
Telegraphos: High-Performance Networking
for Parallel Processing on Workstation Clusters

Evangelos P. Markatos Manolis G.H. Katevenis�

Computer Architecture and VLSI Systems Group
Institute of Computer Science (ICS)

Foundation for Research & Technology – Hellas (FORTH)
P.O.Box 1385, Science and Technology Park,

Heraklio, Crete, GR-711-10 GREECE
fmarkatos,katevenisg@ics.forth.gr

In the Proceedings of the HPCA-2, San Diego, Ca, Feb 1996

Abstract
Networks of workstations and high-performance micro-
computers have been rarely used for running high-
performance applications like multimedia, simulations, sci-
entific and engineering applications,because, although they
have significant aggregate computing power, they lack the
support for efficient message-passing and shared-memory
communication. In this paper we present Telegraphos, a
distributed system that provides efficient shared-memory
support on top of a workstation cluster. We focus on the
network interface of Telegraphos that provides a variety
of shared-memory operations like remote reads, remote
writes, remote atomic operations, all launched from user
level without any intervention of the operating system.

Telegraphos I, the first Telegraphos prototype has been
implemented. Emphasis was put on rapid prototyping, so
the technology used was conservative: FPGA’s, SRAM’s,
and TTL buffers. Telegraphos II, is the single-chip version
of the Telegraphos architecture; its switch was implemented
and its network interface is being debugged.

1 Introduction

Popular contemporary computing environments are com-
prised of powerful workstations connected via a network
which, in many cases, may have a high throughput, giving
rise to systems called workstation clusters or Networks
of Workstations (NOWs) [1]. The availability of such
computing and communication power gives rise to new
applications like multimedia, high performance scientific
computing, real-time applications, engineering design and
simulation, and so on. Up to recently, only high perfor-
mance parallel processors and supercomputers were able
to satisfy the computing requirements that these applica-
tions need. Fortunately, modern networks of workstations
connected by Gigabit networks have the ability to run most
applications that run on supercomputers, at a reasonable
performance, but at a significantly lower cost.

�The authors are also with the University of Crete.

Traditional programming environments in networks of
workstations have several limitations, and cannot be used
to run modern parallel applications, because they induce
significant overhead. For example, most traditional envi-
ronments need the intervention of the operating system to
make even the simplest exchange of information between
workstations. Message passing systems like PVM [11]
and P4 [6] are usually implemented on top of Unix sock-
ets which require the intervention of the operating system
for each message transfer. Shared-memory systems like
Virtual Shared Memory [9, 10, 18, 19] are based on page-
fault driven page replication and invalidation to provide the
shared-memory illusion: when a process wants to access
non-local shared data, it page faults, the operating system
replicates the page locally, marks it shared, and resumes
the faulted process. When a process wants to update shared
data, first it traps into the operating system and invalidates
all other copies of the page, and then makes its updates.
Because of the software intervention, Virtual Shared Mem-
ory has been successfully used for applications that interact
rather infrequently, using weak forms of consistency.

To facilitate the development of efficient programming
environments on distributed systems, hardware-support
is being added to existing workstation clusters. In the
SHRIMP project for example [4], a local page can be
mapped out to another page on another workstation. Up-
dates to the local page are snooped by the SHRIMP in-
terface which automatically sends them to the mapped out
page. Thus, passing of messages is as fast as local writes.
Encore’s reflective memory and PRAM [24] use a simi-
lar approach. The NOW project [1] uses fast user-level
message passing via Active Messages. Although the pre-
viously described systems for workstation clusters provide
efficient message passing, they have limited support for
shared memory.

In this paper, we present Telegraphos, a distributed sys-
tem that consists of network interfaces and switches for
efficient support of parallel and distributed applications on
a workstation cluster. We call this project Telegraphos or
T���́����o� from the greek words T���́meaning remote,
and ���́�� meaning write, because the central operation
on Telegraphos is the remote write operation. A remote



write operation is triggered by a simple store instruc-
tion, whose argument is a memory address mapped on the
physical memory of another workstation. Telegraphos also
provides remote read operations, atomic operations (like
fetch and increment) on remote memory locations,
and a non-blockingfetch(remote,local) operation
that copies a remote memory location into a local one.
Finally, Telegraphos provides an eager-update multicast
mechanism which can be used to support both multicasted
message-passing, and update-based coherent shared mem-
ory.

Telegraphos provides a variety of hardware primitives
which if combined with appropriate software will result in
efficient support for shared-memory applications.

� On a remote memory access, traditional systems re-
quire the help of the operating system, which either
replicates locally the remote page, and makes a local
memory access, or makes the single remote access
on behalf of the requesting process. To avoid this
operating system overhead, Telegraphos provides the
processor with the ability to make a read or write oper-
ation to a remote memory location without replicating
the page locally and without any software interven-
tion; just like shared-memory multiprocessors do [2].

� If a page is accessed by a processor frequently, it
may be worthwhile to replicate the page and make
all accesses to it locally. To allow informed deci-
sions, Telegraphos provides access counters for each
remotely-mapped page. Each time the processor ac-
cesses a remote page, the counter is decremented, and
when it reaches zero an interrupt is sent to the proces-
sor which should probably replicate the page locally.

� Telegraphos provides a write multicast mechanism
in hardware which can be used to implement one-
to-many message passing operations, as well as an
update-based memory coherence protocol.

To verify our architecture, we designed two prototypes
of it, Telegraphos I and Telegraphos II. The first has al-
ready been built using low-integration, rapid-prototyping
technology (FPGA and RAM); Telegraphos II switch has
been built using ASIC technology, to achieve higher per-
formance and integration [16, 17].

The rest of the paper is organized as follows: Section
2 presents the network interface of Telegraphos, and its
support for shared memory. Special attention is given in the
implementation of atomic operations and of the multicast
mechanism. Section 3 presents the implementation status
of Telegraphos and some preliminary performance results.
Section 4 describes related projects, and finally, section 5
summarizes and concludes the paper.

2 Shared Memory Support

2.1 Traditional Systems and their Problems

Efficient support for shared memory is vital for the perfor-
mance of parallel and distributed applications that run on

networks of workstations �. Traditional computing envi-
ronments on networks of workstations either do not sup-
port shared-memory, or provide software-supported shared
memory like Virtual Shared Memory (VSM) and interrupt-
driven remote memory accesses.

To avoid overhead sources related to software imple-
mentations of shared-memory primitives, we have de-
signed, and implemented, Telegraphos, an architecture in-
spired by shared-memory multiprocessors, which avoids
their high-cost components. Telegraphos provides load
and store operations to pages that reside in memories of re-
mote workstations. Thus, any workstation in a Telegraphos
distributed system can directly access the memory of any
other workstation in the same distributed system, provided
that it has the right to. To enforce protection, the operat-
ing system maps remote pages to the page tables of those
processes that have the right to access the specific remote
pages.

Telegraphos I (shown in figure 1) consists of network
interface boards that plug into the TurboChannel I/O bus
of DEC Alpha workstations and switch boards that are
connected by ribbon cables to each other and to network
interfaces to form a high-speed network. The Telegraphos
switches provide back-pressured flow control, determin-
istic routing, in-order delivery of packets, and deadlock
freedom. More information about the switch architecture
can be found in [16, 17].

Plugging the network interface on the I/O bus instead of
the memory bus creates several challenging problems but
makes the system more affordable for consumers. Almost
all workstations and microcomputers provide extra slots in
their I/O bus, while significantly fewer and rather expensive
workstations and microcomputers provide available slots
in their memory bus. Plugging the network interface of
Telegraphos into the memory bus could potentially make
the system more efficient, but would also severely limit its
market and increase its cost.

2.2 The Network Interface
The network interface or Host Interface Board (HIB) of
Telegraphos is responsible for the implementation of the
following shared-memory operations:

� Efficient, non-blocking remote write operations that
write the contents of a register into a remote memory
location.

� Blocking remote read operations, that read the con-
tents of a remote memory location into a local register.

� Because remote reads are blocking, a form of remote
copy or prefetch operation which is equivalent to a
non-blocking memory read is provided.

� Remote atomic operations are also implemented to
allow simple and efficient synchronization.

� Because page-level replication and invalidation deci-
sions are costly, Telegraphos helps the systems soft-
ware in these decisions by providing page access

�The notion of workstation as used in this paper is broad enough to
include high-end PCs as well.



Ribbon Cables

Switch Boards

Host Interface Board (HIB)

ALPHA workstation
TurboChannel

Arbitrary Topology

Interconnection Network

Figure 1: Example of Telegraphos I prototype configura-
tion.

counters and alarms. In this way, it helps the op-
erating system estimate the reference patterns to each
page and know when the number of accesses to a page
exceeds a threshold.

� To facilitate the completion detection of remote ac-
cesses, special counters of outstanding remote opera-
tions are also provided.

� Finally, Telegraphos provides eager updating, or mul-
ticasting as an efficient method to support both mes-
sage passing (to multiple destinations) and coherent
shared memory.

2.2.1 Remote Write - Remote Read

All remote accesses are performed via the TurboChannel of
the DEC Alpha workstations on which Telegraphos HIB is
plugged into. To make remote accesses visible to the HIB,
remote addresses are mapped into physical addresses that
correspond to the TurboChannel address space. The highest
order bits of each physical address denote the node iden-
tification on which the physical memory location resides.
When the HIB sees a read or write operation to a remote
node, it sends a network packet with the read or write re-
quest to the HIB of the remote node. Read requests stall
the processor until the data arrive from the remote node.
Write requests do not stall the processor and release the
TurboChannel as soon as the write request is latched by the
HIB. Thus, remote writes are the most efficient operations
on Telegraphos.

Mapping virtual to physical addresses is done by the
operating system as follows:

� Shared data that physically reside on some remote
workstation are mapped into physical addresses of the
I/O bus of the workstation. Thus, when a processor
wants to access shared data, its request is sent to the
I/O bus. The HIB which resides in the I/O bus latches
the request and services it.

� Shared data that physically reside in the local work-
station are mapped in two different ways in our two
prototypes:

– Telegraphos I uses memory modules on the HIB
to store shared data that reside locally.

– Telegraphos II uses a portion of the workstation’s
main memory to store shared data that reside
locally.

Although the first approach results in better control
over all Telegraphos operations, the second results in
cacheability and faster access to shared data, better uti-
lization of main memory, and probably better overall
performance.

� Data which are not shared are mapped into physical
addresses which correspond to the main memory of
the workstation. Thus, when a processor accesses
non-shared data, its access is routed to the cache (or
the main memory) via the memory bus as usual. Tele-
graphos does not interfere with these accesses at all.

2.2.2 Remote Copy

The remote copy operation is similar to a non-blocking
memory-to-memory read operation. It copies the contents
of a remote memory location Afrom to a local memory
location Ato. The remote copy operation is launched from
user level (see section 2.2.4 below); it returns control to
the processor without waiting for the completion of the
operation.

2.2.3 Remote Atomic Operations

To provide efficient synchronization of parallel applica-
tions, Telegraphos implements the fetch-and-store,
fetch-and-inc, and compare-and-swap remote
atomic operations.

2.2.4 Launching of Special Operations

Although remote read and write operations are launched
as single (load or store) instructions, atomic operations
as well as remote copy operationsy need a sequence of
instructions. These instructions must communicate to the
HIB the following information:

� The physical address of the synchronization variable
where the atomic operations is to be performed (two
physical addresses, one for source and one for desti-
nation, for remote copy operations).

� The datum of the special operation

The communication of the information to the HIB is done
with a series of uncached write operations, followed by a
read operation that returns the result of the atomic opera-
tion. Two are the main difficulties in doing such a sequence
of operations:

yWe will call both atomic operations and remote copy operations as
special operations.



� The user should not be allowed to communicate phys-
ical addresses to the HIB without any protection, be-
cause a malicious or ignorant user may communicate
physical addresses to the HIB to which he/she has no
access rights.

� The sequence of write and read operations that pass the
desirable information to the HIB should execute atom-
ically, like a transaction. If only half of the sequence
is executed, this would probably leave the hardware
in an intermediate state, and would return erroneous
results to software. Thus, the sequence of instructions
that execute the special operation, should either not be
interrupted, or if interrupted, resumed appropriately,

The two Telegraphos prototypes follow different ap-
proaches in dealing with these problems:

Launching Special Operations in Telegraphos I: To
communicate remote physical addresses to the HIB the
processor performs store operations directly to those ad-
dress. To make sure that the HIB does not perform the
store operation issued by the processor, the HIB is first put
in a special mode, by writing into a special HIB address.
When the HIB is in special mode, it does not perform the re-
mote read/write operations requested by its local processor,
but instead interprets them as argument passing commands.
Protection checking is done at the same time: if the user
has no right to access an address, the TLB will catch it and
a page fault will be generated. If the user has permission
to write to these addresses, the TLB will make the virtual
to physical translation without generating a page-fault, the
store request will be send to the TURBOchannel where
the HIB will latch the physical address and use it as an
argument to the special operation.

To solve the second problem (no interruption) we write
the sequence of writes followed by the read in PAL code
[25], a special mode of execution provided by the Alpha
processor. A sequence of PAL code instructions is guar-
anteed to be executed uninterrupted. Because only the
super-user has the right to install PAL code, and only at
boot-time, the naive or malicious user can not tamper with
the HIB and compromise the security of the system. If
the process attempts to access an invalid memory location
inside the PAL code, a page fault will be generated, the
process will (probably) be terminated and the HIB will be
restored into a clean state z.

Launching of Special Operations in Telegraphos II To
overcome the use of PAL code, and the need for a spe-
cial mode, we use the notions of Telegraphos contexts and
shadow addressing [13]: A Telegraphos context is just a
set of registers that hold the arguments of the special op-
erations. These contexts are mapped in the virtual address
space of applications, so that an application can write di-
rectly to them; an application that attempts to write to a
Telegraphos context it is not allowed to, will immediately
take a page fault.

zSome operating systems (like MACH) do not allow for page faults
within PAL code. However,other operatingsystems (like the DEC OSF/1)
generate a normal page fault when an invalid address is accessed within
PAL code.

Applications that want to launch a special operation
write the arguments (using a sequence of uncached writes)
in their Telegraphos contexts and complete the special oper-
ation with an access to a special HIB register. If, however,
an application needs to pass a physical address as an argu-
ment to a special operation, this is done using the notion
of shadow addressing [13]. For each virtual address that
maps into a physical address, we introduce a shadow virtual
address that maps into a shadow physical address. An ad-
dress differs from its shadow only in the highest bit. When
a user application wants to pass a physical address to the
Telegraphos HIB to be used as an argument to a special
operation, it issues a store operation to its corresponding
shadow virtual address. Telegraphos latches this store op-
eration, gets the physical address, strips the highest order
bit, and uses the remaining address as an argument to a
special operation.

The argument of the store instruction contains the iden-
tification of the Telegraphos context where the physical
address is to be placed, along with a key that verifies that
the process issuing the store instruction is allowed to use
this Telegraphos context. This combination of Telegraphos
contexts, keys, and shadow addressing, albeit a little com-
plicated, it manages to translate a virtual address to its
corresponding physical one, and pass it to the network in-
terface in a secure way, all in one store instruction issued
from user-level.

If an application gets interrupted while launching a spe-
cial operation, the Telegraphos contexts preserve their con-
tents, so that the special operation will be launched when
the application is resumed.

2.2.5 Related Network Interfaces

Launching of operations that need more than one instruction
is a problem faced by all systems that need to provide
operations that are not included in the processors instruction
set.

The simplest way to launch an atomic operation is to
invoke the operating system, which checks the validity of
the addresses, passes the arguments to the HIB and returns
the result, all uninterrupted. The obvious drawback of this
approach is that special operations pay the overhead of an
operating system trap, plus the page table lookup.

In SHRIMP [4] special operations are launched using the
notion of virtual memory mapped commands. For each vir-
tual memory page mapped to a shared physical page, there
exists another virtual page (called command page) which
is mapped to physical address space but not to physical
memory. Accesses to a command page are not executed as
regular load or store operations, but as special operations
to pages that the command pages correspond to. For exam-
ple, send operations based on DMA transfers are launched
using accesses to the command pages that correspond to
the pages to be transferred.

The FLASH [13] multiprocessor uses a programmable
network interface on which a rich variety of special (pro-
grammable) operations may be supported. Communica-
tion of addresses and other information is done by using
a sequence of uncached writes followed by a read to the
network interface. To communicate physical addresses,
FLASH uses an approach similar to virtual memory mapped
commands. Because the multi-instruction sequences that



FLASH uses may be interrupted at any time, FLASH uses
one operation record for each process. To maintain infor-
mation across context switches and ensure authenticity, the
FLASH operating system saves and restores a PID (pro-
cess id) register on the network interface on every context
switch. Thus, all accesses to the shadow address space
place the physical address they communicate into the con-
text that corresponds to the process indicated by the PID
register at the network interface. Unfortunately, saving and
restoring even a single PID during context switches, in-
volves modification of the interrupt handler which implies
that a significant part of the operating system (along with
the appropriate licenses) has to be distributedalong with the
architecture. Although this maybe a reasonable approach
for a new multiprocessor like FLASH, it is out the question
for a network interface like Telegraphos, because most of
the potential Telegraphos users just want a device driver to
install in their systems that use Telegraphos, and may not be
willing (or able) to download a new operating system into
their computers. To overcome these problems, Telegraphos
uses a key which provides authenticity of the process that
requests the special operation. Store operations to shadow
address space place the physical address they communicate
to the context indicated by highest bits of the argument of
the store operation. The lowest bits of the argument of the
store operation constitute a key, that provides security and
authenticity. Only processes that know the key that corre-
sponds to a specific context can write physical addresses
into that context.

2.2.6 Page Access Counters

The HIB maintains two counters for each remote sharable
page: one that counts read operations and one that counts
write operations. When the processor accesses the page
remotely, the corresponding counter is decremented (un-
less the counter is zero). When the counter is decremented
from one to zero, an interrupt is sent to the operating sys-
tem. By setting the counters to very large values and pe-
riodically reading them, the system can monitor the page
access, find hot-spots, display statistics, and provide useful
information for profiling, performance monitoring and vi-
sualization tools. By setting the counters to small values,
the operating system can implement alarm-based replica-
tion: when the number of accesses exceeds a predetermined
value, the operating system is notified in order to make a
replication decision [5]. Our simulation studies suggest
that page access counters improve the performance of dis-
tributed shared memory applications [22], and of remote
memory paging systems [21].

2.2.7 Eager Updating - Multicasting

Several parallel applications have a producer/consumer
style of communication where one process computes some
data, which are subsequently used by one or more other
processes. To reduce the read latency of the consumer
processors it is convenient to send to them the data that
they will use as early as possible. To facilitate this style
of communication, Telegraphos provides an eager update -
multicast mechanism: Each local page can be mapped out
to one or more remote pages. Every update made by the
processor to the local page is transparently sent to all remote

3a 2a

a 3a 2

a=3a=2

a=3a=2

a==2a==3

P3M3M2P2

time

M3

P3P2

M2

multi-
castcast

multi-

Figure 2: Inconsistency caused by multicasting in the lack
of ownership.

pages, much like remote write operations. This mechanism
can be used both in message passing and in shared-memory
programming paradigms.

2.3 Supporting Update-Based Coherent
Memory

When multiple processors update simultaneously their own
copy of the same page and multicast their updates to the
other processors, the pages may end up with different val-
ues. Figure 2 illustrates how this can happen.

2.3.1 Updates through the Owner of the Page

The inconsistency just described is the result of the fact
that there is no particular order in which the updates are
performed x. Thus, updates are performed in different order
in various nodes, resulting in different final values for the
“copies” of the same page. To alleviate this inconsistency,
we assume that for each page there is a single node which
is the “owner” of the page. All updates to the copies of a
page are initiated from the owner of the page, which defines
the order in which all updates will be performed. This also
assumes a network that delivers packets in-order from a
certain source to a certain destination.

When a processor writes into a page it does not own, the
write operation must be forwarded to the owner of the page.
The owner must then multicast the update to all copies of
the page (these multicast operations are called reflected
writes). At the owner processor, multiple writes to the
same word arrive in some particular order; by definition,
this is the order in which all copies should see these writes.
The owner is responsible for multicasting all packets for
the same update at the same time. If a second update for
the same word arrives in between, all of the new packets
should be multicasted after all of the previous packets are
sent. Since the Telegraphos network delivers packets in-
order, we are assured that all copies of the page will see
the two updates in the same order, and we will be left with
consistent copies.

xIn a bus-based shared-memorymultiprocessor, no such inconsistency
can be found, since all updates are serialized by the bus, and thus all
caches see the same order of updates to a given address.



Besides maintaining consistency in the presence of mul-
tiple writers, this scheme also implies that only the owner
of a page needs to hold and maintain the full list of all
processors that have copies of the page. This significantly
reduces the OS overhead when pages are copied, and also
economizes space in the Telegraphos directories. How-
ever, not performing all write operations immediately on
the local memory, but rather sending them to the owner
first, introduces new problems, as discussed below.

2.3.2 Writes to Locally-Present but Remotely-Owned
Pages

The existence of an owner for each page enforces all up-
dates to be performed in the same order to all copies of the
page, but it introduces a new problem:

Suppose that a processor P has a local copy of
a shared variable M, but it is not the owner of
the page in which M resides. Suppose that the
initial value of the variable was 0. The proces-
sor executes the assignment statement M � 1,
which sends the new value to the owner, and then
P immediately reads M before the owner sends
the update M � 1 back. If the processorP reads
M � 0, it will be an error: The processor reads
something different from what it just wrote.

One solution (with non-trivial performance cost) is to
stall the read operation issued byP until the updateM � 1
comes back from the owner, but this would make several
shared-memory local read operations quite slow. A better
option is to let the processor read the new value that it has
just written intoM , by both immediately performing all lo-
cal writes, and also sending them to the owner, which will
multicast them to all copies (including our own). Unfortu-
nately, this solution introduces a new problem. Consider
the following scenario:

� Processor P writes M � 2

� P writes M � 3, overwriting the first value

� the reflected value 2 returns from the owner and is
written into P ’s memory

� P reads M expects 3 but gets 2 (error)

� the reflected value 3 returns from the owner and is
written into P ’s memory.

In the above example, processor P writes M � 3, reads
M , expecting to find the value of 3, but instead, it gets the
value of 2, which is clearly an error.

2.3.3 Counter-based Coherent Memory

We have devised a novel solution that addresses all previ-
ously stated problems and makes sure that each processor
sees a consistent view of shared memory. The intuitionis as
follows: During the time interval in which a processor has
written a value to a shared-memory variable, but has not
received the respective reflected write from the owner, it
can just ignore all writes to this variable that come from the
network. The reason why processor P can safely ignore

all such writes is the following: Suppose that processor
P has written a value v to a shared-memory location M .
Suppose also, that P has sent the update to the owner O of
the page, but has not yet received the multicast of its own
update. Thus, any update thatP receives from the network
must have reached the owner O before v (otherwise the
multicast for v would have arrived toP ). Thus, all updates
that arrive from the network are “older” than v, and there
is no use in performing these updates onto variable M .

To implement the above solution, in a first, simple de-
sign, we need the following hardware: Each node P keeps,
along with each memory word, N (� 1) extra bits, which are
used to count the number of “pending writes,” i.e. writes
performed by the processor P whose respective multicasts
(to be sent by the owner) have not yet been received by P .
The counter should have enough bits to measure the max-
imum number of “pending writes” a processor is allowed.
The details of the protocol are as follows:

1. When a processor executes a store to its local copy of
a shared-memory page it does not own, it (i) updates
its local copy of the page, (ii) increments the counter
by one, and (iii) sends the new value to the owner of
the page for multicasting.

2. When a node P receives a write from the owner of
page, that is the result of one of P ’s own writes, P
ignores the write and decrements the counter.

3. When a node receives any other write, for a mem-
ory location whose counter is non-zero, it ignores the
write, without modifying the counter.

4. When a processor issues a read to a shared-memory
page, the read proceeds normally.

Rules 2 and 3 make sure that each node sees a subset of
the values that the owner sees, and sees them in the proper
order. Thus, any value written in a memory location is
always valid, and therefore, it is always safe to read it.

To implement the above protocol, we should provide a
counter for each memory location. The counter should be
large enough to hold the maximum number of outstanding
write operations to any single memory location a processor
may have. Fortunately, we do not need to keep all these
counters around at any time. Keeping only a small subset
of them is enough as we will show in the next section.

The run-time overhead associated with the above proto-
col is:

� Shared-memory read operations do not have any addi-
tional overhead. They proceed normally, reading the
shared-memory and ignoring the values of the coun-
ters.

� Shared-memory write operations to pages that have
remote copies incur the overhead of incrementing
the counter associated with the memory location they
modify. This consists of two memory accesses (one to
read the counter and one to write it) and one increment
operation.

� Reflected write operations arriving at the node that
issued the write operation in the first place, incur the
overhead of two memory accesses (one to read the



counter and one to write it), and one decrement oper-
ation.

Finally, the mentioned overhead is only paid for those
operations that result in a network packet, hence their rate
is bounded by the network throughput.

2.3.4 Improving the performance of counters

If the system reserved one counter for each memory loca-
tion, it would spend a large percentage of memory to store
counters. Fortunately, there is a small number of counters
that the protocol may need at any time: only the non-zero
counters are needed, which correspond to the outstanding
writes that a processor may have at any time. Thus, we can
use a small fast cache to hold the values of these counters:

� On a counter increment/decrement operation the
counter is read from the cache, it is incre-
mented/decremented and the new value is written
back.

� If after a decrement operation, the counter reaches
zero, it is not written back, and its place in the cache
is marked free.

� When a counter is accessed for the first time, a new
entry in the cache is allocated for it. If there is no free
entry in the cache, the processor is stalled. Sooner or
later, a cache entry is bound to become free, because
all reflected writes from the owner are bound to arrive
eventually. When an entry in the cache becomes free,
the new counter is allocated there, and the processor
continues its execution.

This cache can be organized as a content addressable mem-
ory. Its size can be relatively small. We expect that a cache
that holds 16-32 entries will be have enough space to hold
all outstanding counters for most applications.

Implementation of this cache of counters is under con-
sideration for future versions of Telegraphos. In our first
prototype, Telegraphos I, we have not implemented this
cache, because we wanted to reduce the hardware com-
plexity and the design time. Parallel applications that have
at least one synchronization operation between two con-
current writes will run on top of Telegraphos I without a
problem. Unfortunately, applications that have chaotic ac-
cesses may not run correctly, as their concurrent writes are
not protected by synchronization. To make these applica-
tions run correctly, without our proposed cache of counters,
we would have to protect their chaotic accesses with syn-
chronization operations, which would decrease their per-
formance.

2.3.5 Memory Consistency

Regardless of replication and the coherence protocol that
may be used, all systems (like Telegraphos) that achieve fast
write operations by acknowledging them immediately, may
suffer from memory inconsistencies. Suppose for example
that no replication is supported, and that variable flag
resides on one processor, while variable data resides on
another. Suppose also that processors A and B commu-
nicate with each other in the following producer/consumer
style:

Processor A Processor B
write(data)
write(flag)

while(flag != OK)
/* spin */;

read(data)

Although the write(flag) operations starts after the
write(data) operation, it is possible that the flag
variable is written before the data variable is written, be-
cause the communication path to the processor containing
variable flag may be faster. Thus, processor B may read
the new value of the flag and then read the old value of the
data, effectively reading stale data. To remedy the situation,
Telegraphos provides a FENCE or MEMORY BARRIER op-
eration. When a processor issues a MEMORY BARRIER
operation it is stalled until all its outstanding write oper-
ations have been completed. � The MEMORY BARRIER
operation is embedded inside all implementations of syn-
chronization operations (e.g. locks, barriers), in order to
make sure that all outstanding memory accesses complete
before the synchronization operation. Our example is now
written as:

Processor A Processor B
write(data)
UNLOCK(flag)

LOCK(flag)
read(data)

The write(flag) operation is now substituted by the
UNLOCK(flag) operation which also contains a FENCE
operation This approach makes synchronization more ex-
pensive, but keeps the cost of remote write operations low.

2.3.6 Update vs. Invalidate Coherent Memory

Although the multicast mechanism provided by Tele-
graphos can decrease the read latency of applications that
use a producer-consumer style of communication, it may
not be appropriate for applications that have different com-
munication patterns, which may prefer an invalidate-based
memory coherence protocol, or may even prohibit page
replication all together, and thus eliminate the need for
memory coherence. Telegraphos leaves such decisions en-
tirely to software, and only provides mechanisms (page
access counters, multicasting) that will help the system
software in making correct decisions. If the software de-
cides that the application has a producer/consumer style
of communication, Telegraphos provides an efficient hard-
ware mechanism to support it. Thus, instead of forcing the
software to follow a particular coherence protocol, Tele-
graphos provides a variety of mechanisms that support, to
a different extent, various coherence approaches.

2.4 Related Work in Update-Based Co-
herency

Update-based coherence protocols are not widespread be-
cause they are difficult to implement in large scale systems.

�In the current version of Telegraphos there can be no more than one
outstanding read operations.



A notable exception is the Galactica Net [15] system which
implements an update-based memory coherence protocol.
The protocol links all processors that share a page into a
sharing ring. If two processors update the same memory
location at about the same time, they will eventually notice
it, because both updates will traverse the ring, and they
will eventually reach both updating processors. Then, the
lowest priority processor will back off. This as described
in [15] guarantees that in the case where two or more pro-
cessors attempt to write the same memory location at about
the same time, the final value of the memory location that
all processors see is the same.

Suppose for example, that one processor writes the value
“1" to a variable, while at the same time another processor
writes the value “2" to the same variable. Then under
the Galactica protocol, it is possible that a third processor
sees the sequence “1,2,1" which is a sequence that is not
a valid program sequence under any memory consistency
model. The protocol that we describe in this paper avoids
this inconsistency. It makes sure that both processors read
“1", or “2", or “1,2", or “2,1" which are all valid sequences,
but no processor ever reads “1,2,1".

3 Telegraphos I and II Implementa-
tion

3.1 Status
Work on the Telegraphos architecture started in mid-1993.
At the moment of this writing (November 1995), two pro-
totypes of the architecture are in different stages of the
implementation process. Telegraphos I has been imple-
mented. Several operations work, and the rest are being
cleaned out of the last bugs. (see figure 3).

Table 1 lists the approximate gate-count equivalent of
the random logic in the various blocks of the Telegraphos
I HIB; memory sizes are also shown. As seen, the portion
of the network interface that is necessary for supporting
shared memory is very small: 2700 gates and a few kilobits
of memory. Most of it is responsible for atomic operations,
while the rest is responsible for page access counters and
multicasting. Telegraphos I also uses a few megabits of
directory SRAM, which will usually have to reside off-chip.
If the ownership-counter-based protocol is implemented in
future versions of Telegraphos, the directory size will be
significantly reduced.

3.2 Performance Measurements
Although Telegraphos I is still being debugged, it is stable
enough to run simple experiments that measure the per-
formance of its basic operations: remote read, and remote
write.

Our experimental hardware consists of two DEC 3000
model 300 workstations connected with the Telegraphos
Network. We started one application on one workstation
that makes remote memory accesses to the other worksta-
tion’s HIB. Remote read and write access are issued using
ordinary load and store operations. After starting the appli-
cation, we measured the latency of remote read and write

Figure 3: Photograph of Telegraphos I Network Inter-
face

operations by performing 10000 operations. Our measured
results are:

Operation Elapsed Time (	sec)
Remote Read 7.2
Remote Write 0.70

We see that remote write operations are very efficient:
they take less than a microsecond. The reason is that Tele-
graphos acknowledges a write operation as soon as its is
written onto the local HIB. Thus, applications that want
to send small messages can do that very efficiently. Short
batches of write operations execute even faster. For exam-
ple, a stream of 100 remote write operations takes less than
50 	sec, thus each of the remote write operations takes
less than 0.5 	sec. The reason is that long batches of write
operations are eventually performed at the network transfer
rate, while short batches of write operations may take ad-
vantage of Telegraphos queueing. However, the net result
is that the programmer sees that a remote write operation
takes less than 0.5 	sec.

Remote read operations are less efficient: they take a
few microseconds, because they need to talk to the remote
HIB, read the result, communicate it to the local HIB, to
the TURBOchannel, and eventually to the processor which
remains blocked throughout the entire operation.

4 Related Work in Workstation Clus-
ters

Although networks of workstations may have an (aggre-
gate) computing power comparable to that of supercom-
puters (while costing significantly less), they have rarely
been used to support high-performance computing,because
communication on them has traditionally been very expen-
sive. There have been several projects to provide efficient
communication primitives in networks of workstations via
a combination of hardware and software: PRAM [24],
MERLIN [20], Galactica Net [14], Memory Channel [12],
Hamlyn [7], NOW [1], and SHRIMP [4] provide efficient
message passing on networks of workstations based on
memory-mapped interfaces. Their shared-memory sup-
port, though, is limited because several of them do not



Block Logic SRAM Notes:
(gates) (Kbits)

Central control 1000 0.5
Turbochannel interface 550 300 gates + 64 bits of registers

Incoming link intf. 1000 2. 2+2 Kb of synchr. (2-port) FIFO’s
Outgoing link intf. 750 2.

Subtotal message related 3300 4.5
Atomic operations 1500

Multicast (eager sharing) 400 512 16 K multicast list entries x 32 bits
Page Access Counters 800 2048 64 K pages x (16+16) bits

Multiproc. Mem. (MPM) 16 MBytes = 128 Mbits of DRAM
Subtotal shared mem. rel. 2700 2500

Table 1: Gate Count for Telegraphos I HIB

provide atomic (and special) operations like Telegraphos
does. Most of them do not even provide read operations to
remote memory modules. Remote read operations should
be done by replicating the page locally, making a local
read, and then, either discarding the local copy, or keeping
it coherent, paying the cost of memory coherence.

There have also been several implementations of
software-only approaches that provide the shared-memory
abstraction on a workstation cluster [3, 8, 9, 10, 18, 23].
Telegraphos builds on top of these approaches by provid-
ing hardware mechanisms (remote read/write, page access
counters, multicasting), which can significantly help the
system software in providing an efficient shared-memory
system.

Thus, Telegraphos is an integrated hardware and soft-
ware solution for shared-memory support in a workstation
cluster. It provides the same functionality and efficiency
as shared-memory multiprocessors, but at a significantly
lower cost.

5 Summary

In this paper we described Telegraphos, a system for ef-
ficient support of shared-memory applications on top of
a workstation cluster. Telegraphos provides a variety of
shared-memory operations like remote read, remote write,
prefetch, and eager-updating. No software is involved in
performing all shared-memory operations, apart from the
initializationphase that maps the shared pages, so that each
processor can only access memory that is allowed to.

In our first prototype implementation, the Telegraphos I
network interface (HIB) board plugs into the TurboChannel
I/O bus of DEC Alpha 3000 model 300 (Pelican) worksta-
tions. All workstations are connected with ribbon cables
and switches. Telegraphos I has been implemented and is
being cleaned out of the last bugs. Telegraphos II, a single
chip prototype, is being designed.

Telegraphos provides hardware support for the neces-
sary shared-memory operations (like remote read/write and
coherence messages), while leaving complicated coher-
ence decisions to software and to users that are willing
to pay the cost of coherence if they are going to benefit
from it. Telegraphos provides comparable efficiency to

that of shared-memory multiprocessors because it provides
in hardware several of the primitives first implemented
in shared-memory multiprocessors, but has significantly
lower cost because (i) it does not implement hardware
cache-coherence, and (ii) it uses existing workstations for
computing power and main memory support.

Telegraphos is a system inspired by large-scale multi-
processors, but avoids their high costs. Thus, it can be
used to develop affordable parallel processing systems in
the form of workstation clusters.

Acknowledgments

This work was developed in the ESPRIT/HPCN project
“SHIPS”, and will be used by the IT project “ARCHES”
(ESPIRIT 20693), funded by the European Union. We
deeply appreciate this financial support, without which
Telegraphos would have not existed.

Telegraphos is a collective effort, with many contrib-
utors. The authors wish to acknowledge in particular S.
Kapidakis, P. Constanta-Fanouraki, and Ch. Nikolaou for
valuable contributionsto the Telegraphos design; G. Kalok-
erinos, M. Stratakis, Ch. Xanthaki, A. Dollas, and G. Pa-
padourakis for implementing the rest of the Telegraphos I
system prototype; G. Kornaros and N. Houstis for porting
the Telegraphos I switch design to the Telegraphos II ASIC
technology; and Ch. Kozirakis and M. Grammatikakis for
contributing to the switch simulation. Also, the comments
of D. Serpanos, M. Grammatikakis, and the anonymous
reviewers were valuable. We thank all of them.

References

[1] Thomas E. Anderson, David E. Culler, and David A.
Patterson. A Case for NOW (Networks of Worksta-
tions). IEEE Micro, February 1995.

[2] BBN Advanced Computers Inc. Inside the
TC2000TM Computer. Cambridge, Massachusetts,
February 1990.



[3] B. N. Bershad, M. J. Zekauskas, and W. A. Sawdon.
The Midway Distributed Shared Memory System. In
Proceedings of the COMPCON 93, 1993.

[4] M. Blumrich, K. Li, R. Alpert, C. Dubnicki, E. Fel-
ten, and J. Sandberg. Virtual Memory Mapped Net-
work Interface for the SHRIMP Multicomputer. In
Proceedings of the Twenty-First Int. Symposium on
Computer Architecture, pages 142–153, Chicago, IL,
April 1994.

[5] William J. Bolosky, Michael L. Scott, Robert P.
Fitzgerald, Robert J. Fowler, and Alan L. Cox.
NUMA Policies and Their Relation to Memory Ar-
chitecture. In Proceedings of the Fourth International
Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages 212–
221, Santa Clara, CA, April 1991.

[6] Ralph Butler and Ewing Lusk. User’s Guide to the
P4 Parallel Programming System. Technical report,
Argonne National Laboratory, October 1992.

[7] G. Buzzard, D. Jacobson, S. Marovich, and J. Wilkes.
Hamlyn: a High-performance Network Interface,
with Sender-Based Memory Management. In Pro-
ceedings of the Hot Interconnects III, August 1995.

[8] J.B. Carter, J.K. Bennett, and W. Zwaenepoel. Imple-
mentation and Performance of Munin. In Proceedings
of the 13th ACM Symposium on Operating Systems
Principles, pages 152–164, October 1991.

[9] G. Delp. The Architecture and implementation of
Memnet: A High-Speed Shared Memory Computer
Communication Network. PhD thesis, University of
Delaware, 1988.

[10] A. Forin, J. Barrera, and R. Sanzi. The Shared Mem-
ory Server. Proceedings of the USENIX Winter ’89
Technical Conference, pages 229–244, January 1989.

[11] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng
Jiang, Robert Manchek, and Vaidy Sunderam. PVM
3 User’s Guide and Reference Manual. Technical
report, Oak Ridge National Laboratory, Oak Ridge,
Tennessee, May 1993.

[12] R. Gillet. Memory Channel. In Proceedings of the
Hot Interconnects III, August 1995.

[13] J. Heinlein, K. Gharachorloo, S. Dresser, and
A. Gupta. Integration of Message Passing and Shared
Memory in the Stanford FLASH Multiprocessor. In
Proc. of the 6-th International Conference on Archi-
tectural Support for Programming Languages and
Operating Systems., pages 38–50, 1994.

[14] Andrew W. Wilson Jr., Richard P. LaRowe Jr., and
Marc J. Teller. Hardware Assist for Distributed Shared
Memory. In PROC of the Thirteenth International
Conference on DistributedComputing Systems, pages
246–255, Pittsburgh, PA, May 1993.

[15] A.W. Wilson Jr., R.P. LaRowe Jr., R.J. Ionta, R.P.
Valentino, B. Hu, P.R. Breton, and P. Lau. Update
Propagation in the Galactica Net Distributed Shared
Memory Architecture. Technical report, Center for
High Performance Computing, Worchester Polytech-
nic Institute, 1993.

[16] M. Katevenis, P. Vatsolaki, and A. Efthymiou.
Pipelined Memory Shared Buffer for VLSI
Switches. In Proceedings of the ACM SIG-
COMM ’95 Conference, pages 39–48, August
1995. URL: file://ftp.ics.forth.gr/tech-reports/1995/
1995.SIGCOMM95.PipeMemoryShBuf.ps.gz.

[17] M. Katevenis, P. Vatsolaki, A. Efthymiou,
and M. Stratakis. VC-level Flow Control
and Centralized Buffering. In Proceedings of
the Hot Interconnects III Symposium, August
1995. URL: file://ftp.ics.forth.gr/tech-reports/1995/
1995.HOTI.VCflowCtrlTeleSwitch.ps.gz.

[18] P. Keleher, S. Dwarkadas, A.L. Cox, and
W. Zwaenepoel. TreadMarks: Distributed Shared
Memory on Standard Workstations and Operating
Systems. In Proceedings of the Winter 94 Usenix
Conference, pages 115–131, 1994.

[19] K. Li and P. Hudak. Memeory coherence in shared
virtual memory systems. ACM Transactions on Com-
puter Systems, 7(4):321–359, November 1989.

[20] C. Maples. A High-Performance Memory-Based In-
terconnection System for Multicomputer Environ-
ments. In Proceedings of the Supercomputing Con-
ference, pages 295–304, 1992.

[21] E.P. Markatos. Using Remote Memory to avoid Disk
Thrashing: A Simulation Study. In Proceedings of the
ACM International Workshop on Modeling, Analysis,
and Simulation of Computer and Telecommunication
Systems (MASCOTS ’96), February 1996.

[22] E.P. Markatos and C.E. Chronaki. Trace-Driven Sim-
ulations of Data-Alignment and Other Factors affect-
ing Update and Invalidate Based Coherent Memory.
In Proceedings of the ACM International Workshop on
Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS ’94), pages
44–52, January 1994.

[23] Steven K. Reinhardt, James R. Larus, and David A.
Wood. Tempest and Typhoon: User-level Shared-
Memory. Proceedings of the Twenty-First ISCA,
pages 325–336, April 1994.

[24] D. Serpanos. Scalable Shared-Memory Interconnec-
tions. PhD thesis, Princeton University, Dept. of Com-
puter Science, October 1990.

[25] R. Sites. Alpha AXP Architecture. Communications
of the ACM, 36(2):33–44, February 1993.


