching for the follow-
ing reasons:

e The Top-10 approach to prefetching uses several well defined thresholds to make sure that only a
small number of useful documents is prefetched. The prefetched documents do not increase the
total traffic by more than 10%-20%. Our prefetching approach sometimes even reduces the total
network traffic by aggregating several clients requests. Thus, it can not get out of control and lead
to traffic chaos.

13

e We prefetch only the proven popular documents that most clients have accessed, and that future
clients will probably want to access. Thus, the risk of bringing useless documents is minimized.
Essentially, by prefetching only popular documents the risk of guessing the future is significantly
reduced.

e Although sometimes a user “feels” that it is faster to retrieve a document directly from a server
instead going through a proxy, this is because most of the other users think that they should go
through a proxy and avoid putting unnecessary load to a server. If everybody starts accessing the
servers without intervening proxies, most servers will collapse, and most interconnection lines close
to the servers will saturate. The only way to avoid the collapse is to use proxies somewhere in the
traffic route from a client to a server. One could argue that aggregating several clients through a
proxy will slow down all clients and eventually saturate the proxy. Although this may be true to
some extent, it can not easily happen. Proxies are usually powerful computers capable of handling
hundred of requests per second. If each interactive user that browses the Web makes one request
every few seconds, then the proxy will be able to handle up to a few thousand users before being
unable to cope with more requests. Realistically, most departments do not have that many users
to generate the load needed to saturate a proxy.

e Although prefetching over a high-speed interconnection may result in minor performance improve-
ments, certainly it does not hurt the clients, and it may benefit the servers by taking some of the
load off the server and putting it on the proxies.

In addition to addressing previous concerns, we believe that prefetching in general, and Top-10 in
particular has several advantages:

e Prefetching can be used during off-peak periods to downlod useful documents at low transfer costs.
By transferring documents during low-rate periods, prefetching pays for itself, and may even result
in profit.

e Prefetching reduces client latency by spreading the load from busy servers to idle clients/proxies.
Thus, it improves user turnaround time and user productivity.

e Prefetching can also be used to organize up-to-date digital repositories of related documents. For
example, a prefetch agent may download all documents related to a specific research topic, update
them regularly and make them available to local users.

Although several people have concerns about prefetching, we believe that the Top-10 approach has
been specifically designed to address these concerns, and bring out the benefits of prefetching. Top-10
takes the risks out of prefetching by doing it in a controlled way that results in significant performance
improvements with only a minor traffic increase.

6 Conclusions

In this paper we present a Top-10 approach for prefetching World Wide Web documents. Top-10
prefetches only the most popular documents (that is where the name comes from) and only to clients
that will be able to use them. We use trace-driven simulations of server traces to evaluate the costs and
benefits of our approach. Based on our experimental observations we conclude:

e The Top-10 approach to prefetching may result in significant performance improvements. Our
experimental results suggest that Top-10 manages to prefetch (up to) 60% of future requests, with
little (less than 20%) corresponding increase in traffic (see fig. 10).

e Top-10 has shown to be robust over a wide variety of parameters and server loads. We have used
traces from 5 different servers both in Europe and the States. Top-10 always managed to result in
good performance for all traces without significant traffic increase.

e Prefetching the most popular documents is a simple but effective prefetch heuristic. It requires
very little effort to be computed on the server side, while it provides performance comparable to
(if not better than) previously proposed sophisticated prefetching heuristics.

14

References

[1] M. Abrams, C.R.Standridge, G. Abdulla, S. Williams, and E.A. Fox. Caching Proxies: Limitations
and Potentials. In Proceedings of the Fourth International WWW Conference, 1995.

[2] M.F. Arlitt and C.L. Williamson. Web Server Workload Characterization: The search for Invariants.
In Proc. of the 1996 ACM SIGMETRICS Conference, May 1996.

[3] Azer Bestavros. Speculative Data Dissemination and Service to Reduce Server Load, Network
Traffic and Service Time for Distributed Information Systems. In Proceedings of ICDE’96: The
1996 International Conference on Data Engineering, March 1996.

[4] Azer Bestavros. Using speculation to reduce server load and service time on the WWW. In ro-
ceedings of CIKM’95: The Fourth ACM International Conference on Information and Knowledge
Management, November 1995,

[5] Azer Bestavros. Demand-based document dissemination to reduce traffic and balance load in dis-
tributed information systems. In Proceedings of the 1995 Seventh IEEE Symposium on Parallel and
Distributed Processing, October 1995.

[6] J.-C. Bolot and P. Hoschka. Performance Engineering of the World-Wide Web. In Proceedings of
the Fifth International WWW Conference, 1996. Paris, France.

[7] Anawat Chankhunthod, Peter B. Danzig, Chuck Neerdaels, Michael F. Schwartz, and Kurt J. Wor-
rell. A Hierarchical Internet Object Cache. Technical Report 95-611, Computer Science Department,
University of Southern California, Los Angeles, California, March 1995.

[8] S. Glassman. A Caching Relay for the World Wide Web. In Proceedings of the First International
WWW Conference, 1994.

[9] J. Gwertzman. Autonomous Replication in Wide-Area Networks. Technical Report 17-95, Harvard
University, 1995.

[10] J. Gwertzman and M. Seltzer. The Case for Geographical Pushcaching. In Proceedings of the 1995
Workshop on Hot Operating Systems, 1995.

[11] Radhika Malpani, Jacob Lorch, and David Berge. Making World Wide Web Caching Servers coop-
erate. In Proceedings of the Fourth International WWW Conference, 1995.

[12] E.P. Markatos. Main Memory Caching of Web Documents. In Proceedings of the Fifth International
WWW Conference, 1996. Paris, France.

[13] V.N. Padmanabhan. Improving Word Wide Web Latency. Technical Report 95-875, University of
California at Berkeley/CSD, 1995.

[14] J.E. Pitkow and M. Recker. A Simple, Yet Robust Caching Algorithm Based on Dynamic Access
Patterns. In Proceedings of the Second International WWW Conference, 1994.

[15] Neil G. Smith. The U.K. National Web Cache: A state of the Art Report. Web Journal, 1(3),
Summer 1996.

[16] Joe Touch. About the LowLat Project, 1996. http://www.isi.edu/lowlat/about-1l.html.

[17] Stuart Wachsberg, Thomas Kunz, and Johnny Wong. Fast World-Wide Web Browsing Over Low-
Bandwidth Links, 1996. http://ccnga.uwaterloo.ca/ sbwachsb/paper.html.

15

