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Abstract

ArrayTracer is a high−level, low−overhead performance analysis tool for parallel applications. It

provides the selective tracing facilities at a user−defined grain. The tracing technique used is program

instrumentation. Instrumentation code is inserted at source code level during a source−to−source

translation. The tool allows tracing of application’s high−level concepts (e.g. program variables,

subroutine calls, interprocess communication events, etc.) rather than tracing of low−level events (e.g.

memory location accesses, disk accesses, network accesses, etc.). ArrayTracer is heavily based on compile−

time information and attempts to off−load the execution time tracing overhead by extracting as much

information as possible during the static analysis of application’s source code. The tool’s operations are

divided into five stages: user interaction to determine trace parameters, instrumentation of source code

during the compilation phase, collection of traces, processing of traces and analysis of the application’s

behavior, and presentation of the analysis results. In this report we focus on the first three stages, and

present an encouraging preliminary performance evaluation.

Keywords: tracing, program distortion, program dilation, program instrumentation, selective tracing

1 Introduction

Most large−scale high−performance parallel application codes are inherently complex and have a non−

deterministic nature caused by the concurrent execution of different program components. As a result,

effective tools are necessary to assist users in understanding program performance and run−time behaviour.

These tools are usually referred to as Parallel Performance Analysis Tools (PPA tools). The operation of

today’s PPA tools is decomposed into three main functional levels [10]: trace collection, trace processing,

and result visualization.

Considerable amount of work has been done in all three functional levels since each one has to deal with

important issues. Trace collection should be optimized as not to perturb the execution of the application

while collecting all the desirable information requested by the user. Trace processing should be clever enough

to distinguish those events that cause performance problems among all traced events. The visualization level
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has to deal with the presentation of large volumes of result data that may be produced by massively parallel

applications.

The trace collection issue is not a recent one. A number of user−tools are heavily based on traces,

including correctness debuggers [4, 15, 24, 14, 20, 13], performance debuggers[8, 9, 17, 16, 7], trace driven

simulators [2, 26, 5, 22, 3], etc. A broad classification [23] of tracing techniques distinguishes four basic

classes: hardware−based methods which use a hardware monitor to record all requests on the address bus

of a processor, interrupt−based methods which cause an interrupt on every instruction that accesses some

memory location [1], or that misses a simulated memory structure [19, 25], microcode−based methods (used

only in microcode−based processors) where traces are produced by appropriately modified microcode [21],

and instrumented program−based methods that introduce tracing statements in application’s code which are

responsible for producing the traces; instrumentation code may be inserted before the compilation of the

application [27, 18, 7], during the compilation [2, 5] or even during the execution of the application [12].

Hardware−based methods are characterised by a low−degree of intrusiveness which results in low overhead

and low perturbation of the execution of the target application. However, their cost, inherent inflexibility and

inability to provide high−level monitoring information limit their applicability in application−dependent

monitoring. Software monitoring or hybrid software−hardware tracing methods are used by the majority

of existing PPA tools.

In this paper we present ArrayTracer, a high−level low−overhead performance analysis tool for parallel

applications written in FORTRAN, using PVM for communication. The tracing technique used within

ArrayTracer has two major characteristics that distinguish it among others tools in the field of Parallel

Performance Analysis: It uses selective instrumentation to application source code which is assisted through

use of a small, yet flexible set of tracing specification commands. In this manner, the user can tune the tracing

process both at the level of program events which should be traced and at the level of code regions where

the tracing process should take place. The tool collects traces concerning high−level source code events

rather than low−level run−time environment’s events, so no additional mapping is required [11] to present

the information included in the traces to the user. Therefore, ArrayTracer allows the user to orientate the

tracing process and focus it on selected parts of the application. Moreover, it facilitates the analysis of the

application’s behavior in terms of its internal structure (source code concepts) rather than in terms of the

characteristics of the given system on which the application is run. Thus, the user is facing the problems

in the application’s design instead of problems emerging in the specific environment where the program is

run. This test focuses on the first three stages in ArrayTracer ’s operation: user interaction to determine the

tracing parameters, instrumentation of source code during the compilation phase and collection of traces.

The rest of this paper is structured as follows: Section 2 gives an overview of ArrayTracer. Experiments

with ArrayTracer and a brief performance evaluation of our tool in the area of PPA tools is given in
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section 3. Our conclusions from the experimentation with ArrayTracer are summarised in section 4.

2 Overview

Trace collection in ArrayTracer is performed in three stages. Initially the user determines the trace

parameters during the preparation stage. In the instrumentation or static analysis stage that follows, the

application code is instrumented. Finally the trace collection stage is responsible for collecting the traces

and forwarding them in the trace processing module. Figure 1 shows the flow of instrumented code and

trace data within ArrayTracer . These three stages are discussed next.
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Figure 1: Abstract flow of instrumentation code and trace data in ArrayTracer .

Preparation Stage. In this stage, the user determines the source code concepts that should be traced,

which will be hereafter called trace parameters. These include: program variables (scalar variables, arrays

and sub−arrays), source code basic concepts (loops, function/subroutine calls, etc.), and interprocess

communication events (message send/receive, barriers, etc.). Trace parameters are specified by issuing

commands to ArrayTracer’s input interface which is actually an interpreter over a small yet powerful set of

trace commands. Figure 2 gives an example of some trace commands:

The trace parameters specified are stored into a structure called trace table. This structure is a list

where each node corresponds to a source code file containing tracing parameters. Each node in this list

contains three sublists, one for each category of tracing parameters (variables, code and communication).

The trace table is used throughout the life−cycle of the tool. It is created during the preparation stage and

it is completed during the static analysis stage where information regarding the dimensions of arrays and

the grouping of variables according to the FORTRAN EQUIVALENCE and COMMON declarations is
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trace file /users/Mike/my appl.f Specify the source−code file

trace variable a from 30 to 150 Specify scalar variable

trace variable c[1..10] from 100 to 300 Specify sub−array

trace code at loop level from 50 to 125 Specify tracing of loops

trace code at subroutine level from 100 to 200 Specify tracing of sub−routine calls

bye Quit the tool

Figure 2: Example of user instructions in the preparation stage.

available. Upon termination of the specification of trace parameters for a given file, the newly constructed

trace table node is sent to the static analysis module. Thus, it it possible for the user to specify trace

parameters for a source file, while static analysis is being performed to the file previously marked for tracing,

which speeds up the tracing process. The trace table is also used in the trace collection stage and the trace

processing at post−mortem time as discussed later.

Static Analysis Stage. During this stage, ArrayTracer parses the application’s source code, identifies all

references to trace parameters (according to information stored in the trace table) and inserts appropriate

instrumentation code. The tool classifies all program events into two categories: those that interest the user

(they are marked for tracing during the preparation stage), and those that do not interest the user. However,

in some cases one cannot tell whether a given program event is related with some trace parameter1. In those

cases, ArrayTracer inserts instrumentation code and later (during the processing of the traces) it decides

whether the traces produced interest the user − essential traces − and should thus be used for the analysis of

the application’s behavior, or not, in which case they are characterised as non−essential traces. The output

of this stage is a file containing the original application’s source code augmented with the calls to tracing

routines. Figure 3 illustrates the instrumentation process. We assume that variables M and N take their

values at run−time.

The module implementing this stage is a source−to−source compiler which results in making ArrayTracer

independent from any other tools and thus highly portable to other machines. Additionaly, it facilitates the

debugging process since we can view the instrumented file. In the current implementation, we do not collect

any traces available during the static analysis time, instead we insert a call to a trace routine and defer their

production at run−time.

Inserting instrumentation code in FORTRAN code is a straightforward process of corresponding

program events to trace parameters, except from two cases: equivalent variables2 and tracing inside

subroutines bodies. When one variable in a set of equivalent variables is marked for tracing, all variables in

1Such cases are when the borders of a certain array block being accessed are determined during run−time, so one wouldn’t know
whether the given array block intersects with some sub−array marked for trace or not.

2In FORTRAN, when two variables are declared in an EQUIVALENCE (or COMMON) declaration, they occupy the same
memory location.
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User Input:
trace variable a[1..10] from 1 to 100
trace variable b from 1 to 50

Original Source Code: Instrumented Source Code:
INTEGER i, a(100), b, c INTEGER i, a(100), b, c

DO i = M, N DO i = M, N
a[i] = c * b a[i] = c * b

CALL tracevar(a TAG, i, OP WR)
CALL tracevar(b TAG, 0, OP RD)

b = c + 1 b = c + 1
CALL tracevar(b TAG, 0, OP WR)

c = c + 5 c = c + 5
ENDDO ENDDO

Figure 3: Selective insertion of instrumentation code.

this set should be traced too and so they are inserted into the trace table. A problem occurs when sub−blocks

of two arrays (possibly with different number of dimensions and different sizes) are declared equivalent. In

this case, the equivalent elements of the two arrays are identified and the corresponding sub−blocks are

inserted in the trace table. Tracing inside a subroutine’s body is performed when the given subroutine is

called with an argument which is a trace parameter. In that case, the subroutine’s body should be parsed

and appropriate instrumentation code should be inserted. However, this does not suffice3 so a copy of the

subroutine is made every time the parser finds a call to the subroutine with arguments related to some trace

parameter. Appropriate instrumentation code is inserted to these copies too.

Trace Collection Stage. During this stage, ArrayTracer creates and attaches a collector−process that

collects the traces produced to each running application process. This process runs on the same CPU

processor with the application process to which it is attached on and communicates with it via a shared

buffer. At the static analysis stage, the source−to−source compiler inserts also instrumentation code

responsible for creating the shared buffer. This module attaches the shared buffer to the application process

memory space, starts the collector−process and passes to it information on how to access the shared buffer.

Instrumentation code is also inserted immediately before the point where the application process exits. This

code is responsible for informing the collector−process about the application process termination.

During the execution of the application, the collector−process copies blocks of the shared buffer into

a trace−file on the disk, which will be processed at post−mortem time. Using a collector process and a

shared buffer for storing traces on the disk is transparent to the design of the tracing technique used by

ArrayTracer . It can be changed if necessary by another block−writing mechanism, without any side−effects

on our tool. Once the application process terminates, the collector−process is responsible for retrieving the

3A subroutine may be called several times in a program and each time with different arguments which all might be trace parameters,
so the traces that should be produced at each call should be different.
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stored traces from disk, separating the essential from the non−essential traces and sending only the former

to the ArrayTracer’s core−module for the trace processing phase.

3 Performance Results

In this section we describe the experiments conducted to evaluate ArrayTracer’s performance. The

current implementation of ArrayTracer runs on DEC−ALPHA 3000 workstations under DEC OSF/1 V3.0

Worksystem Software. The code is written in C and gcc version 2.7.0 is used. The communication of the

tool’s modules is done over PVM version 3.3.2. Current implementation includes: the Input Interface, the

pre−processor responsible for the static analysis, the shared buffer mechanism, and the collector−process.

A graphical user interface for the visualization of the trace processing results is under construction.

Execution slowdown due to ArrayTracer: We run various experiments in order to measure the dilation4

that ArrayTracer introduces to the application it traces. The applications used were a sequential and a

parallel implementation of a smoothing algorithm and a chemistry application for the calculation of the

energy trajectories of electrons in the H2O molecule. All these applications read their input from disk and

write their output back to disk. In these cases, the dilation metric was measured to be very low (around 2 to

7). In figure 4, the application named 200 parallel indicates the parallel version of the smoothing algorithm

dilation
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200 sequential �������

300 parallel �������

300 sequential ���	
��
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��
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300 parallel

300 sequential

500 parallel

Energy trajectories

0 1 2 3 4 5 6 7

dilation

200 parallel

200 sequential

300 parallel

300 sequential

500 parallel

Energy trajectories

Figure 4: Mesuring ArrayTracer’s dilation.

for an array with size 200x200. Parallel smoothing executes on four slave processes which sent results to a

master process to save them on disk. The 500 parallel application runs on five machines. The rest of the

parallel runs where done in a single CPU. This is the reason for the dilation factor near 7. The runs for the

energy trajectories application were also done in a single CPU and it used one master process and two slave

4Dilation represents the overhead tracing imposes to the executed application and is usually measured as the ratio of the completion
time of an application with tracing to the completion time of the same application without tracing. Dilation factors around 2−3 are
considered excellent, while dilation factors around 1000 are considered very bad.
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processes.

Trace−driven simulation vs. selective tracing: To evaluate the benefits of selective tracing we have

compared ArrayTracer with ATOM [22], a fast tracing tool that cannot selectively trace only a few variables.

Results are very encouraging when the selective tracing facility of the ArrayTracer is used to bound the

tracing process in a given set of program events. We have programmed ATOM to collect traces only for

some selected program events too. The applications used were the sequential version of the smoothing

algorithm, a matrix multiplication and an application which calculates the position of a point in the 3D

space after a predefined sequence of movements5. Note that, while for ArrayTracer the specification of

tracing parameters was straightforward, when using ATOM we had to find the virtual memory addresses

that correspond to variables that should be traced and then collect traces for these addresses. The results of

this comparison for the smoothing and the matrix multiplication algorithms, are shown in figure 5.
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(a) Smoothing algorithm. (b) Matrix Multiplication.

Figure 5: ArrayTracer vs. ATOM

Looking at figure 5 one may see that when the user marks for tracing less than 35% of variable references

in the application, ArrayTracer behaves better than ATOM. Especially, in the matrix multiplication6 we

notice that ArrayTracer performs better when tracing up to 65% of variable references. The difference

in the crossing points in 5(a) and 5(b) happens for the following reason: ArrayTracer traces accesses to

program variables whereas ATOM traces accesses to memory locations. Thus, if a certain variable is placed

into a register, ATOM does not trace accesses to that variable since they are not memory accesses, while

ArrayTracer traces the accesses to that variable. In the smoothing algorithm, there were some frequently

5A movement includes rotation around a random axis and translation towards a random direction.
6In this figure we notice that ATOM’s elapsed time is somewhat lower when tracing 100% of variable accesses than it is when

tracing 99.88%. This happens because the instrumentation code inserted by ATOM checks every load/store operation to find if the
memory address specified in it belongs to the given range that the user had selected for tracing, which becomes complex when tracing
a large percentage of load/store operations, as in the case of 99.88%. However, when ATOM traces 100% of variable references there
is no need for this checking, which results in lower elapsed time.
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used variables placed into registers and thus less traces were produced under ATOM. However in the matrix

multiplication, most accesses were to matrices which cannot be placed in registers. Therefore, ATOM had

to produce as many traces as ArrayTracer did.

These performance results are particularly encouraging given that in most cases users want to focus on

a small portion of code and data of parallel applications in order to detect performance and correctness

flows. ArrayTracer is particularly effective when it traces only a small portion of the data. For example,

when only 5% of the data are traced, figure 5(b) shows an order of magnitude improvement over other

state−of−the−art tools, like ATOM. We believe that we will observe similar behaviour if we compare

ArrayTracer with communication event tracing tools like PICL [6]. The ability of ArrayTracer to selectively

trace communication events, will most probably result in significant performance improvement.

4 Conclusions

We have presented a preliminary introduction and performance results of ArrayTracer, a parallel per−

formance analysis tool which uses selective instrumentation to produce traces of application source code.

There is on−going work on the trace processing and the result visualisation stages. Our experimentation

with ArrayTracer and other tracing tools such as ATOM, led us to the following conclusions:

1. ArrayTracer is easy to use and very efficient when the mechanism for selective tracing is used but its

performance deteriorates when a large percentage of the program variables are marked for tracing.

2. The dilation introduced by our tool is analogous to the percentage of variables that are traced and thus

its behaviour is predictable in contrast to the behaviour of other tools that depend on the compiler

and the optimization level used.

3. While other tracing tools that introduce instrumentation code at run−time may cause an unpredictable

inflation to the size of the executable, ArrayTracer always produces executable files with an anticipated

inflation in size (according to the amount of program events specified for tracing).
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