
Using Remote Memory to avoid Disk Thrashing:
A Simulation Study

Evangelos P. Markatos�

Computer Architecture and VLSI Systems Group
Institute of Computer Science (ICS)

Foundation for Research & Technology – Hellas (FORTH)
Vassilika Vouton, P.O. Box 1385, GR 711 10 Heraklion, Crete, Greece

In Proceedings of the MASCOTS’96, San Jose, CA, USA, Feb. 1996

Abstract
The increasing use of high-bandwidth and low-latency

networks make possible the use of remote (network) mem-
ory as an alternative to disk means of storing an applica-
tion’s data, because remote-to-local memory transfers over
a modern interconnection network are faster than tradi-
tional disk-to-memory transfers. In this paper we explore
the possibility of using the remote memory as (i) a (faster-
than-disk) backing store, (ii) an extension of main memory
accessed using single (remote) memory references, and (iii)
as a combination of both. We use execution driven simula-
tion to investigate the performance impact the use of remote
memory has on several real programs. We conclude that
even for today’s low throughput networks, using remote
memory as a place for storing (some) of an application’s
data may result in significant performance improvements,
which will continue to get higher, as the disparity between
disk transfer rates and network transfer rates continues to
increase.

1 Introduction
Recent applications like multimedia, windowing sys-

tems, scientific computations, engineering simulations, etc.
running on workstation clusters (or network of PCs) require
an everincreasing amount of memory. Although the total
amount of main memory in a workstation cluster is usually
sufficient for these applications, the amount of physical
memory provided by each individual workstation is usu-
ally insufficient to cover the needs of current and near future
applications. To make matters worse, the use of multipro-
gramming and time-sharing reduces the amount of physical
main memory available to each application even more. To
keep the workstation costs low, most workstations usually
have a powerful CPU, but they do not have the amount of
main memory that some applications need. Thereby, appli-
cations run efficiently as long as their working set fits in the
main memory of the workstation. As soon as the working
set exceeds the main memory size, the performance of the
application suffers severely.

�E.P. Markatos is also with the University of Crete. He can be reached
at markatos@csi.forth.gr

We believe that applications who need more main mem-
ory than a single workstation can provide, should make
use of the remote main memory1 available in a workstation
cluster, provided that the appropriate system software sup-
port exists. In this paper we explore the trends and circum-
stances under which the use of remote memory for storing
an applications data is beneficial from a performance point
of view. Recently, there have been two recent architec-
ture developments that make the use of remote memories
attractive:

� Memory-to-memory transfer rates between worksta-
tions have increased sharply in the last few years,
due to corresponding increases in local area network
throughput

� Modern architectures provide low-latency remote-
memory accesses, in order to provide an efficient
mechanism for fast message-passing and shared-
memory systems [4, 14]

In this paper we show that it is performance-wise to use
remote memory to efficiently store and retrieve an applica-
tion’s data in workstation clusters. In section 3 we describe
several methods with which applications can make use of
the available remote memory: (i) as a fast RAM disk, (ii)
as a (slow) main memory accessed via regular read and
write operations, and (iii) as a combination of both. In
order to evaluate the various architecture alternatives and
the various paging methods build on top of them, we use
execution-driven simulation, and present our performance
results. Section 4 places our work in the proper context
by comparing it with related work. Finally, section 5 dis-
cusses extensions of our approach, and presents our major
conclusions.

2 Remote Main Memory
The architecture we assume is a distributedsystem com-

posed of workstations and an interconnection network.

1In a network of workstations each workstation has a processor and
its local memory. The main memory of all other workstation is referred
to as the remote memory (also called network memory [2]). The same
definition can be extended to a network of PCs and to a parallel computer.



Each workstation consists of a processor and its local mem-
ory. The memory of all the other workstations in the system
comprise the remote memory. In the simplest version of
this distributed system (the DISK), the remote memory is
not used. The only paging device is the disk. When a
page needs to be evicted from local memory, it is sent to
disk; when a page needs to be fetched to local memory,
it is fetched from disk. This is exactly what most paging
systems do today.

To facilitate fast page transfers, remote memory could
be used as a paging device (RAM DISK). When a page
must be paged-out to make room for newly referenced
data, the pager sends the page to remote memory. When
the page is later needed, it is fetched from remote memory.
RAM DISK allows only whole page transfers at a time.
Both RAM DISK and DISK experience the same number
of page faults, but RAM DISK does not suffer from seek
and rotational latencies as the disk does.

In our next version of the architecture, the
REMOTE MAIN, remote memory is used as main mem-
ory accessed using single read and write operations, while
the disk is used as the backing store. The pager works
as follows: When a page is referenced, it is brought into
local main memory if there is an available frame. Other-
wise, it is sent to remote main memory. If neither part of
main memory has an available frame, a page residing in
local memory is evicted to disk to make room for the new
page. Once a page has been mapped into an (either local
or remote) frame, it is never moved (unless both local and
remote memories fill up). Both local and remote memory
are accessed via regular load and store operations.

In the last version of the architecture, the COUNTERS,
we assume the existence of a reference counter per remote
page. When a processor accesses a remote page, the counter
associated with the page is decremented. When the counter
reaches zero, an interrupt is sent to the operating system,
which replicates the page locally, sending a local page to
remote memory to make available space. This architecture
is a combination of RAM DISK and REMOTE MAIN, and
we believe that combines the advantages of both. When a
page is frequently accessed, COUNTERS migrate the page
to local memory, much likeRAM DISK, thus providing fast
access to the page. When a page in infrequently accessed,
COUNTERS provide remote access to the page, much like
REMOTE MAIN, thus avoiding unnecessary page transfers.

3 Experiments
In this section we evaluate the performance of various

remote memory configurations, and of various paging poli-
cies. We use ATOM [16], an object code rewriting tool
that gathers traces of applications, and simulates a memory
system on-the-fly. ATOM takes as input an executable and
instruments it with calls to simulation routines. The ap-
plication is actually executed, while at the same time, our
simulator runs to simulate the paging architecture we want.
The parameters of the architecture simulated can be found
in table 1.

3.1 Simulation Environment
3.1.1 The Applications

We have chosen the applications from several domains
(numerical analysis, matrix operations, data management,

parameter cost (in cycles)
local memory access 1 cycle
remote memory access 100 cycles
network bandwidth 25 Mbytes / sec
page size 8 Kbytes
local memory size 8 Mbytes
remote memory size 80 Mbytes
operating systems overhead 500 cycles
disk transfer rate 5 Mbytes/sec
disk seek latency 2.5 ms

Table 1: Architecture Parameters.

and circuit simulation) so that they represent a wide variety
of data access patterns. We use the following applications:

� MVEC: a matrix-vector multiplication; matrix size
1500� 1500 elements.

� GAUSS: A gauss eliminationon a 1500� 1500 matrix.

� SORT: A sorting application of 1400 records, of
8Kbytes each, using the UNIX provided qsort li-
brary routine.

� TRANS: Transposing a 1500 � 1500 matrix. This
application transposes an input matrix in place. It is
an example of application with almost no locality at
all. Both rows and columns of the matrix are accessed
at the same time, putting a tremendous stress into
the paging system. We expect the traditional paging
system to thrash, while the use or remote memory in
storing and retrieving data will significantly improve
the performance of the system.

� VERILOG: Verilog is a hardware simulation language.
In this example, we simulate the Telegraphos switch
which has been designed by members of our Lab [11].

The working set and trace length of each application are
described in the following table:

Application Number of references Working set
in millions in Mbytes

TRANS 22.6 24
MVEC 25 23
GAUSS 82.9 22
SORT 142.4 14
VERILOG 100 26.7

In all our simulation studies the paging policy is LRU.
We have also experimented with a random page replace-
ment policy, and have seen similar results.
3.2 Results
3.2.1 Remote Memory vs. Disk

The first question we set out to answer is the usefulness
of remote memory for storing an application’s data. We
executed the applications on a DEC Alpha workstation and
simulated the paging architectures as described. For each



TRANS MVEC GAUSS SORT VERILOG
0

10

20

30

40

50

60

70

80

90

100

A
ve

ra
ge

 M
em

or
y 

A
cc

es
s 

C
os

t

DISK

REMOTE_MAIN

COUNTERS

RAM_DISK

201024349

Figure 1: Paging policies. Performance of our application
suite under various paging configurations. In almost all
cases COUNTERS has the best performance, followed by
RAM DISK.

application/architecture combination we measured the av-
erage memory access cost of the application running on
the architecture, and plotted the results in figure 1. We see
that in three out of five applications (TRANS, GAUSS and
SORT) DISK performs worse than the other architectures,
and sometimes, substantially so. In TRANS for example,
where the is no locality at all, the DISK policy performs
24349�65�65� 371 times worse than the COUNTERS pol-
icy. The inferiority of the DISK policy over COUNTERS
is obvious (but not as pronounced as in TRANS) in GAUSS
and SORT applications as well. The only exception is the
MVEC application in which DISK is better than counters
by about 10%. The reason is that MVEC reads (most of) its
input only once and never uses it again; thus, any sophisti-
cated paging policies do not improve performance 2.

Among the policies that make use of remote memory,
COUNTERS seems to be the best (or close to the best)
in all cases. RAM DISK is better than REMOTE MAIN
with the exception of the TRANS application, where the
system serviced an extraordinary amount of page faults.
REMOTE MAIN is almost always the worst policy, because
the remote memory access cost is large (100 to 1) over
the local memory access cost. Li and Petersen [12] have
done experiments on a system where the remote memory
access cost was only twice the local memory access cost,
and in their system, REMOTE MAINwas much more attrac-
tive than RAM DISK. Unfortunately, as architecture trends

2The reader may notice that all policies have a somewhat high average
memory access cost. This is because we do not assume multiprogram-
ming; thus when an application page faults, the whole system waits for
the fault to be serviced and the page to arrive (possibly from the disk). It
seems that multiprogramming could hide some of the disk latency, but in
our set of experiments, multiprogramming would reduce the amount of
physical main memory available to each application, thus leading to more
page faults, and to even worse performance.

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 M
em

or
y 

A
cc

es
s 

T
im

e

Network throughput (Mbytes/sec)

GAUSS

DISK
REMOTE_MAIN

COUNTERS
RAM_DISK

Figure 2: Performance of paging policies as a function
of Network throughput: GAUSS application. The per-
formance of DISK is insensitive to network throughput.
All other policies improve with network throughput. It is
interesting to note that even when network throughput is as
low as the disk transfer rate (5 Mbytes/sec), DISK is still
inferior to remote memory paging policies.

suggest, the cost of remote memory access will continue
to increase compared to local memory access cost, [9], and
thus we expect the usefulness of REMOTE MAIN to de-
crease. However, we should note that the ability to make
single remote memory accesses is valuable when used pru-
dently, as in the COUNTERS policy.

3.2.2 The Influence of Network Throughput
Storing an application’s data in remote memory hasn’t

been popular so far, partly because local area networks did
not provide high throughput, making memory-to-memory
transfer over a LAN comparable to a disk-to-memory trans-
fer over the local disk. To evaluate the effect the network
throughput has on remote paging policies, we simulated
the execution of our applications and varied the inter-
connection network throughput from 1Mbyte/sec to 100
Mbytes/sec. The results for GAUSS are shown in figure
2 3. When the network throughput is low (1 Mbyte/sec),
theDISK outperforms all remote memory paging policies
because the disk-to-memory transfer is 5 Mbytes/sec, thus
disk-to-memory transfers are (almost) 5 time faster than
memory-to-memory transfers over the network. However,
when the network throughput becomes equal to the disk-to-
memory throughput (5 Mbytes/sec), both COUNTERS and
RAM DISK outperform the simpleDISK policy;even when
the network throughput is the same as the disk throughput
it is more efficient to use the remote memory instead of
the disk, as backing store! The reason is simple: remote
memory does not suffer from seek and rotational delays as
the disk does. When network throughput is as high as 100
Mbytes/sec, the DISK is clearly inferior to all remote pag-
ing policies. Even though when the network throughput is
moderately high (close to 25 Mbytes/sec), the performance
of remote memory paging policies is clearly higher than
that of the DISK.

3Due to space constraints we do not show the results for the other
applications which are similar.



0

20

40

60

80

100

120

140

160

180

200

1 10 100 1000 10000 100000

A
ve

ra
ge

 M
em

or
y 

A
cc

es
s 

C
os

t

Counter Value before Replication

GAUSS
TRANS
MVEC
SORT

VERILOG

Figure 3: Tuning the COUNTERS policy. When the initial
value of the counter is between 64 and 512, all applications
perform close to their best.

3.2.3 Tuning the COUNTERS policy
The COUNTERS policy does not bring a page to lo-

cal memory on its first access, like the RAM DISK and the
DISKpolicy. Instead, it maps the page remotely, and allows
the processor to make remote memory accesses to it. Only
after the processor has make a sufficient number of remote
accesses, then the page is migrated locally. This number is
set by the operating system on a per page basis. If the num-
ber is very low, COUNTERS behaves much likeRAM DISK,
bringing pages locally (almost) on the first access. When
the number is very high, COUNTERS behaves much like
REMOTE MAIN, (almost) never replicating pages. When
the performance of REMOTE MAIN is sufficiently differ-
ent from RAM DISK, then adjusting the initial value of the
counter, makes COUNTERS behave like the best policy.
In this set of experiments we investigate the influence of
the initial value of the counter on the performance of the
COUNTERS policy. To understand the influence of the ini-
tial value of the counter has on the COUNTERS policy, we
simulated the execution of our applications varying the ini-
tial value of the counter for each page and plotted the result
in figure 3. We see that the performance of TRANS appli-
cation improves with the counter value. The reason is that
TRANS has almost no locality at all. That is, the processor
will make only a few accesses to each page, before paging
it out, and thus, it is not worth it to bring the page locally.
Thus, the higher the counter value, the better the perfor-
mance of the application is. Exactly the opposite holds for
SORT, whose performance get worse with higher counter
values. The reason is that the sorting application makes
several accesses to each page before the page is paged out,
thus, it is worthwhile to bring pages in the local memory as
soon as possible. For MVEC and GAUSS the initial value of
the counter makes little difference in performance because
bothREMOTE MAIN and RAM DISK perform close to each
other.

By observing closely figure 3 we note that for all appli-
cations when the counter value is between 64 and 512, the
performance of the COUNTERS policy is (almost) the best.
Thus, we see that the COUNTERS policy does not require
difficult tuning. An initial value between 64 and 512 for
each counter is a reasonable choice.
3.2.4 Simulating Remote Memory Accesses in

Software
Although providing single remote memory accesses is

helpful to avoid thrashing (like the TRANS application in

TRANS MVEC GAUSS SORT VERILOG
0

10

20

30

40

50

60

70

80

90

100

A
ve

ra
ge

 M
em

or
y 

A
cc

es
s 

C
os

t

DISK

SOFTWARE_COUNTERS

RAM_DISK

COUNTERS

201024349

Figure 4: Paging policies. The effectiveness of simulating
counters in software (SOFTWARE COUNTERS) is evalu-
ated. In most cases, SOFTWARE COUNTERS perform very
well, always close to hardware COUNTERS.

figure 1), few architectures provide hardware implemented
remote memory accesses. Several systems though, imple-
ment them completely, or mostly, in software at reason-
able performance cost. To investigate the usefulness of
software implemented remote memory accesses we simu-
lated the performance of our applications running under the
COUNTERS policy using software implemented counters
(calledSOFTWARE COUNTERS). 4 The performance of the
SOFTWARE COUNTERS compared to the known DISK,
COUNTERS, andRAM DISK policies can be found in figure
4. We see that the performance of SOFTWARE COUNTERS
is only slightly worse than the performance of hardware
providedCOUNTERS. Moreover, SOFTWARE COUNTERS
perform significantly better than RAM DISK for applica-
tions with no locality (e.g. TRANS), while for the other ap-
plications that have good locality, SOFTWARE COUNTERS
performs comparable to RAM DISK, and COUNTERS.

4 Related Work
This paper evaluates the performance benefits of using

remote memory as a place to store an application’s data.
Its main contributions are (i) the proposal of a new pol-
icy (COUNTERS) that uses remote memory both as main
memory and as backing store, (ii) the evaluation of mem-
ory management policies for real applications, and (iii) the
systematic exploration of various parameters that influence
the use of remote memory for storing an application’s data.

Li and Petersen [12] have implemented a related system
where they add main memory on the I/O bus (VME bus)
of a computer system. This memory can be used both as
backing store, but also as (slow) main memory accessed
via regular load and store operations.

Several research groups study the issues in using remote
memory in a workstation cluster to improve paging perfor-

4In SOFTWARE COUNTERS the remote memory access cost is 1000
cycles.



mance [2, 3, 5, 8, 10, 13, 15] and file system performance
[1, 6, 7]. Our work differs from previous approaches in
two aspects: (i) we provide extensive performance results
based on execution-driven simulation of real applications,
while previous approaches have provided very limited per-
formance results (at least with respect to paging), and (ii)
we explore the use of single remote memory references as
a mechanism to access infrequently used pages by propos-
ing a new policy called COUNTERS. This policy clearly
outperforms all previously proposed policies.

5 Conclusions
In this paper we present a memory shortage problem

faced by several applications that run on a tightly-coupled
distributed system, or multiprocessor system, and explain
how to use remote memories to store an applications’ data.
We use execution-driven simulation of real applications to
evaluate the usefulness remote memory. We have shown
that in most cases, using remote memory for storing an ap-
plication’s data is faster than the disk, sometimes substan-
tially so, especially when the disk suffers from thrashing.

Based on our experiments we conclude that:

� Using remote memory instead of the disk to store an
application’s data that do not fit in local main mem-
ory has shown to improve performance over disk for
several applications and several ranges of parameters.

� Even when the network throughput is as low as the
disk transfer rate, using remote memory to store an
application’s data may be better than using the disk,
because remote memory does not suffer from seek and
rotational delay as the disks do.

� The COUNTERS policy that uses remote memory both
as (slow) main memory and as a (fast) backing store
at the same time has shown a stable performance;
always best, or close to the best because it combines
quick page migration for frequently used pages, and
avoids unnecessary replications for infrequently used
pages.

Based on our conclusions we believe that storing an
application’s data on remote memory (instead of the lo-
cal disk), in several cases results in performance improve-
ments, which will increase in the near future, if current
architecture trends continue to hold.

Acknowledgments
This work was developed in the ESPRIT/HPCN project

“SHIPS”, and will form a test application for the project
“ARCHES”, funded by the European Union. We deeply
appreciate this financial support, without which this work
would have not existed.

We would like to thank Catherine Chronaki for useful
comments in earlier drafts of this paper.

References
[1] T. E. Anderson, M. D. Dahlin, J. M. Neefe, D. A.

Patterson, D. S. Roselli, and R. Y. Wang. Serverless
Network File Systems. In Proc. 15-th Symposium on
Operating Systems Principles, December 1995.

[2] Thomas E. Anderson, David E. Culler, and David A.
Patterson. A Case for NOW (Networks of Worksta-
tions). IEEE Micro, 15(1):54–64, February 1995.

[3] G. Bernard and S. Hamma. Remote Memory Paging
in Networks of Workstations. In Proceedings of the
SUUG International Conference on Open Systems:
Solutions for Open Word, April 1994.

[4] M. Blumrich, K. Li, R. Alpert, C. Dubnicki, E. Fel-
ten, and J. Sandberg. Virtual Memory Mapped Net-
work Interface for the SHRIMP Multicomputer. In
Proceedings of the Twenty-First Int. Symposium on
Computer Architecture, pages 142–153, Chicago, IL,
April 1994.

[5] D. Comer and J. Griffoen. A new design for Dis-
tributed Systems: the Remote Memory Model. In
Proceedings of the USENIX Summer Conference,
pages 127–135, 1990.

[6] T. Cortes, S. Girona, and J. Labarta. PACA: A
Distributed File System Cache for Parallel MA-
chines. Performance under Unix-like workload.
Technical Report UPC-DAC-1995-20, Departament
d’Arquitectura de computadors, Universitat Politec-
nica de Catalunya (UPC), June 15 1995.

[7] M. J. Feeley, W. E. Morgan, F. H. Pighin, A. R. Kar-
lin, H. M. Levy, and C. A. Thekkath. Implementing
Global Memory Management in a Workstation Clus-
ter. In Proc. 15-th Symposium on Operating Systems
Principles, December 1995.

[8] E. W. Felten and J. Zahorjan. Issues in the Implemen-
tationof a Remote Memory Paging System. Technical
Report 91-03-09, University of Washington, Novem-
ber 1991.

[9] J. L. Hennessy and D. A. Patterson. Computer Archi-
tecture: A Quantitative Approach. Morgan Kaufmann
Publishers, Inc., 1990.

[10] L. Iftode, K. Li, and K. Petersen. Memory Servers for
Multicomputers. In Proceedings of COMPCON 93,
1993.

[11] M. Katevenis, P. Vatsolaki, and A. Efthymiou.
Pipelined Memory Shared Buffer for VLSI Switches.
In Proceedings of the ACM SIGCOMM ’95 Confer-
ence, pages 39–48, August 1995.

[12] K. Li and K. Petersen. Evaluation of Memory System
Extensions. In Proc. 18-th International Symposium
on Comp. Arch., pages 84–93, 1991.

[13] E.P. Markatos and G. Dramitinos. Implementation of
a Reliable Remote Memory Pager. In Proceedings of
the Usenix Technical Conference, January 1996.

[14] E.P. Markatos and M. Katevenis. Telegraphos: High-
Performance Networking for Parallel Processing on
Workstation Clusters. In Proceedings of the Sec-
ond International Symposium on High-Performance
Computer Architecture, February 1996.



[15] B.N. Schilit and D. Duchamp. Adaptive Remote Pag-
ing for Mobile Computers. Technical Report CUCS-
004-91, University of Columbia, 1991.

[16] Amitabh Srivastava and Alan Eustace. ATOM: A
System for Building Customized Program Analysis
Tools. In Proceedings of the SIGPLAN ’94 Confer-
ence on Programming Language Design and Imple-
mentation, Orlando, FL, June 1994.


