
Using reference counters in Update Based Coherent Memory

Evangelos P� Markatos and Catherine E� Chronaki

Institute of Computer Science� FO�R�T�H�� P�O� Box� ����� Heraklion� Crete� Hellas GR���� ���
markatos	ics�forth�gr� chronaki	ics�forth�gr

To appear in PARLE �� �Parallel ARchitectures and Languages Europe�� July ����� Athens� Greece�

Abstract� As the disparity between processor and memory speed continues to widen� the exploita�
tion of locality of reference in shared�memory multiprocessors becomes an increasingly important
problem in parallel processing� In this paper� we explore the problem of managing locality at the
operating system level� In speci
c� we study the use of reference counters in making informed deci�
sions about page placement and movement� We use trace�driven simulation of real applications to
evaluate the e�ectiveness of reference counters in providing useful hints to the memory manager of
the operating system� Our main conclusion is that reference counters provide a simple and inex�
pensive mechanism for detecting the reference patterns of pages and making robust page placement
decisions that result in signi
cant performance improvement�

� Introduction

The fundamental mechanism for exploiting locality at the operating system level is replicating pages
close to processors that frequently use them� Unfortunately� the existence of multiple copies of the same
page� introduces the problem of memory coherence� That is� when a processor modi�es its local copy
of a page� all processors that have a copy of the same page need to be informed of the change� This
update can be accomplished using invalidate or update mechanisms� In invalidate�based mechanisms� all
copies the page where the datum resides are invalidated� Thus� the next time another processor reads or
writes a datum on that page� it will page�fault and request a new copy� In update�based mechanisms�
a message is sent to all processors that have a copy of the page� The message contains the updated
location and its new value� so that all processors can update their copies� Traditionally� invalidate�based
protocols have been used in multiprocessor operating systems� mainly for their simplicity� However� their
performance has not been satisfactory mainly due to the high replication and invalidation costs they
incur� Update�based protocols� on the other hand� usually have better performance over a wider range
of parameters ����

The two most important decisions the operating system needs to make is when and if to replicate
a page to a processor that references it� and when to invalidate �unreplicate� a page from a processor
that does not use it anymore� When a page is replicated close to a processor p that accesses it� all
future accesses to that page by p will be local� a fact that may result in performance improvement�
Unfortunately� replicating a page involves the cost of data transfer� the operating system overhead� and
the cost of updates� Update�based protocols need to update all copies of a page for each update that is
made to that page by any processor� In this way� if we have 	
 copies of a page� at least 	
 update packets
have to be sent for each update to keep all copies up�to�date� Thus� a page should be replicated only
when the bene�ts of replication o�set its cost� To approximate the read frequency of a page� Bolosky
et� al� ��� have proposed the use of DELAY counters� The �rst time a processor accesses a page� the
counter is initialized to some value� and the page is mapped remotely� Each time the processor accesses
the page �remotely�� the counter is decremented� When the counter reaches zero� it sends an interrupt to
the operating system� which replicates the page locally� Assuming that the recent past reference behavior
approximates the near future reference behavior� the above counter helps in replicating pages that are
accessed several times� so that their replication cost will probably be covered by the bene�ts of local
access� If a processor has a local copy of a page it does not access very frequently� or if other processors
modify the same page very frequently� the operating system should consider the option of invalidating
this copy due to the high cost of keeping it� For this reason� we propose the use of an UPDATE reference
counter that counts the number of updates to a local page that arrive from the network� The operating
system sets this counter to an initial value� Each time an update arrives the counter is decremented�
When it reaches zero� an interrupt is generated� and the operating system examines whether the page
should be invalidated or not� If there have been more updates from the network than local accesses on
the given page� the page is invalidated� Otherwise� the operating system resets the counter to its initial
value�

Section
 describes our experimental environment� presents our experiments with the DELAY counter�
and describes our experiments of using both counters� Section � presents our conclusions�

� Experimentation

Experimental Environment� To evaluate the tradeo�s in the design of a memory coherency policy� we
use trace�driven simulation� The traces we use are 	
�processor traces gathered from four programs� FFT�
SIMPLE� WEATHER and SPEECH �
�� Table ��a� describes the applications further� Each processor has
a portion of the shared�memory local to it �local access�� but it can also reference the shared�memory
local to other processors �remote memory access�� To avoid remote memory accesses� processors may
replicate a page and map it in the page table as local� making all future accesses to that page local� The
parameters of the architecture are shown in table ��b�� The performance metric we use is Normalized
Average Memory access Cost� NAMC� the time it takes to do an average memory reference� to the time
it takes to do a local memory reference� If NAMC is equal to
� then the average memory access is twice
the time it would have taken if all data were in local memory� Our results report NAMC for di�erent
page sizes ranging from � to �	 Kbytes�

Application
Length
����

refs�

Working
set
�MB�

Language

FFT ��

 ��
� FORTRAN
SIMPLE
����
�� FORTRAN
WEATHER ����	 ��
 FORTRAN
SPEECH �����
�� Multilisp

parameter cost �in cycles

network latency ��
local memory access �
remote memory read ���
remote memory write ��
update ��

word transfer in replication �
page fault overhead ���

�a� �b�

Table �� �a� Applications used in trace�driven simulation� �b� Architecture Overheads�

The e�ect of the DELAY counter� We started our experiments by exploring the e�ects of using
only the DELAY counter on the performance of memory coherence protocols� We fed the traces to the
simulator and varied the initial value of the DELAY counter� The update protocol �UPD� we use is�

� UPD Read� If a processor p wants to read a memory locationM and it has a local copy ofM �s page�
it just reads M � Otherwise� the DELAY counter is decremented� If the DELAY counter reaches ��
qi is replicated locally� never to be unreplicated� Otherwise� p reads M remotely� The initial value of
the DELAY counter depends on the application and is set by the operating system�

� UPD Write� If a processor p wants to write a memory location M and it has a local copy of M �s
page� it writes M locally and sends the new value of M � to all processors with a copy of M �s page�
Otherwise� p writes M remotely�

The initial value of the DELAY counter� is the number of references a processor should do on a page
before the page is replicated locally� When the initial value of the counter is zero� each page is replicated
on the �rst access� This may seem too eager a protocol� but it widely used in cache coherence systems�
When the initial value of the DELAY counter is very large� the page is almost never replicated� and the
protocol is equivalent to one that accesses all pages remotely�

Figure � presents the performance of the four applications update policy� UPD for various page sizes
and various initial values of the DELAY counter� Figure ��a� presents the average memory access cost
of the SPEECH application for various page sizes� and various initial values of the DELAY counter�
The x axis runs in units of the initial value of the counter� We notice that independent of the page size�
when we replicate a page on the �rst access� i�e� the initial value of the counter is one� the performance
of the protocol is consistently close to
�� which is
 times higher than the cost of accessing all data
locally� Increasing the initial value of the DELAY counter generally improves performance by reducing
memory access cost� We see that the lowest normalized memory access cost is achieved when the page
size is �K and the initial value of the DELAY counter is ��
 references� It is interesting to note that the
normalized memory access cost decreases rapidly �performance improves� with the initial value of the
counter� then it reaches a minimum and then it increases slowly� SPEECH has the best performance for
the smallest page size we simulated� This is reasonable� since small pages mean less false sharing� It is
surprising though� that even for larger pages� appropriately chosen initial values of the DELAY counter
result in very good performance� even better than the performance of small pages that have poorly chosen
initial values of the DELAY counter� SIMPLE ��b� behaves in a similar fashion� Performance rapidly
increases with the initial value of DELAY � reaches a maximum and then slowly decreases again� Both
SIMPLE and SPEECH share a common observation� The initial value of the DELAY counter where the
best performance is observed� doubles with page size�

5

10

15

20

25

1 10 100 1000 10000 100000

N
or

m
al

iz
ed

 M
em

or
y

A
cc

es
s

C
os

t

 References before replicating

1k
2k
4k
8k

16k

10

12

14

16

18

20

1 10 100 1000 10000 100000
 References before replicating

1k
2k
4k
8k

16k

�a� SPEECH �b� SIMPLE

5
10
15
20
25
30
35
40
45
50
55

1 10 100 1000 10000 100000

N
or

m
al

iz
ed

 M
em

or
y

A
cc

es
s

C
os

t

References before replicating

1k
2k
4k
8k

16k

10

15

20

25

30

35

1 10 100 1000 10000 100000 1e+06
 References before replicating

1k
2k
4k
8k

16k

�c� FFT �d� WEATHER

Fig� �� The e�ect of the DELAY counter� Di�erent lines depict di�erent page sizes�

WEATHER behaves accordingly� its only di�erence being that for a large range of initial values of the
DELAY counter �
���
�
�� the performance is close to the best achievable� Thus� carefully choosing the
initial value for SIMPLE and SPEECH is more important than choosing an appropriate initial value for
WEATHER� FFT behaves much like WEATHER� Although the performance of the applications above
di�er from each other� the following comments apply to all of them�

�� Immediate replication is generally a bad idea� When the initial value of the counter is �� the memory
access cost is quite high� higher than having all pages remote � DELAY ��� in most cases�

� When the value of the counter is low �
�	 to
�
�� the performance is within acceptable bounds�
usually close to the optimal�

�� The performance for the optimal value of DELAY is much better than having all pages mapped
remotely� This observation suggests that locality management does not pay o� if pages are replicated
immediately� while it is worthwhile when a mechanism like DELAY counters is used�

Using both Counters� The previous section suggested that the use of UPDATE counter provides
marginal or no improvement when the DELAY counter is initialized to its optimal value� In this section�
we present experiments that quantify the performance bene�ts when both counters are used� To keep
the experimental space small� we focused on the SPEECH application for �Kbyte pages only� We run
the update protocol for various values of both counters in the range of � to
��	� We measured the
performance of the policy using both reference counters and compared it to the performance of the
application running the simple UPD protocol without any counters� by calculating the ratio of the
performances� This ratio is plotted in �gure
� The x axis is the value of the DELAY reference counter�
The y axis is the value of the UPDATE reference counter� The z axis plots the improvement ratio� For
instance� a value of �� on the z axis means that using both counters results in average access costs ��

times smaller than not using any counters at all�
The �rst thing we notice is that for small values of the DELAY counter� using both counters results

in signi�cant performance improvements� Using both counters does not only improves the performance�
but it also improves the overall best performance observed in our experiments� Actually� when the initial
values of the DELAY and UPDATE counters are 	
 and �
 respectively� the average memory access
cost is ����� the minimum observed in our experiments �the best performance we have observed using
just the DELAY reference counter was 	��
�� We see that using both counters for a large range of their
values we get a very good performance�

In essence� our results suggest that if we replicate pages too soon� i�e� the initial value of the DELAY
counter is small� then unreplicating� i�e� using the UPDATE counter� signi�cantly improves performance�
If however� we replicate pages on time� or too late then unreplication does not improve performance� on
the contrary� an untimely unreplication may hurt performance�

1
10

100
1000 1

10
100

1000

0
1
2
3
4
5
6

DELAY
 UPDATE

Improvement

Fig� �� Delaying Replication and unreplication in SPEECH�

� Conclusions

In this paper� we used trace driven simulation and analysis to evaluate the bene�ts of using reference
counters in update�based memory coherence protocols� Reference counters approximate the page access
patterns of various processors� Based on our experiments we conclude�
� The use of the DELAY counter signi�cantly improves performance� We have seen a performance
improvement of a factor of � �see �gure ��a� and �gure ��c���

� The use of both UPDATE and DELAY counters results in more e�cient and more robust policies�
In other words� the use of the UPDATE counter reduces the need for careful �ne tuning of the initial
value of the DELAY counter� We may initialize the DELAY counter to a relatively low value� and
the use of the second counter will eliminate the e�ects of any excessive replication�
Based on our experiments we conclude that reference counters� coupled with memory management

policies similar to the ones presented here� are a necessary hardware mechanism for the e�cient perfor�
mance of memory management in parallel operating systems� Reference counters prevent several patho�
logical cases and improve performance� The use of both DELAY and UPDATE counters results in
robust memory management policies� reducing the need for �ne�tuning their initial values�

Acknowledgments� Manolis G�H� Katevenis provided useful feedback during the early stages of this
research� Financial support for part of this work was provided by the Commission of the European Com�
munities �CEC�� through ESPRIT contract P	
�� �Supercomputer Highly Parallel System� �SHIPS��
D� Chaiken from MIT provided us with the multiprocessor traces�

References

�� W� J� Bolosky� M� L� Scott� R� P� Fitzgerald� R� J� Fowler� and A� L� Cox� NUMA Policies and Their Relation
to Memory Architecture� In Proceedings of the �th International Conference on Architectural Support for
Programming Languages and Operating Systems� pages �������� April �����

�� D� Chaiken� C� Fields� K� Kurihara� and A� Agarwal� Directory�Based Cache Coherence in Large�Scale Mul�
tiprocessors� IEEE Computer� ����
������� June �����

�� E� P� Markatos and C� E� Chronaki� Trace�Driven Simulation of Data�Alignment and Other Factors A�ecting
Update and Invalidate Based Coherent Memory� In Proceedings of International Workshop on Modeling� Anal�
ysis and Simulation of Computer and Telecommunications Systems �MASCOTS ����� pages ������ January
����� Also appeared as ICS�FORTH Technical Report ��� July �����

