
Issues in Reliable Network Memory Paging

Evangelos P. Markatos�

Computer Architecture and VLSI Systems Group
Institute of Computer Science (ICS)

Foundation for Research & Technology – Hellas (FORTH)
Vassilika Vouton, P.O. Box 1385 GR 711 10 Heraklion, Crete, Greece

In Proceddings of MASCOTS 96, San Jose, CA, Feb 1995

Abstract
Recent distributed systems are connected with high-

performance networks, that make possible the use of a
new level of memory hierarchy: network memory. Network
memory provides both high bandwidth and low latency, that
make it attractive for uses like paging and file caching.

In this paper we explore the issues of building a reliable
network memory system that is resilient to single worksta-
tion failures. We propose novel parity-based policies and
evaluate their performance using trace-driven simulation
of realistic applications. The presented performance results
suggest that our proposed policies provide reliability at a
surprisingly small run-time overhead.

1 Introduction
Most computing environments today consist of a num-

ber of workstations or personal computers1 connected via
a (high-speed) interconnection network. In a workstation
cluster it is very probable that several resources are idle
most of the time, even during business hours. Such re-
sources include CPU cycles, main memory, etc. Although
a significant amount of work has been done to exploit the
unused processor cycles in a distributed system [12], very
little work has been done to exploit the unused main mem-
ory in a workstation cluster. This is partly because, network
memory reduces the reliabilityof the applications that use it.
For example, if a workstation crashes (and there are several
of them that may crash at any time), the applications that
use the workstation’s memory may not be able to complete
their execution.

This situation may be remedied if network memory is
used in a reliable way, where even if a workstation that
holds an application’s data crashes, the system will be able
to recover the lost data, and allow the application to complete
its execution.

In this paper we describe a novel way to build a reli-
able network memory system at a small performance cost.
Our system is based on parity mechanisms: for each set of
workstations that are used for the network memory (called
memory servers) there is a parity workstation (called parity
server), whose memory holds the parity memory contents of

�E.P. Markatos is also with the University of Crete. He can be reached
at markatos@ics.forth.gr.

1In the rest of the paper we will use the term workstation to mean both
workstation and high-speed personal computer.

the memory servers. If a memory server crashes, its mem-
ory contents can be reconstructed by taking the XOR of the
rest of the memory servers in the set (including the parity
server).2

In this paper we focus on a specific application of network
memory: remote memory paging [1, 3, 7, 8, 10]. In remote
memory paging, the idle memories of all workstations in
a workstation cluster are used as a paging device. Our
reliability methods can be applied to other uses of network
memory, like file system caching [5, 6, 9], database caching,
etc. The contributions of this work are:

� We describe how to build a reliable network memory
system that is resilient to individual workstation fail-
ures, that is, if a workstation crashes, its main memory
contents can be recovered.

� We propose three novel reliability policies that impose
low overhead and have low resource requirements.

� Using trace-driven simulation, we show that our poli-
cies provide reliable network memory at low cost.

The rest of the paper is organized as follows: In sec-
tion 2 we describe the policies used to construct a reliable
system. In section 3 we evaluate the performance of the
proposed policies, in section 4 we present related work, and
we conclude the paper in section 5.

2 Reliable Network Memory
2.1 The Environment

The network memory paging environment we assume
is as follows: A sequential application that is executed on
a workstation (client) may require more memory than the
client actually has, thus may be forced to use paging.

All idle workstations that are willing to donate their mem-
ories for paging, act as memory servers that respond to
page-in and page-out requests initiated by the client soft-
ware. Every few memory servers, there is a parity server
that holds the parity of the memory contents of the mem-
ory servers. Both memory servers and the parity server
comprise a parity set. The assignment of pages to memory
servers and to parity sets is simple: Pages are assigned to

2Parity-based methods havebeen extensivelyused in RedundantArrays
of Inexpensive Disks (RAIDs) [2], which recover from disk failures, but
do not cope with main memory failures.



memory servers in a round-robin fashion3. Each server has
only one page in each parity set, and each page participates
in only one parity set. If the server crashes, its lost page
can be reconstructed by XORing the rest of the pages in the
parity set4. To improve performance, a parity server may
be distributed over several workstations. For example, in-
stead of having nine memory servers, and one parity server,
we may have ten servers, where 90% of their memory is
dedicated to store memory pages, and 10% is dedicated to
store parity pages. This approach distributes the load more
evenly across all servers. Although we advocate such an
approach, in the rest of the paper we will refer to the parity
server as a separate workstation, in order to make the pre-
sentation simpler. The performance results we present are
the same in both approaches.
2.2 The Policies
2.2.1 The Disk

The simplest policy that provides a reliable network
memory writes all updated data both to a magnetic disk,
and to the network memory at the same time. If a worksta-
tion crashes, its lost data can always be found on some disk.
Unfortunately, the performance of this policy is limited by
the amount of disk bandwidth available in the system. If
the disk bandwidth is significantly smaller than the network
bandwidth (as is the case with modern gigabit networks),
the performance of the network memory system is bound to
suffer.
2.2.2 Simple Parity

The memory contents of a memory server may change
only when it receives a page out request along with the
corresponding page from the client. In this case, the parity
server should be notified of the modified page, in order to
update its parity page to reflect the changes. In this policy,
for each page out, a page (say Anew) is sent from the client
to the memory server to replace the older version of the same
page (Aold). In the memory server, the Anew is XOR’ed
with Aold , and the resulting page is sent to the parity server
to be XOR’ed with the parity page of the parity set that
contains page A. This second XOR operation has the effect
of removing Aold from the parity page and adding Anew to
it.
2.2.3 Delayed Parity

Fortunately, there is some spatial locality5 in the page-
out sequence that we may take advantage of, and reduce the
number of page transfers, and hence the cost of reliability:
pages are frequently paged out in large chunks to reduce
disk seek overhead.

Based on this locality observation we see that pages that
belong to the same parity set will probably be paged out at
about the same time. When the system pages out all the
pages that belong to the same parity set, the parity server

3More elaborate policies of assigning pages to parity sets can be defined
but are beyond the scope of this paper.

4By having each page on several parity sets, we may be able to tolerate
multiple server crashes. Fortunately, being able to tolerate one server’s
crash is usually more than enough, because the probability of two servers
crashing within a small time interval is negligible [2].

5One of the arts in designing systems software and computer architec-
ture is the ability to discover the locality in program behavior and to design
systems that exploit it, neither of which is an easy task. In this paper we
describe a form of locality that exists in the page out sequence of a pager,
and design policies that exploit it.

need not be notified for each and every one of them. Instead,
the XOR of all these pages can be computed at the client
node and sent to the parity server when the last page is
paged out. Even when not all the pages of the same set
are paged out consecutively, “Delayed Parity" may have a
performance advantage: suppose that only 7 out of the 10
pages of the set are paged out consecutively. Then, the parity
calculated represents only the 7 pages. Thus, the client tells
the rest 3 servers to sent their pages to the parity server for
calculation of the new parity resulting in a total of 11 page
transfers ( 7 for the pages, 3 for the rest of the servers, and
1 for the incomplete parity page). The simple parity policy
would send 2�7=14 pages, or 20% more.
2.2.4 Logging

It should be obvious that we get the best performance out
of parity-based methods, only when we perform the least
number of updates to the parity server, which happens when
whole parity sets are paged out at a time. We propose a new
parity-based method called logging which does exactly this:
for each set of paged out pages, it constructs a new parity
set, computes the parity page on the client side, sends the
pages to their servers, and sends only one parity page to the
parity server after the whole new parity set is sent out.

Lets see the example in figure 1. There we have four
memory servers, and one parity server. Memory server 1
provides backing store for pages 1, and 3, memory server 2
provides backing store for pages 2, and 8, etc. Pages 1, 2,
4, and 6 belong to one parity set: their corresponding parity
page P1 is held on the parity server. Similarly, pages 3, 8,
7 and 9 belong to the second parity set: their correspond
parity page is P2. After paging out pages 2, 4, 6, and 8,
the system does not place the new copies of the pages in
their original positions, but forms a new parity set, sends
the pages to servers 1 through 4, creates a new parity page
(P3) and sends it to the parity server. Finally, the client
updates its tables, marking the old positions of pages 2,4,6,
and 8 as invalid. Note, that the servers that keep the in-
valid pages are not informed of the fact that the pages are
invalid. To reduce communication overhead, the space of
the invalid pages is not deallocated at this point. However,
if the memory that stores older versions of pages is never
deallocated (recycled), then the corresponding page frames
will be wasted, and eventually the system will run out of
memory. To avoid this memory shortage problem, a page
frame cleaning method should be used. This method will
reclaim space (periodically or on demand), update the af-
fected parity frames, and use the reclaimed space to store
pages from new page out requests.

We will describe two cleaning policies that try to achieve
the best balance between page transfers and wasted memory.

Logging - Greedy: In the Greedy policy we reclaim space
in the following two cases:

Rule 1: When we page out a page, its previous position
is marked as invalid. If all pages in the same parity
set are invalid, the set is declared free, and all its page
frames can be reused. No communication is necessary,
because both the free lists and the bitmaps of invalid
pages are kept on the client side. The parity page needs
no update, because the parity set is empty.

Rule 2: When the system runs out of space, it finds the
parity set with the largest number of invalid pages. All
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Figure 1: Example of Logging:after paging out pages 2,4,6,
and 8, their previous positions are marked as invalid, and the
pages form a new parity set and are stored in new servers.

subsequent page out operations go to this set, until it
fills up. In the meantime, a whole set may be freed
(due to rule 1 before). If not, rule 2 is applied again.

This method works very well as long as the page out
requests invalidate pages that will eventually lead to empty
parity sets. If there are no empty parity sets, then almost-
empty parity sets are selected, which are the next best thing.
If there are neither empty, not almost-empty sets, half-empty,
or almost-full sets are being used, which increases the cost
of cleaning.

Logging - Sets: In this policy we reclaim space in the
following two cases:

1. Rule 1: same as previously.

2. Rule 2: When we run out of space, we find the parity
set with the largest number of invalid pages. The valid
pages in the set are sent to other non-full sets, and a
new empty parity set is created.

The main difference with the previous method is that the
Greedy policy uses half-full sets (most of the time), while
this method empties the parity sets (by transferring the valid
pages to other half-empty sets) before using them.

Both logging policies work well when empty parity sets
are created at no extra cost (by Rule 1.). To achieve this,
both logging policies must have a little more space than
the minimum necessary to store memory pages. This space
will be referred to as scratch space. Logging polices will
take advantage of scratch space to keep older version of
the pages, in order to avoid creating empty sets by moving
pages.

3 Performance Results
3.1 The environment

We use trace-driven simulation, to measure the perfor-
mance of the proposed policies. The traces are page-in
and page-out requests that we gather from realistic appli-
cations running on a real environment. We modified the
kernel of the DEC/OSF 1 operating system to produce a
trace record every time its pager performs a page in, or a
page out operation.6 Then, we feed these traces to a simu-

6The interested reader may find the modifications to the kernel, the
application code and the traces from ftp://ftp.ics.forth.gr/pub/pager.

Figure 2: Performance of various Reliability Policies In
this experiment, 8 memory servers and one parity servers
were used. The Logging policies use an extra 18.9% of
scratch space.

lator that simulates a reliable network memory system.
The reliable network memory system consists of a set of

memory and parity servers. Every eight memory servers
there is one parity server. Each server has 16 MBytes of
free memory. The page size is set to 8 KBytes.

The applications we use are:
MVEC: Matrix vector multiplication of a 2000�2000 ma-
trix.
GAUSS: Gaussian elimination on a 1900�1900 matrix. 7

SORT: Sorting of an array of 32 Mbytes, using the standard
quicksort algorithm.
NBODY: N-body simulation of 140.000 particles.
FFT: Fast Fourier Transform on 900.000 elements.

The policies we simulate are:

� MIRRORING: For each page there are two copies of it
in two different memory servers. Each page out must
be sent to both servers. If one of the server crashes, the
other can still serve requests for the page.

� PARITY, DELAYED PARITY,
LOGGING-GREEDY, and LOGGING-SETS: These
are the policies described in sections 2.2.2 through
2.2.4.

� NO-RELIABILITY: For comparison purposes, we
have included the policy that provides no reliability
at all: for each page out only the page is sent to the
memory server, no extra pages are transferred, no par-
ity is computed, and no extra memory is needed.

The performance metric we use for our comparison is
the number of page transfers: we count only the number of
page transfers associated with page outs, because none of
the above policies makes any extra page transfers per page
in. When it is important, we normalize the page transfers
count by dividing it with the number of page outs, and we
get the page transfers per page out metric.

3.2 Policy Comparison
In the first experiment we do a comparison of all the

policies on all applications. We assume that for every eight

7Because the completion times of the simulation were too long, we
simulated only the first 10 minutes of real application execution time.
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Figure 3: Performance of LOGGING-SETS as a function
of the amount of the scratch memory available. Eight
memory servers - one parity server

memory servers there is one parity server. Thus, the mem-
ory utilization of the PARITY and the DELAYED PARITY
policies is 8�9 � 88�8% (the rest 11�1% holds parity
frames). The memory utilization of the LOGGING poli-
cies were set to 70% which implies that 70% of the page
frames are used to store pages, 11�1% are used to store
parity pages, and the rest 18�9% is used as scratch mem-
ory to store invalid pages, and increase the flexibility and
effectiveness of the LOGGING polices. The number of
page transfers (both page outs, mirror and parity transfers,
but excluding page ins) for each application running under
each policy is shown in figure 2. The first thing we no-
tice is that MIRRORING and PARITY induce the same
number of page transfers, which is expected. In all cases,
both MIRRORING and PARITY have the worst perfor-
mance. The next best policy is DELAYED PARITY which
manages to gather several pages that belong to the same
parity set at a time, and thus, it reduces the number of page
transfers to the parity server. Its performance improvements
over simple PARITY range as high as 30% for the FFT
application.

Both LOGGING policies represent a significant improve-
ment over simple PARITY . The reason is simple: Both
LOGGING policies page out (almost) entire parity sets at a
time, in which case only only one (or a few) pages per set
need to be sent to the parity server.

The interested reader should notice that the LOGGING
policies perform very close to theNO-RELIABILITY: only
11% worse for most applications (30% for NBODY).8 This
implies that the cost of providinga reliable network memory
system is only 11%-30% higher than the cost of providing
an unreliable network memory. Finally, we notice that the
two LOGGING policies are comparable for all applications.
They perform the same for FFT, MVEC and QSORT, and
within a 5% of each other for the N-BODY and the GAUSS
applications.

3.3 The Effect of Scratch Memory

8Note that all policies based on parity can not perform better than 11%
from the NO-RELIABILITY policy, because 11% of the pages are parity
pages.

Application Scratch Memory Percentage
FFT 11.7

GAUSS 33.2
MVEC 0.07

NBODY 38.3
QSORT 1.2

Table 1: Percentage of scratch memory needed by the
applications to avoid cleaning. The same percentage holds
for both LOGGING policies.

Our next set of experiments investigates the performance
of LOGGING policies as a function of the scratch memory
space they are given. We expect that the more scratch space
the LOGGING policies are given, the better their perfor-
mance will be, because the system will have to clean parity
sets and regain space rather infrequently. The performance
results for the LOGGING-SETS policy are shown in figure
3. The x-axis represents the amount of scratch memory
space the policy is given. To simplify the presentation of
the results, the x-axis does not include the amount of mem-
ory used to store the parity pages. The y axis represents
the number of pages transferred for each page out that the
system performs. This number should be at least one (the
page itself must be transferred to its server). We see that
the performance improves (the number of page transfers per
page out decreases) with the available scratch memory, as
expected. However, it is surprising to see that for the MVEC
and QSORT applications almost no scratch space is needed.
Both applications have a regular page out pattern which re-
sults in emptying entire parity sets at a time, thus, needing
little extra scratch space. In figure 3 we see that when the
scratch memory is very small, applications NBODY, FFT,
and GAUSS suffer some performance overhead, which is
more pronounced for the NBODY application. A simple
look at the application’s page out patterns explains why. All
three applications do not have a repeatable pattern of page
outs (unlike QSORT). This phenomenon is especially pro-
nounced in NBODY because its accesses are almost random,
forcing the pages that are sent to backing store to follow
an irregular pattern. Thus, page outs of the NBODY appli-
cation result in several half-full parity sets, which need to
be cleaned frequently, resulting in a large number of page
transfers. However, we were surprised to see that even for
an application like NBODY, the percentage of scratch mem-
ory it needs to achieve its maximum performance is only
35%. Thus, if we give an extra 35% of scratch memory to
the LOGGING-SETS policy, all our applications (including
those with the worst memory access pattern) perform only
1.12 page transfers per page out, or a mere 11% worse than
the policy that provides no reliability at all. It is surprising
to see how inexpensive (both in memory utilization and in
page transfers) it is to achieve a reliable network memory
system using the LOGGING policies. Table 1 presents the
amount of scratch memory needed by all applications in or-
der to avoid cleaning all-together. MVEC and GAUSS need
almost no extra space (�1.2%), FFT needs little extra space
(�12%), and GAUSS and NBODY need a moderate amount
of extra space (33% and 38% respectively).



4 Related Work
Recent research that studies the application of net-

work memory for paging in workstation clusters includes
[1, 3, 7, 10], and [8] for large scale multiprocessors. Other
research groups focus on applications of network memory
for file system caching [1, 4, 5, 6]. In all previous work,
however, reliability is either ignored, or achieved by storing
dirty pages on magnetic disks, thus limiting the performance
of the system by the available disk bandwidth. Our approach
instead, is to use remote main (volatile) memory to reliably
store through redundancy an application’s data. Our exper-
iments suggest that reliability (through redundancy) can be
achieved at a small increase in memory size and the number
of page transfers required.

Although the area of reliability in network memory sys-
tems is new, it shares several of the ideas developed for other
areas of reliable memory management. For example, parity-
based methods have been extensively used for Redundant
Arrays of Inexpensive Disks (RAIDs) [2].

Our work bares some similarity with logging and clean-
ing methods used in log-based file systems, but the mecha-
nisms and policies in the two cases are different [11].

5 Conclusions
Workstation clusters give rise to a new level of memory

hierarchy that consists of all the main memories of all the
workstations in the cluster: the network memory. In this pa-
per we present a log-based approach to construct a reliable
network memory system that is resilient to individual work-
station failures. Our approach can be used to implement
reliable file systems, paging systems, and database caching
systems. In this paper we propose three novel policies for
network memory: the DELAYED-PARITY and two log-
based policies. We have done several trace-driven simula-
tion experiments based on traces of real applications running
on a real environment. Based on our experimental results
we conclude:

� Reliable network memory systems impose little run-
time overhead: their performance is (most of them
time) within 11% of the systems that provide no relia-
bility at all (see figure 2).

� Reliable network memory systems are inexpensive:
they consume a small percentage of the total mem-
ory of the system. Given that a significant portion of
memory lies idle most of the time in a workstation
cluster, dedicating a small percentage of (an otherwise
idle) memory to reliability is a small price to pay.

� Log-based parity policies outperform all other ap-
proaches: our performance experiments suggest that
the log-based approach to a reliable network memory
outperforms both simple parity-based and mirroring
policies.
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